Pharmacogenetics of doxorubicin in asian breast cancer patients

295 211 0
Pharmacogenetics of doxorubicin in asian breast cancer patients

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

PHARMACOGENETICS OF DOXORUBICIN IN ASIAN BREAST CANCER PATIENTS SUMAN LAL CHIRAMMAL SUGUNAN (MBBS, MSc) A THESIS SUBMITTED FOR THE DEGREE OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2008 ACKNOWLEDGEMENTS The research done towards this thesis was carried out under the direct supervision and guidance of Assoc Prof Balram Chowbay at the National Cancer Centre, Singapore I wish to deeply thank him for lending me his support and guidance through each stage of the research and preparation of this thesis This would not have been possible without his persistence and attention to detail I am greatly indebted to my principal supervisor Prof Edmund Lee at the National University of Singapore, whose generous encouragement, guidance and support has been vital throughout the period of my post-graduate study Much gratitude is due to my laboratory colleagues Xiaoxiang and Edwin, who have made significant experimental and analytical contributions to this thesis I am particularly thankful to Dr Zee Wan Wong and other members of the breast cancer team from the Department of Medical Oncology at the National Cancer Centre, who actively collaborated with the Clinical Pharmacology Laboratory and provided vital clinical support for this study Last but not least, I would like to extend my sincere thanks and gratitude to all the patients who have been involved in the study leading to this thesis This study was supported by research grants from the Singapore Cancer Syndicate (Singapore Cancer Syndicate grant SCS-PS0023) and SingHealth (SingHealth Research Fund SRF-SU110/2004) CONTENTS ACKNOWLEDGEMENTS I SUMMARY IX PUBLICATIONS AND ABSTRACTS XII LIST OF TABLES XV LIST OF FIGURES XVIII CHAPTER 1: INTRODUCTION 1.1 BREAST CANCER CHEMOTHERAPY 1.1.1 Incidence and Trends 1.1.2 Neo-adjuvant and Adjuvant Chemotherapy 1.1.3 Breast Cancer Chemotherapy Regimens 1.1.4 Anthracycline Based Chemotherapy 1.2 CLINICAL PHARMACOLOGY OF DOXORUBICIN 11 1.2.1 Introduction 11 1.2.2 Chemistry 11 1.2.3 Mechanism of Action 12 1.2.4 Pharmacokinetics 14 1.2.4.1 Administration and Distribution 14 1.2.4.2 Metabolism 15 1.2.4.3 Excretion 17 1.2.5 Pharmacodynamics 18 1.3 PHARMACOGENETICS OF DOXORUBICIN 1.3.1 Overview 23 23 1.3.2 Pharmacogenetics of Nuclear Receptors, Drug Transporters and Drug Metabolizing Enzymes 1.3.2.1 Regulatory Nuclear Receptors 1.3.2.1.1 Pregnane X receptor (PXR) 1.3.2.2 Doxorubicin Efflux Transporters 25 25 26 29 1.3.2.2.1 ATP binding cassette, sub family B1 (ABCB1) 31 1.3.2.2.2 ATP binding cassette, sub family G2 (ABCG2) 34 1.3.2.2.3 ATP binding cassette, sub family B5 (ABCB5) 38 1.3.2.2.4 ATP binding cassette, sub family C5 (ABCC5) 40 1.3.2.2.5 Ral-Binding Protein 1; RALBP1 (RLIP76) 43 1.3.2.3 Doxorubicin Influx Transporters 1.3.2.3.1 Solute carrier family, member 16 (SLC22A16) 1.3.2.4 Doxorubicin Metabolizing Enzymes 47 48 50 1.3.2.4.1 Carbonyl Reductase (CBR1) 51 1.3.2.4.2 Carbonyl Reductase (CBR3) 52 1.4 STUDY HYPOTHESIS 54 1.5 OBJECTIVES 54 III CHAPTER 2: MATERIALS AND METHODS 56 2.1 STUDY DESIGN 56 2.2 STUDY POPULATION 57 2.2.1 Healthy Subjects 57 2.2.2 Breast Cancer Patients 57 2.2.2.1 Patient Definition 58 2.2.2.2 Inclusion Criteria 58 2.2.2.3 Exclusion Criteria 59 2.2.2.4 Screening Evaluations 59 2.2.2.5 Doxorubicin Administration and Dosing Schedule 60 2.2.2.6 Concomitant Therapy 61 2.2.3 Liver Tissues 61 2.3 CHEMICALS AND REAGENTS 63 2.4 PHARMACOGENETIC ANALYSIS 65 2.4.1 DNA Extraction 65 2.4.1.1 Whole Blood 65 2.4.1.2 Liver Tissues 66 2.4.2 Polymerase Chain Reactions (PCR) 67 2.4.3 Purification of PCR Fragments 70 2.4.4 DNA Sequencing 70 2.4.5 Pharmacogenetics of Nuclear Receptors 73 2.4.5.1 Pregnane X Receptor (PXR) 2.4.6 Pharmacogenetics of Doxorubicin Transporters 73 74 2.4.6.1 ATP binding cassette, sub family B1 (ABCB1) 74 2.4.6.2 ATP binding cassette, sub family G2 (ABCG2) 75 2.4.6.3 ATP binding cassette, sub family C5 (ABCC5) 76 2.4.6.4 ATP binding cassette, sub family B5 (ABCB5) 78 2.4.6.5 Ral-Binding Protein 1; RALBP1 (RLIP76) 80 IV 2.4.6.6 Solute carrier family, member 16 (SLC22A16) 2.4.7 Pharmacogenetics of Doxorubicin Metabolizing Enzymes 81 82 2.4.7.1 Carbonyl Reductase (CBR1) 82 2.4.7.2 Carbonyl Reductase (CBR3) 83 2.5 HEPATIC EXPRESSION 84 2.5.1 RNA Extraction from Liver Tissues 84 2.5.2 Real Time Reverse-Transcription PCR (RT-PCR) 85 2.6 PHARMACOKINETICS OF DOXORUBICIN AND DOXORUBICINOL 87 2.6.1 High performance Liquid Chromatography (HPLC) Assay 2.6.1.1 Instrumentation and Chromatographic Conditions 87 87 2.6.1.2 Standard Stock Solution, Calibration and Quality Control Samples 2.6.2 HPLC determination of Doxorubicin and Doxorubicinol 88 88 2.6.2.1 Sample Preparation and Analysis 88 2.6.2.2 Estimation of Pharmacokinetic Parameters 89 2.7 STATISTICAL ANALYSIS 92 2.7.1 Pharmacogenetic Analysis 92 2.7.2 Analysis of Hepatic Expression 92 2.7.3 Pharmacokinetic-Pharmacogenetic Correlations 93 V CHAPTER 3: RESULTS AND DISCUSSION 94 3.1 DEMOGRAPHICS OF ASIAN BREAST CANCER PATIENTS 94 3.2 PHARMACOKINETICS OF DOXORUBICIN 95 3.3 PHARMACOKINETICS OF DOXORUBICINOL 100 3.4 PHARMACOKINETIC-PHARMACOGENETIC CORRELATES OF NUCLEAR RECEPTORS 3.4.1 Pregnane X Receptor (PXR) 3.4.1.1 PXR Pharmacogenetics 105 105 105 3.4.1.1.1 Linkage Disequilibrium and LD Blocks 110 3.4.1.1.2 PXR Haplotypes and Network Analysis 115 3.4.1.2 PXR Haplotypes and ABCB1 Hepatic Expression 120 3.4.1.3 Pharmacokinetic-Pharmacogenetic Associations 124 3.4.1.4 Discussion 126 3.5 PHARMACOKINETIC-PHARMACOGENETIC CORRELATES OF DRUG TRANSPORTERS 3.5.1 ATP binding cassette, subfamily B1 (ABCB1) 133 133 3.5.1.1 ABCB1 Pharmacogenetics 133 3.5.1.2 Pharmacokinetic-Pharmacogenetic Associations 135 3.5.1.3 ABCB1 Hepatic Expression 141 3.5.1.4 Discussion 143 3.5.2 ATP binding cassette, subfamily G2 (ABCG2) 148 3.5.2.1 ABCG2 Pharmacogenetics 148 3.5.2.2 Pharmacokinetic-Pharmacogenetic Associations 148 3.5.2.3 ABCG2 Hepatic Expression 150 3.5.2.4 Discussion 151 3.5.3 ATP binding cassette, subfamily C5 (ABCC5) 154 VI 3.5.3.1 ABCC5 Pharmacogenetics 154 3.5.3.2 Pharmacokinetic-Pharmacogenetic Associations 156 3.5.3.3 ABCC5 Hepatic Expression 163 3.5.3.4 Discussion 166 3.5.4 ATP binding cassette, subfamily B5 (ABCB5) 169 3.5.4.1 ABCB5 Pharmacogenetics 169 3.5.4.2 Pharmacokinetic-Pharmacogenetic Associations 171 3.5.4.3 Discussion 172 3.5.5 Ral-Binding Protein 1; RALBP1 (RLIP76) 174 3.5.5.1 RLIP76 Pharmacogenetics 174 3.5.5.2 RLIP76 Hepatic Expression 174 3.5.5.3 Discussion 175 3.5.6 Solute carrier family, member 16 (SLC22A16) 177 3.5.6.1 SLC22A16 Pharmacogenetics 177 3.5.6.2 Pharmacokinetic-Pharmacogenetic Associations 179 3.5.6.3 SLC22A16 Hepatic Expression 182 3.5.6.4 Discussion 184 3.6 PHARMACOKINETIC-PHARMACOGENETIC CORRELATES OF DRUG METABOLIZING ENZYMES 188 3.6.1 Carbonyl Reductase (CBR1) 3.6.1.1 CBR1 Pharmacogenetics 188 188 3.6.1.1.1 Linkage Disequilibrium, Haplotypes and Diplotypes 190 3.6.1.2 Pharmacokinetic-Pharmacogenetic Associations 193 3.6.1.3 CBR1 Hepatic Expression 199 3.6.2 Carbonyl Reductase (CBR3) 3.6.2.1 CBR3 Pharmacogenetics 201 201 3.6.2.1.1 Linkage Disequilibrium, Haplotypes and Diplotypes 3.6.2.2 Pharmacokinetic-Pharmacogenetic Associations 3.6.3 Discussion 204 207 207 VII CHAPTER 4: CONCLUSION AND FUTURE RESEARCH DIRECTIONS 214 A: APPENDIX 216 B: APPENDIX 218 BIBLIOGRAPHY 219 VIII SUMMARY This thesis aimed to comprehensively evaluate the pharmacogenetics of the regulatory nuclear receptor Pregnane-X Receptor (PXR), influx (SLC22A16) and efflux drug transporters (ABCB1, ABCG2, ABCC5, ABCB5 and RLIP76) and drug metabolizing enzymes (CBR1, CBR3) across the biochemical pathway of doxorubicin in Asian breast cancer patients receiving doxorubicin based adjuvant chemotherapy The moderately linked ABCB1 1236CC-2677GG-3435CC genotypes were associated with significantly increased exposure levels, peak plasma concentrations and reduced clearance of doxorubicin in patients who were homozygous for the variant alleles at the three ABCB1 loci Breast cancer patients homozygous for the ABCC5 g.-1679T allele had significantly higher exposure levels of doxorubicin when compared to the patients who were heterozygous for the polymorphism Three novel ABCB5 exonic polymorphisms [c.2T>C (exon 1), c.343A>G (exon 2) and c.1573G>A (exon 12)] were identified among the healthy Asian ethnic groups in the present study but showed no influence on doxorubicin disposition in the Asian breast cancer patients No significant influences of the ABCG2 c.421C>A polymorphism on doxorubicin disposition was observed Screening the coding regions of the gene encoding Ral-Binding Protein (RLIP76) among the three distinct Asian ethnic groups failed to identify any polymorphic variations Four novel exonic polymorphisms were identified by direct sequencing of the coding regions of the SLC22A16 gene [c.146A>G (exon 2), c.312T>C (exon 2), c.755T>C (exon 4) and c.1226T>C (exon 5)] Breast cancer patients harboring the SLC22A16 c.146GG genotype showed a trend towards higher exposure levels to IX 317 Bronchud MH, Margison JM, Howell A, et al Comparative pharmacokinetics of escalating doses of doxorubicin in patients with metastatic breast cancer Cancer Chemother Pharmacol (1990) 25(6):435-439 318 Evans WE, Crom WR, Yee GC, et al Adriamycin pharmacokinetics in children Proc Amer Assoc Cancer Res (1980) 21:176 319 Dodion P, Riggs CE, Akman SR, et al Interactions between cyclophosphamide and adriamycin metabolism in rats J Pharmacol Exp Ther (1984) 229:51–57 320 Dobbs NA, Twelves CJ, Gillies H, et al Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry Cancer Chemother Pharmacol (1995) 36(6):473-476 321 Daniel L Gustafson Doxorubicin pharmacokinetics: Macromolecule binding, metabolism, and excretion in the context of a physiologic model J Pharm Sci (2002) 91: 1488 – 1501 322 Ehninger G, Stocker HJ, Proksch B et al The pharmacokinetics of adriamycin and adriamycin-metabolites Klin Wochenschr (1980) 58(18):927-934 323 Eksborg S, Stendahl U, Lönroth U Comparative pharmacokinetic study of adriamycin and 4'epi-adriamycin after their simultaneous intravenous administration Eur J Clin Pharmacol (1986) 30(5):629-631 324 Rushing DA, Piscitelli SC, Rodvold KA, et al The disposition of doxorubicin on repeated dosing J Clin Pharmacol (1993) 33(8):698-702 261 325 Bartlett NL, Lum BL, Fisher GA, et al Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance J Clin Oncol (1994) 12(4):835-842 326 Bronchud MH, Margison JM, Howell A et al Comparative pharmacokinetics of escalating doses of doxorubicin in patients with metastatic breast cancer Cancer Chemother Pharmacol (1990) 25(6):435-439 327 Rodvold KA, Rushing DA, et al Doxorubicin clearance in the obese J Clin Oncol (1988) 6(8):1321-1327 328 Twelves CJ, Dobbs NA, Gillies HC et al Doxorubicin pharmacokinetics: the effect of abnormal liver biochemistry tests Cancer Chemother Pharmacol (1998) 42(3):229-234 329 Goodman and Gillman's The Pharmacologial Basis of Therapeutics 11th edition McGraw Hill Publishing (2005) 330 Frenay M, Milano G, Renee N, et al.Pharmacokinetics of weekly low dose doxorubicin Eur J Cancer Clin Oncol (1989) 25(2):191-195 331 Benjamin RS, Wiernik PH, Bachur NR Adriamycin chemotherapy-efficacy, safety, and pharmacologic basis of an intermittent single highdosage schedule Cancer (1974) 33(1):19-27 332 Chan KK, Chlebowski RT, Tong M, et al Clinical pharmacokinetics of adriamycin in hepatoma patients with cirrhosis Cancer Res (1980) 40(4):1263-1268 262 333 Chlebowski RT, Brzechwa-Adjukiewicz A, Cowden A, et al Doxorubicin (75 mg/m2) for hepatocellular carcinoma: clinical and pharmacokinetic results Cancer Treat Rep (1984) 68(3):487-491 334 Bandelt HJ, Forster P, Rohl A Median-joining networks for inferring intraspecific phylogenies Mol Biol Evol (1999) 16:37-48 335 Orans J, Teotico DG, Redinbo MR The Nuclear Xenobiotic Receptor Pregnane X Receptor: Recent Insights and New Challenges Mol Endocrinol (2005) 19(12):2891-2900 336 Wolbold R, Klein K, Burk O et al Sex is a major determinant of CYP3A4 expression in human liver Hepatology (2003) 38(4):978-988 337 Sugatani J, Nishitani S, Yamakawa K, et al Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptorinteracting protein Mol Pharmacol (2005) 67:845-855 338 Pascussi JM, Gerbal-Chaloin S, Duret C et al The Tangle of Nuclear Receptors that Controls Xenobiotic Metabolism and Transport: Crosstalk and Consequences Annu Rev Pharmacol Toxicol (2008) 48:1.1-1.31 339 Goodwin B, Hodgson E, D'Costa DJ, et al Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor Mol Pharmacol (2002) 62:359-365 340 Ferguson SS, Chen Y, LeCluyse EL, et al Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive 263 androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha Mol Pharmacol (2005) 68:747-757 341 Bosch TM, Deenen M, Pruntel R et al Screening for polymorphisms in the PXR gene in a Dutch population Eur J Clin Pharmacol (2006) 62:395399 342 Zhang J, Kuehl P, Green ED, et al The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants Pharmacogenetics (2001) 11:555-572 343 King CR, Xiao M, Yu J, et al Identification of NR1I2 genetic variation using resequencing Eur J Clin Pharmacol (2007) 63:547-554 344 Hustert E, Zibat A, Presecan-Siedel E, et al Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4 Drug Metab Dispos (2001) 29:1454-1459 345 Saito Y, Katori N, Soyama A, et al CYP2C8 haplotype structures and their influence on pharmacokinetics of paclitaxel in a Japanese population Pharmacogenet Genomics (2007) 17:461-471 346 Sai K, Itoda M, Saito Y, et al Genetic variations and haplotype structures of the ABCB1 gene in a Japanese population: an expanded haplotype block covering the distal promoter region, and associated ethnic differences Ann Hum Genet (2006) 70:605-622 347 Judson R, Stephens JC, Windemuth A The predictive power of haplotypes in clinical response Pharmacogenomics (2000) 1:15-26 264 348 He P, Court MH, Greenblatt DJ, et al Human Pregnane X Receptor: Genetic Polymorphisms, Alternative mRNA Splice Variants, and Cytochrome P450 3A Metabolic Activity J Clin Pharmacol (2006) 46:1356-1369 349 Garcia-Martin E, Martinez C, Pizarro RM, et al CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity Clin Pharmacol Ther (2002) 71:196-204 350 Sata F, Sapone A, Elizondo G et al CYP3A4 allelic variants with amino acid substitutions in exons and 12: evidence for an allelic variant with altered catalytic activity Clin Pharmacol Ther (2000) 67:48-56 351 Gerloff T, Stieger B, Hagenbuch B, et al The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver J Biol Chem (1998) 273:10046-10050 352 Nakamura T, Sakaeda T, Horinouchi M, et al Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects Clin Pharmacol Ther (2002) 71:297-303 353 Geick A, Eichelbaum M, Burk O Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin J Biol Chem (2001) 276:14581-14587 354 Yoon KA, Park S, Hwangbo B, et al Genetic polymorphisms in the Rbbinding zinc finger gene RIZ and the risk of lung cancer Carcinogenesis (2007) 28:1672-1679 265 355 Yamaori S, Yamazaki H, Iwano S, et al Ethnic differences between Japanese and Caucasians in the expression levels of mRNAs for CYP3A4, CYP3A5 and CYP3A7: lack of co-regulation of the expression of CYP3A in Japanese livers Xenobiotica (2005) 35:69-83 356 Timsit YE, Negishi M CAR and PXR: the xenobiotic-sensing receptors Steroids (2007) 72:231-246 357 Koyano S, Kurose K, Saito Y, et al Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region Drug Metab Dispo (2004) 32:149-154 358 Goto M, Masuda S, Saito H, et al C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation Pharmacogenetics (2002) 12:451–457 359 Gerloff T, Schaefer M, Johne A, et al MDR1 genotypes not influence the absorption of a single oral dose of mg digoxin in healthy white males Br J Clin Pharmacol (2002) 54:610–616 360 Wang D, Johnson AD, Papp AC, et al Multidrug resistance polypeptide (MDR1, ABCB1) variant 3435C4T affects mRNA stability Pharmacogenet Genomics (2005) 15:693–704 361 Kioka N, Tsubota J, Kakehi Y, et al P-glycoprotein gene (MDR1) cDNA from human adrenal: normal P-glycoprotein carries Gly185 with an altered pattern of multidrug resistance Biochem Biophys Res Commun (1989) 162: 224–231 266 362 Illmer T, Schuler US, Thiede C, et al MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients Cancer Res (2002) 62: 4955–4962 363 Kimchi-Sarfaty C, Oh JM, Kim IW, et al A "silent" polymorphism in the MDR1 gene changes substrate specificity Science (2007) 315:525–528 364 Sai K, Kaniwa N, Itoda M, et al Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan Pharmacogenetics (2003) 13:741-757 365 Rodríguez-Antona C, Niemi M, Backman JT, et al Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism Pharmacogenomics J (2008) 4:268-277 366 Courtois G, Morgan JG, Campbell LA, et al Interaction of a liver-specific nuclear factor with the fibrinogen and alpha 1-antitrypsin promoters Science (1987) 238:688-692 367 Courtois G, Baumhueter S Crabtree GR Purified hepatocyte nuclear factor interacts with a family of hepatocyte-specific promoters Proc Natl Acad Sci (1988) 85:7937-7941 368 Dynan WS, Tjian R Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II Cell (1983) 32:669-680 369 Thottassery JV, Sun D, Zambetti GP, et al Sp1 and egr-1 have opposing effects on the regulation of the rat Pgp2/mdr1b gene J Biol Chem (1999) 29;274(5):3199-3206 267 370 Sundseth R, MacDonald G, Ting J et al DNA elements recognizing NF-Y and Sp1 regulate the human multidrug-resistance gene promoter Mol Pharmacol (1997) 51(6):963-971 371 Jada SR, Lim R, Wong CI, et al Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients Cancer Sci (2007) 98(9):1461-1467 372 Bailey-Dell KJ, Hassel B, Doyle LA, et al Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene Biochim Biophys Acta (2001) 21;1520(3):234-241 373 Robey RW, Honjo Y, Morisaki K, et al Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity Br J Cancer (2003) 89: 1971-1978 374 Sarkadi B, Ozvegy-Laczka C, Nemet K, et al ABCG2-a transporter for all seasons FEBS Lett (2004) 67: 116-120 375 Knutsen T, Rao VK, Ried T et al.Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines Genes Chromosomes Cancer (2000) 27(1):110-116 376 Nakanishi T, Karp JE, Tan M, et al Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients Clin Cancer Res (2003) 9:3320–3328 268 377 Steinbach D, Sell W, Voigt A, et al BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia Leukemia (2002) 16:1443–1447 378 van den Heuvel-Eibrink MM, Wiemer EA, Prins A, et al Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML) Leukemia (2002) 16:833–839 379 Candeil L, Gourdier I, Peyron D, et al.ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases Int J Cancer (2004) 109:848–854 380 Yoh K, Ishii G, Yokose T, et al Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer Clin Cancer Res (2004) 10:1691–1697 381 Dietrich CG, de Waart DR, Ottenhoff R Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6- phenylimidazo[4,5- b]pyridine in MRP2-deficient rats Mol Pharmacol (2001) 59:974–980 382 Han JY, Lim HS, Yoo YK, et al Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer Cancer (2007) 110: 138-147 383 Suzuki M, Suzuki H, Sugimoto Y ABCG2 transportssulfated conjugates of steroids and xenobiotics J Biol Chem (2003) 278:22644–22649 384 Maliepaard M, Scheffer GL, Faneyte IF, et al Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues Cancer Res.(2001) 61:3458–3464 269 385 Jonker JW, Buitelaar M, Wagenaar E, et al The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria Proc Natl Acad Sci (2002) 99:15649–15654 386 Ee, PL, Kamalakaran, S, Tonetti D, et al Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene Cancer Research (2004) 64:1247–1251 387 Frantisek Staud, Petr Pavek Breast cancer resistance protein (BCRP/ABCG2) Int J Biochem Cell Biol (2005) 37:720–725 388 Warren JB, Pons F, Brady AJ Nitric oxide biology: implications for cardiovascular therapeutics Cardiovasc Res (1994) 28(1):25-30 389 Carvajal JA, Germain AM, Huidobro-Toro JP, et al Molecular mechanism of cGMP-mediated smooth muscle relaxation J Cell Physiol (2000) 184(3):409-420 390 Flesch M, Kilter H, Cremers B, et al Acute effects of nitric oxide and cyclic GMP on human myocardial contractility J Pharmacol Exp Ther (1997) 281(3):1340-1349 391 Flesch M, Kilter H, Cremers B, et al Effects of endotoxin on human myocardial contractility involvement of nitric oxide and peroxynitrite J Am Coll Cardiol (1999) 15;33(4):1062-1070 392 Maeda Y, Ikeda U, Oya K, et al Adeno-associated virus-mediated transfer of endothelial nitric oxide synthase gene inhibits protein synthesis of rat ventricular cardiomyocytes Cardiovasc Drugs Ther (2001) 15(1):19-24 270 393 Kool M, de Haas M, Scheffer GL, et al Analysis of expression of cMOAT (MRP2) MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1) in human cancer cell lines Cancer Res (1997) 57(16):3537-3547 394 Conne B, Stutz A, Vassalli JD, et al The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat Med (2000) 6(6): 637-641 395 Citores MJ, Rua-Figueroa I, Rodriguez-Gallego C, et al The dinucleotide repeat polymorphism in the 3'UTR of the CD154 gene has a functional role on protein expression and is associated with systemic lupus erythematosus Ann Rheum Dis (2004) 63(3):310-317 396 Moustafa MA, Ogino D,Nishimura M, et al Comparative analysis of ATPbinding cassette (ABC) transporter gene expression levels in peripheral blood leukocytes and in liver with hepatocellular carcinoma Cancer Sci (2004) 95:530–536 397 Suzuki T, Sasaki H, Kuh HJ, et al Detailed structural analysis on both human MRP5 and mouse mrp5 transcripts Gene (2000) 242:167–173 398 Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, et al Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer Cancer Res (2007) 67: 9609-9612 399 Piper JT, Awasthi YC, Pikula S ATP-Dependent human erythrocyte glutathioneconjugate transporter I Purification, photoaffinity labeling and kinetic characteristics of ATPase activity Biochemistry (1998) 37:5231– 5238 271 400 Nielson D, Skovsgaard T P-glycoprotein as multidrug transporter a critical review of current multidrug resistant cell lines Biochim Biophys Acta (1992) 1139:169-183 401 Coley, HM, Workman P, Twentyman PR Retention of activity by selected anthracyclines in a multidrug resistant human large cell lung carcinoma line without P-glycoprotein hyperexpression Br J Cancer (1991) 63:351357 402 Versantvoort, CHM, Broxterman HJ, et al Energy-dependent processes involved in reduced drug accumulation in multidrug-resistant human lung cancer cell lines without P-glycoprotein expression Cancer Res (1992) 52:17-23 403 Baas, F, Jongsma APM, Broxterman HJ, et al Non-P-glycoprotein mediated mechanisms for multidrug resistance precede P-glycoprotein expression during in-vitro selection for doxorubicin resistance in a human lung cancer cell line Cancer Res (1990) 50:5392-5398 404 Benjamin RS Pharmacokinetics of adriamycin (NSC-123127) in patients with sarcomas Cancer Chemother Rep (1974) 58(2):271-273 405 Singhal, SS, Sharma R, Gupta S, et al The anionic conjugates of bilirubin and bile salts stimulate ATP hydrolysis by S-(dinitrophenyl)glutathione ATPase of human erythrocyte FEBS Lett (1991) 281:255-257 406 Gong S, Lu X, Xu Y, et al Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias Exp Hematol (2002) 30:1162-1169 272 407 Wermuth B Purification and properties of an NADPH-dependent carbonyl reductase from human brain Relationship to prostaglandin 9- ketoreductase and xenobiotic ketone reductase J Biol Chem (1981) 256: 1206–1213 408 Wermuth B, Bohren KM, Heinemann G, et al Human carbonyl reductase Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein J Biol Chem (1988) 263(31): 16185-16188 409 Iwata N, Inazu N, Satoh T Immunological and enzymological localization of carbonyl reductase in ovary and liver of various species J Biochem (1990) 107: 209–212 410 Plebuch M, Soldan M, Hungerer C Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes Cancer Lett (2007) 18; 255(1): 49-56 411 Takenaka K, Ogawa E, Oyanagi H et al Carbonyl reductase expression and its clinical significance in non-small-cell lung cancer Cancer Epidemiol Biomarkers Prev (2005) 14: 1972-1975 412 Lima JJ, Matsushima N, Kissoon N, et al Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes Clin Pharmacol Ther (2004) 76: 27-37 413 Ho RH, Choi L, Lee W, et al Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants Pharmacogenet Genomics (2007) 17: 647-656 414 Kitamura Y, Moriguchi M, Kaneko H, et al Determination of probability distribution of diplotype configuration (diplotype distribution) for each 273 subject from genotypic data using the EM algorithm Ann Hum Genet (2002) 66: 183-193 415 Ax W, Soldan M, Koch L, et al Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction Biochem Pharmacol (2000) 59: 293-300 416 Nadali F, Pourfathollah AA, Alimoghaddam K, et al Multidrug resistance inhibition by antisense oligonucleotide against MDR1/mRNA in Pglycoprotein expressing leukemic cells Hematology (2007) 12: 393–401 417 Soldan M, Ax W, Plebuch M, et al Cytostatic drug resistance Role of phase-I daunorubicin metabolism in cancer cells Adv Exp Med Biol (1999) 463: 529-538 418 Salvatorelli E, Menna P, Cascegna S, et al Paclitaxel and docetaxel stimulation of doxorubicinol formation in the human heart: implications for cardiotoxicity of doxorubicin-taxane chemotherapies J Pharmacol Exp Ther (2006) 318: 424-433 419 Forrest GL, Gonzalez B, Tseng W, et al Human carbonyl reductase overexpression in the heart advances the development of doxorubicininduced cardiotoxicity in transgenic mice Cancer Res (2000) 60: 51585164 420 Olson RD, Mushlin PS, Brenner DE, et al Doxorubicin Cardiotoxicity May Be Caused by Its Metabolite, Doxorubicinol Proc Natl Acad Sci (1988) 85: 3585–3589 274 421 Fan L, Goh BC, Wong CI, et al Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity Pharmacogenet Genomics (2008) 18: 621–631 422 Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM et al Genetic polymorphisms in the carbonyl reductase gene CBR3 and the NAD(P)H:quinone oxidoreductase gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer Cancer (2008) 112: 2789–2795 275 ... pharmacokinetics of doxorubicin and doxorubicinol in Asian breast cancer patients The influence of ABCB1 linked polymorphisms on the pharmacokinetics of doxorubicin and doxorubicinol in Asian breast cancer. .. frequency of ABCC5 polymorphisms in Asian breast cancer patients 153 Table 3.15 The influence of ABCC5 polymorphisms on pharmacokinetics of doxorubicin and doxorubicinol in Asian breast cancer patients. .. in Asian ethnic groups and breast cancer patients 190 Table 3.26 The influence of CBR1 polymorphisms on pharmacokinetics of doxorubicin and doxorubicinol in Asian breast cancer patients The influence

Ngày đăng: 11/09/2015, 16:04

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan