Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 227 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
227
Dung lượng
6,79 MB
Nội dung
EXTENSIONAL FUZZY LOGIC CONTROLLERS FOR UNCERTAIN SYSTEMS LAI JUNWEI NATIONAL UNIVERSITY OF SINGAPORE 2007 Acknowledgement First of all, I would like to thank to my project supervisor Dr. Tan Woei Wan for her great guidance and assistance along the difficult research road. Her trust and patience are truly appreciated when I encountered difficulties in my research. Her insight into different aspects of control engineering and fuzzy logic theories has helped to solve many problems and fine-tune many important ideas. I have also learned a lot from her since joining the university. I would also like to express my sincere and heartfelt gratitude to my wife and my son Elwin. During the long time of thesis revision, I may not be able to perform my husband role very well to take care of my wife when she was pregnant. She always gives me a good environment to concentrate on my thesis writing, even in the first month after my baby was born. I am forever grateful to my loving parents, I have to thank to their consistent support and endless love. Thanks for their assistance in taking care my wife and my son, I can settle down to concentrate on my research and thesis writing during the recent year. It is my immense pleasure to dedicate this small accomplishment to my family. Last but definitely not least, I would like to take this opportunity to express my gratitude to my colleagues for their camaraderie and friendship. Over the four years, we have shared together and this is always one of the most enjoyable and impressionable period in my life. Contents List of Figures x List of Tables xi Summary xii Introduction 1.1 Uncertainty in the Real World . . . . . . . . . . . . . . . . . . . . . . 1.2 Historical Review on Fuzzy Control . . . . . . . . . . . . . . . . . . . 1.3 Extension to Type-1 Fuzzy Logic Theory . . . . . . . . . . . . . . . . 1.3.1 Non-singleton type-1 fuzzy logic systems . . . . . . . . . . . . 1.3.2 Type-2 fuzzy logic systems . . . . . . . . . . . . . . . . . . . . 1.3.3 Recent research in type-2 fuzzy controllers . . . . . . . . . . . 1.4 Aims and Scope of the Work . . . . . . . . . . . . . . . . . . . . . . . 1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 11 Theories on Extensional Fuzzy Logic 13 2.1 Singleton Type-1 Fuzzy Logic Systems . . . . . . . . . . . . . . . . . 13 2.2 Realization of PID Control Using Type-1 FLSs . . . . . . . . . . . . . 17 2.3 Non-singleton Type-1 Fuzzy Logic Systems . . . . . . . . . . . . . . . 20 2.4 Type-2 Fuzzy Logic Theories . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Type-2 membership functions . . . . . . . . . . . . . . . . . . 24 2.4.2 Embedded type-2 and type-1 sets . . . . . . . . . . . . . . . . 27 i Contents ii 2.4.3 Operations of type-2 fuzzy sets . . . . . . . . . . . . . . . . . 30 2.4.4 Centroid of type-2 fuzzy sets . . . . . . . . . . . . . . . . . . . 31 2.4.5 Properties of the centroid for an interval type-2 set . . . . . . 33 2.4.6 Type reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.7 Interval type-2 fuzzy logic systems . . . . . . . . . . . . . . . 38 Non-singleton Type-1 Fuzzy Controller for Noise Rejection 3.1 3.2 42 Properties of Symmetric Triangular Non-singleton Fuzzifier . . . . . . 43 3.1.1 Case I: Support of X partially overlaps the support of S1 . . . 45 3.1.2 Case II: Support of X is a subset of the support of S1 . . . . 48 3.1.3 Case III: Support of S1 is a subset of X . . . . . . . . . . . . 49 Non-singleton Type-1 PI Fuzzy Controller . . . . . . . . . . . . . . . 50 3.2.1 Structure of non-singleton PI controller . . . . . . . . . . . . . 50 3.2.2 Structure of inference engine . . . . . . . . . . . . . . . . . . . 51 3.2.3 Characteristics of fuzzy PI controller using symmetric nonsingleton fuzzifier . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Non-symmetric non-singleton Fuzzifier . . . . . . . . . . . . . . . . . 58 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4.1 pH process in CSTR . . . . . . . . . . . . . . . . . . . . . . . 60 3.4.2 Performance of proposed controller . . . . . . . . . . . . . . . 63 3.5 Case Study: Thermal chamber . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Type-2 Fuzzy PI Controller with Adjustable Type-reduced Output 76 4.1 Realization of Type-2 Fuzzy PI Controller . . . . . . . . . . . . . . . 78 4.2 Analysis of Type-2 Fuzzy PI Controller . . . . . . . . . . . . . . . . . 82 4.3 Theorems on Properties of Centroids . . . . . . . . . . . . . . . . . . 83 4.4 Adaptive Algorithm for Type-reduction . . . . . . . . . . . . . . . . . 88 4.4.1 Switch point adjustment algorithm . . . . . . . . . . . . . . . 88 4.4.2 Derivatives of centroid with respect to switch points . . . . . . 92 Contents 4.4.3 iii Algorithm initialization . . . . . . . . . . . . . . . . . . . . . . 94 4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6 Comparison with Fuzzy PI Gain-scheduling Control . . . . . . . . . . 102 4.6.1 Uncertain parameters for pH neutralization process . . . . . . 105 4.6.2 Simulation results for pH neutralization process with uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.7 Case Study: Thermal chamber . . . . . . . . . . . . . . . . . . . . . . 110 4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 On-line Learning Algorithm for Type-2 Fuzzy-Neural Controller 115 5.1 Type-1 and Type-2 Fuzzy-Neural Systems—General Background . . . 116 5.2 Architecture of type-2 FNC . . . . . . . . . . . . . . . . . . . . . . . 118 5.3 Control Scheme of Type-2 Fuzzy-Neural Control System . . . . . . . 122 5.4 On-line Self-learning Algorithm for MF Variables and Weights . . . . 124 5.5 5.4.1 Weight update rules . . . . . . . . . . . . . . . . . . . . . . . 126 5.4.2 MF variables update rules . . . . . . . . . . . . . . . . . . . . 130 Case Study: pH Neutralization Process . . . . . . . . . . . . . . . . . 138 5.5.1 Performance of type-2 FNC with online weights and MF variables update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5.2 5.6 Performance of type-1 FNC . . . . . . . . . . . . . . . . . . . 155 Case Study: Thermal chamber . . . . . . . . . . . . . . . . . . . . . . 162 5.6.1 Performance of type-2 FNC . . . . . . . . . . . . . . . . . . . 163 5.6.2 Performance of conventional PI controller and type-1 FNC with 12 rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Conclusions and Future Work 178 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 181 Contents Appendix A iv Relationship between FOU and control surface 183 A.1 Control surface using type-2 triangles with uncertain base . . 186 A.2 Control surface using parallel type-2 triangles . . . . . . . . . 189 A.3 Control surface using type-2 triangles with uncertain peak . . 192 Appendix B Update rules for lower MF variables 196 Author’s Publications 199 Bibliography 200 List of Figures 2.1 Examples for type-1 fuzzy set and singleton . . . . . . . . . . . . . . 14 2.2 The structure of type-1 FLS . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 The fuzzy sets of fuzzy PID controller . . . . . . . . . . . . . . . . . . 17 2.4 Structure of a Type-2 rule-based FLS . . . . . . . . . . . . . . . . . . 24 2.5 Type-2 membership functions . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Example of interval type-2 membership function . . . . . . . . . . . . 26 2.7 Upper or lower membership function and embedded fuzzy set . . . . . 28 2.8 Example of embedded type-2 fuzzy set . . . . . . . . . . . . . . . . . 29 2.9 Switch points for calculating the centroid . . . . . . . . . . . . . . . . 35 3.1 The structure of fuzzy PI controller 3.2 The antecedents of PD-like FLSs . . . . . . . . . . . . . . . . . . . . 52 3.3 Triangular non-singleton fuzzifier with small spread for e . . . . . . . 53 3.4 Triangular non-singleton fuzzifier with small spread for e˙ . . . . . . . 54 3.5 Triangular non-singleton fuzzifier with large spread . . . . . . . . . . 57 3.6 Rectangular nonsymmetric non-singleton fuzzifier . . . . . . . . . . . 59 3.7 Titration curve for a weak acid, strong base reaction . . . . . . . . . 62 3.8 The CSTR configuration with two influent streams . . . . . . . . . . 63 3.9 The control scheme for CSTR . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . 51 3.10 The details of e and e˙ of the proposed nonsymmetric non-singleton fuzzy PD plus integrator fuzzy controller at the steady state pH=8.5 v 65 List of Figures vi 3.11 Comparison of singleton type-1 PI controllers with moving average filters and non-singleton fuzzy PD plus integrator controller . . . . . 66 3.12 The pH responses of singleton PI controller and proposed non-singleton fuzzy controllers at different setpoints . . . . . . . . . . . . . . . . . . 67 3.13 The responses of proposed non-singleton fuzzy controllers with different v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.14 The responses of proposed non-singleton fuzzy controllers with different αf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.15 The responses of proposed non-singleton fuzzy controllers with different Bv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.16 Diagram of a thermal chamber . . . . . . . . . . . . . . . . . . . . . . 72 3.17 The responses of proposed non-singleton controller and conventional singleton controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.18 Control signals of proposed non-singleton controller and conventional singleton controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 The input and output fuzzy sets . . . . . . . . . . . . . . . . . . . . . 79 4.2 Lower and upper bounds of type-reduced output set . . . . . . . . . . 82 4.3 An example of type-2 fuzzy set . . . . . . . . . . . . . . . . . . . . . 89 4.4 An example of two Theorems for the particular type-2 fuzzy set . . . 90 4.5 The standard fuzzy set used in this chapter . . . . . . . . . . . . . . . 92 4.6 Illustration of equivalent gains for type-2 PI using the algorithm . . . 96 4.7 ITAEs of type-2 fuzzy PI controller in Monte Carlo uncertainty analysis 99 4.8 Histogram of ITAEs of type-2 fuzzy PI controller . . . . . . . . . . . 100 4.9 ITAEs of type-1 fuzzy PI controller in Monte Carlo uncertainty analysis100 4.10 Histogram of ITAEs of type-1 fuzzy PI controller . . . . . . . . . . . 101 4.11 Responses of three control systems when K = 0.9 , τ = 4.5. (a) The first step response; (b) Step response after adaptation. . . . . . . . . 103 Appendix B Update rules for lower MF variables Similar to the procedures for upper MF variables, the partial derivatives of q l , q l , q r and q r with respect to U Fj,i can be derived as: ∂q lh ∂U Fj,i ∂q lh ∂U Fj,i ∂q rh ∂U Fj,i ∂q rh ∂U Fj,i = = = = Nl2 Nl2 Nr2 Nr2 ∂f h ∂U Fj,i ∂f h ∂U Fj,i ∂f h ∂U Fj,i ∂f h ∂U Fj,i ∂Nl Nl − f h ∂U Fj,i ∂Nl Nl − f h ∂U Fj,i Nr − f h Nr − f h ∂Nr ∂U Fj,i ∂Nr ∂U Fj,i , h ∈ [1, · · · , L] (B-1) , h ∈ [L + 1, · · · , M ] (B-2) , h ∈ [R + 1, · · · , M ] (B-3) , h ∈ [1, · · · , R] (B-4) But now U Fj,i is associated only with the lower firing level f , the partial derivatives can be simplified as: ∂q lh ∂U Fj,i ∂q lh ∂U Fj,i ∂q rh ∂U Fj,i ∂q rh ∂U Fj,i = Nl2 = Nl2 = Nr2 = Nr2 M −f h ∂f k , h ∈ [1, · · · , L] Fj,i k=L+1 ∂U M ∂f h ∂U Fj,i Nl − f h R −f h k=1 ∂f h ∂U Fj,i ∂f k Fj,i k=L+1 ∂U ∂f k , h ∈ [L + 1, · · · , M ] (B-6) , h ∈ [R + 1, · · · , M ] ∂U Fj,i R Nr − f h k=1 196 ∂f k ∂U Fj,i (B-5) , h ∈ [1, · · · , R] (B-7) (B-8) Appendix B 197 Hence, ∂q lh ∂U Fj,i ∂q lh ∂U Fj,i ∂q rh ∂U Fj,i ∂q rh ∂U Fj,i = = = = ∂µF M Nl2 −f h Nl2 ∂µF n j,k ∂U Fj,i k=L+1 ·( µF ) ∂U Fj,i ·( Nr2 −f h Nr2 ∂µF µF N,h ) · Nl − f h k=L+1 N =1, N =j ∂µF R ∂U k=1 ∂U Fj,i n j,k ∂U Fj,i ·( µF ) , N,k N =1, N =j n j,k Fj,i ·( µF ) , N,k N =1, N =j R n j,h ∂µF M n j,h , N,k N =1, N =j ·( µF N,h ) · Nr − f h k=1 N =1, N =j ∂µF n j,k ∂U Fj,i ·( µF ) N,k N =1, N =j The notations of derivative vectors are also defined as: ΨXoj = µF o j,1 . ∂µF o j,i , µ o (Xj ) = o Fj,i Fj,i ∂U (B-9) µF o j,M and ΨXj µFj,1 . . = . µF ∂µF j,i , µ (Xj ) = Fj,i Fj,i ∂U (B-10) j,M To revise them into concise forms, ∂q lh ∂U Fj,i ∂q lh ∂U Fj,i n X X = , s ∈ [L + 1, M ], IU j (s) = IU j (i) ΨXN (s) −f (h) ΨXj (s) · Nl s N =1, N =j n (h) · ΨXj (s)· ΨXN (h) · Nl − f (h) Ψ Xj Nl2 s N =1, N =j n X X X X , IU j (h) = IU j (i); s ∈ [L + 1, M ], IU j (s) = IU j (i) ΨXN (s) = N =1, N =j n (h) (s) · , Ψ ΨXN (s) −f Xj Nl2 s N =1, N =j X X j j I (h) = I (i); s ∈ [L + 1, M ], I Xj (s) = I Xj (i) U U U U Appendix B ∂q rh n Nr2 = ∂U Fj,i 198 ΨXj (k) · −f (h) ΨXN (k) , N =1, N =j k X X k ∈ [1, R], IU j (k) = IU j (i) n ΨXN (h) · Nr − f (h) ΨXj (k)· ΨXj (h) · Nr2 N =1, N =j k n X X X X , I j (h) = I j (i); k ∈ [1, R], I j (k) = I j (i) Ψ (k) ∂q rh ∂U Fj,i U U U U XN = N =1, N =j n ΨXN (k) −f (h) ΨXj (k) · Nr2 N =1, N =j k I Xj (h) = I Xj (i); k ∈ [1, R], I Xj (k) = I Xj (i) U U U U , Finally, ∂ul ∂U Fj,i = Nl + L ∂ur wa = ∂U Fj,i a=1 M ∂q la ∂U Fj,i + wb b=L+1 R c=1 N =1, N =j n ΨXj (k) · = Nl ur · − Nr ΨXN (k) + N =1, N =j Nr n ws · ΨXj (s) · s ΨXN (s) − N =1, N =j n ΨXj (k) · k ΨXN (k) + N =1, N =j d=R+1 ∂q rd ∂U Fj,i M · · (B-11) n wk · ΨXj (k) · k ΨXN (k) N =1, N =j n ΨXj (s) · s ΨXN (s) N =1, N =j n wk · ΨXj (k) · k ΨXN (k) N =1, N =j X X X wd wc f (c) wd f (d) + Nr2 Nr2 d=R+1 ul · Nl Nr ∂U Fj,i + M − ΨXN (s) M ∂q rc wa f (a) wb f (b) + Nl Nl2 b=L+1 a=1 n s c=1 − ΨXN (s) N =1, N =j wc + L ws · ΨXj (s) · ΨXj (s) · k ∂U Fj,i n s R ∂q lb X (s ∈ [L + 1, M ], IU j (s) = IU j (i); k ∈ [1, R], IU j (k) = IU j (i)) Also, the gradient descent rule for updating U Fj,i is: U Fj,i (t) = U Fj,i (t − 1) + δ · e(t) · F F ∂ul ∂U Fj,i + ∂ur ∂U Fj,i , δ= η 2γ (B-12) where U Fj,i is either U Lj,i or U Rj,i which is determined by the value of input Xj . Author’s Publications ———————————————————————————– List of publications [1] Woei Wan Tan and Junwei Lai; Development of a type-2 fuzzy proportional controller. Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on Volume 3, 25-29 July 2004 Page(s):1305 - 1310 vol.3. [2] Junwei Lai and Woei Wan Tan; Non-singleton type-1 fuzzy controller for noise rejection. IFSA 2005 world congress, July 28-31, 2005, Beijing, China. [3] Junwei Lai and Woei Wan Tan; Framework of type-2 PI controller, The third International Conference on Computational Intelligence, Robotics and Autonomous Systems , 14-16 December 2005. [4] Junwei Lai and Woei Wan Tan;A type-2 PI controller with adjustable typeReduced output. NAFIPS 2006, Montreal, CANADA, June 2006. 199 Bibliography [1] J. R. Agero and A. Vargas. Using type-2 fuzzy logic systems to infer the operative configuration of distribution networks. In Proceedings of 2005 IEEE Power Engineering Society General Meeting, pages 2379–2386, June 2005. [2] K.E. ˚ Arz´en, M. Johansson, and R. Babuska. Fuzzy Algorithns for Control, chapter Fuzzy Control Versus Conventional Control. Kluwer Academic Publishers, 1999. [3] L. Astudillo, O. Castillo, P. Melin, A. Alanis, J. Soria, and L. Aguilar. Intelligent control of an autonomous mobile robot using type-2 fuzzy logic. Journal of Engineering Letters, 13(2):93–97, September 2006. [4] S. Auephanwiriyakul, A. Adrian, and J.M. Keller. Type fuzzy set analysis in management surveys. In IEEE International Conference on Fuzzy Systems, volume 2, pages 1321 – 1325, 2002. [5] P. Baguley, T. Page, V. Koliza, and P. Maropoulos. Time to market prediction using type-2 fuzzy sets. Journal of Manufacturing Technology Msanagement, 17(4):513–520, 2006. [6] M. Balazinsk, E. Czogala, and T. Sadowski. Control of metal-cutting process using neural fuzzy controller. In Second IEEE International Conference on Fuzzy systems, pages 161–166, 1993. [7] H. R. Berenji. Treatment of uncertainty in artificial intelligence. Machine Intelligence and Autonomy Aerospace Systems, pages 233–247, 1988. 200 Bibliography 201 [8] O. Castillo and P. Melin. A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory. In Proceedings of the 12th IEEE International Conference on Fuzzy Systems, volume 1, pages 102 – 107, 2003. [9] O. Castillo and P. Melin. Adaptive noise cancellation using type-2 fuzzy logic and neural networks. In IEEE Conference on Cybernetics and Intelligent Systems, volume 2, pages 1351 – 1355, 2004. [10] O. Castillo and P. Melin. Fuzzy logic for plant monitoring and diagnostics. In Proceedings of IEEE International Conference on Fuzzy Systems, volume 1, pages 61 – 66, 2004. [11] G. Chen and T. T. Pham. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. CRC Press LLC, 2001. [12] F. Doctor, H. Hagras, and V. Callaghan. A type-2 fuzzy embedded agent to realise ambient intelligence in ubiquitous computing environments. Information Sciences, 171:309 – 316, May 2005. [13] D. Dubois and H. Prade. Operations on fuzzy numbers. Int. J. Systems Science, 9:613–626, 1978. [14] D. Dubois and H. Prade. Operations in a fuzzy-valued logic. Information and Control, 43:224–240, 1979. [15] J. Figuero, J. Posada, M. Melgarejo, and S. Rojas. A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 359 – 364, Reno, NV, May 2005. [16] H. Hagras. A hierarchical type-2 fuzzy logic control architecture for au- tonomous mobile robots. IEEE Transactions on Fuzzy Systems, 12(4):524 – 539, August 2004. Bibliography 202 [17] H. Hagras, F.Doctor, A. Lopez, and V. Callaghan. An incremental adaptive life long learning approach for type-2 fuzzy embedded agents in ambient intelligent environments. IEEE Transactions on Fuzzy Systems, 15(1):41–55, February 2007. [18] M. Henson and D. Seborg. Adaptive nonlinear control of a pH neutralization process. IEEE Transactions on Control Systems Technology, 2(3):169–182, 1994. [19] M. A. Henson. Feedback linearization strategies for nonlinear process control. PhD thesis, University of California, Santa Barbara, 1992. [20] P. Herman, G. Prasad, and T. M. McGinnity. Investigation of the type-2 fuzzy logic approach to classification in an EEG-based brain-computer interface. In Proceedings of the Annual International Conference-IEEE Engineering in Medicine and Biology Society Conf 27, pages 5354–5357, 2005. [21] L. Holmblad and J. Østergaard. Control of a Cement Kiln by Fuzzy Logic, chapter Fuzzy Information and Decision Processes. North-Holland, Amsterdam, 1982. [22] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, USA, volume 79, pages 2554–2558, 1982. [23] P.R. Innocent and R.I. John. Computer aided fuzzy medical diagnosis. Information Sciences, 161:81 – 105, May 2004. [24] R.I. John and P.R. Innocent. Neuro-fuzzy clustering of radiographic tibia image data using type fuzzy sets. Information Sciences, 125:65 – 82, June 2000. [25] A. Karimi and A.V. Sebald. Computer aided design of closed-loop controllers for biomedical applications. In Engineering in Medicine and Biology Soci- Bibliography 203 ety, 1988. Proceedings of the Annual International Conference of the IEEE, volume 3, pages 1404 – 1405, 2006. [26] N.N. Karnik and J. M. Mendel. Logic Systems. An Introduction to Type-2 Fuzzy University of Southern California, Los Angeles,CA, see http://sipi.usc.edu/ mendel/report, 1998. [27] N.N. Karnik and J.M. Mendel. Introduction to type-2 fuzzy logic systems. In IEEE International Conference on Fuzzy Systems Proceedings, volume 2, pages 915 – 920, 1998. [28] N.N. Karnik and J.M. Mendel. Type-2 fuzzy logic systems: type-reduction. In SMC’98 Conference Proceedings, 1998 IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages 2046 – 2051, 1998. [29] N.N. Karnik and J.M. Mendel. Applications of type-2 fuzzy logic systems: handling the uncertainty associated with surveys. In FUZZ-IEEE’99, 1999 IEEE International Fuzzy Systems, volume 3, pages 1546–51, 1999. [30] N.N. Karnik and J.M. Mendel. Applications of type-2 fuzzy logic systems to forecasting of time-series. Information Sciences, 120:89–111, 1999. [31] N.N. Karnik and J.M. Mendel. Centroid of a type-2 fuzzy set. Information Sciences, 132:195 – 220, 2001. [32] N.N. Karnik and J.M. Mendel. Operations on type-2 fuzzy sets. Fuzzy Sets and Systems, 122(1):327 –348, September 2001. [33] N.N. Karnik, J.M. Mendel, and Qilian Liang. Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643 – 658, 1999. [34] M. Kawato, Y. Uno, M. Isobe, and R. Suzuki. Hierarchical neural network model for voluntary movement with application to robotic. IEEE Control Systems Magazine, 8:8–15, 1988. Bibliography 204 [35] G. J. Klir and T. Floger. Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, NJ, 1988. [36] G. J. Klir and M. J. wierman. Uncertainty-Based Information. Physica-Verlag, Heidelberg, Germany, 1998. [37] Di Lascio L., A. Gisolfi, and A. Nappi. Medical differential diagnosis through type-2 fuzzy sets. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 371 – 376, Reno, NV, May 2005. [38] J. Lai and W. W. Tan. Framework of type-2 PI controller. In the third International Conference on Computational Intelligence, Robotics and Autonomous Systems, 2005. [39] C. H. Lee and Y. C. Lin. Control of nonlinear uncertain systems using type-2 fuzzy neural network and adaptive filter. In IEEE International Conference on Networking, Sensing and Control, volume 2, pages 1177 – 1182, 2004. [40] C. H. Lee, Y. C. Lin, and W. Y. Lai. Systems identification using type-2 fuzzy neural network (type-2 FNN) systems. In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium, volume 3, pages 1264 – 1269, 2003. [41] M.A. Lee and M.H. Smith. Handling uncertainty in finance applications using soft computing. In Proceedings of ISUMA - NAFIPS ’95, the Third International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, pages 384 – 389, 1995. [42] Q. Liang and J. M. Mendel. Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Transactions on Fuzzy Systems, 8(5), 2000. Bibliography 205 [43] Q. Liang and J.M. Mendel. Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 6(5):535–550, October 2000. [44] Q. Liang and J.M. Mendel. Modeling MPEG VBR video traffic using type2 fuzzy logic systems. In Granular Computing: An Emerging Paradigm. Springer-Verlag, 2000. [45] Q. Liang and L. Wang. Sensed signal strength forecasting for wireless sensors using interval type-2 fuzzy logic system. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 25 – 30, Reno, NV, May 2005. [46] C.E. Lin and Y. R. Sheu. A hybrid-control approach for pendulum-car control. IEEE Transactions on Industrial Electronics, 39(3):208 – 214, 1992. [47] C.T. Lin. Neural Fuzzy Control Systems with Structure and Parameter Learning. World Scientific Publishing, 1994. [48] P.Z. Lin, C.F. Hsu, and T.T. Lee. Type-2 fuzzy logic controller design for buck DC-DC converters. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 365 – 370, Reno, NV, May 2005. [49] A.P. Loh, K.O. Looi, and K.F. Fong. Neural network modelling and control strategies for a pH process. Journal of Process Control, 5(6):355–362, 1995. [50] C. Lynch, H. Hagras, and V. Callaghan. Using uncertainty bounds in the design of an embedded real-time type-2 neuro-fuzzy speed controller for marine diesel engines. In Proc. FUZZ-IEEE 2006, pages 7217 – 7224, Vancouver, Canada, July 2006. [51] C. Lynch, H.i Hagras, and V. Callaghan. Embedded interval type-2 neurofuzzy speed controller for marine diesel engines. In Proceedings of International Conference on IPMU 2006, pages 1340 – 1347, Paris, France, July 2006. [52] E.H. Mamdani and S.Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Studies, 7(1):1–13, 1975. Bibliography 206 [53] R. Martinez, O. Castillo, and L. T. Aguilar. Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms. Journal of Automation, Mobile Robotics and Intelligent Systems, 2(1):12–22, January 2008. [54] P. Melin and O. Castillo. A new approach for quality control of sound speakers combining type-2 fuzzy logic and fractal theory. In IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings, volume 2, pages 825 – 830, 2002. [55] P. Melin and O. Castillo. A new method for adaptive model-based control of non-linear plants using type-2 fuzzy logic and neural networks. In Proceedings of the 12th IEEE International Conference on Fuzzy Systems, volume 1, pages 420 – 425, 2003. [56] P. Melin and O. Castillo. A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. International Journal of General Systems, 33(2):289–304, 2004. [57] J. M. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, Upper Saddle River, NJ 07458, 2001. [58] J. M. Mendel. Advances in type-2 fuzzy sets and systems. Information Sciences, 177, 2007. [59] J.M. Mendel. On the importance of interval sets in type-2 fuzzy logic systems. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, pages 1647 –1652, 2001. [60] J.M. Mendel. Computing derivatives in interval type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 12(1):84 – 98, 2004. [61] J.M. Mendel. On a 50% savings in the computation of the centroid of a Bibliography 207 symmetrical interval type-2 fuzzy set. Information Sciences, 172(3):417 – 430, 2005. [62] J.M. Mendel and R.I. John. Footprint of uncertainty and its importance to type-2 fuzzy sets. In Proceedings of 6th the IASTED International Conference Artificial Intelligence and Soft Computing - 2002, pages 587 – 592, 2002. [63] J.M. Mendel and R.I. John. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2):117 – 127, April 2002. [64] J.M. Mendel and H. Wu. Uncertainty versus choice in rule-based fuzzy logic systems. In IEEE International Conference on Fuzzy Systems, FUZZIEEE’02, volume 2, pages 1336 – 1341, 2002. [65] J.M. Mendel and H. Wu. Centroid uncertainty bounds for interval type-2 fuzzy sets: forward and inverse problems. In Proceedings 2004 IEEE International Conference on Fuzzy Systems, volume 2, pages 947 – 952, 2004. [66] J.M. Mendel and H. Wu. Properties of the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 341 – 346, Reno, NV, May 2005. [67] H.B. Mitchell. Pattern recognition using type-II fuzzy sets. Information Sciences, 170:409 – 418, 2005. [68] M. Mizumoto. Realization of PID controls by fuzzy control methods. Fuzzy Sets and Systems, 70:171–182, 1995. [69] M. Mizumoto and K. Tanaka. Some properties of fuzzy sets of type 2. Information and Control, 31(4):312 – 340, 1976. [70] M. Mizumoto and K. Tanaka. Fuzzy sets of type under algebraic product and algebraic sum. Fuzzy Sets and Systems, 5(3):277–290, May 1981. Bibliography 208 [71] M.Mizumoto and K.Tanaka. Some properties of fuzzy sets. Informat. Control, 31:312–340, 1976. [72] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley. An interval type-II robust fuzzy logic controller for a static compensator in a multimachine power system. In Proc. FUZZ-IEEE 2006, pages 4548 – 4555, Vancouver, Canada, July 2006. [73] G.C. Mouzouris and J. M. Mendel. Non-singleton fuzzy logic systems. In IEEE World Congress on Computational Intelligence, Fuzzy Systems, volume 1, pages 456–461, 1994. [74] G.C. Mouzouris and J. M. Mendel. Nonlinear time-series analysis with nonsingleton fuzzy logic systems. In Proceedings of the IEEE/IAFE, Computational Intelligence for Financial Engineering, pages 47–56, 1995. [75] Y. Muyayam, J.J. Buckley, and E.Czogala. Fuzzy neural network with fuzzy signals and weights. Int. J. of Intelligent Sysyems, 8:527–537, 1992. [76] J. Nieminen. On the algebraic structure of fuzzy sets of type 2. Kybernetika, 13(4):261 – 273, 1977. [77] T. Ozen and J.M. Garibaldi. Effect of type-2 fuzzy membership function shape on modelling variation in human decision making. In Proceedings 2004 IEEE International Conference on Fuzzy Systems, volume 2, pages 971 – 976, 2004. [78] T. Ozen, J.M. Garibaldi, and S. Musikasuwan. Modelling the variation in human decision making. In NAFIPS 2004. Annual Meeting of the North American Fuzzy Information Processing Society, volume 2, pages 617 – 622, 2004. [79] P. Persson. Toward Autonomous PID Control. PhD thesis, Lund Institute of Technology, 1992. Bibliography 209 [80] P. Phokharatkul and S. Phaiboon. Mobile robot control using type-2 fuzzy logic system. In IEEE Conference on Robotics, Automation and Mechatronics, volume 1, pages 296 – 269, 2004. [81] N. N. Karnik Q. Liang and J. M. Mendel. Connection admission control in atm networks using survey-based type-2 fuzzy logic systems. IEEE Transactions on Systems, Man, and CyberneticsPart C: Applications and Reviews, 30(3), 2000. [82] D. E. Rumelhart, G. E. Hinton, and R.J. Williams. Learning representations of back-propagation errors. Nature (London), USA, 323:533–536, 1986. [83] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, and O. Montiel. Handling uncertainty in controllers using type-2 fuzzy logic. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 248 – 253, Reno, NV, May 2005. [84] H. Shu and Q. Liang. Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems. In Proceedings 2005 IEEE International Conference on Fuzzy Systems, pages 19 – 24, Reno, NV, May 2005. [85] M. Singh, S. Srivastava, J.R.P. Gupta, and M. Hanmandlu. A type-2 fuzzy neural model based control of a nonlinear system. In Proceedings of IEEE International Conference on Fuzzy Systems, page 1093C1098, 2004. [86] J. T. Starczewski. A triangular fuzzg logic system. In Proc. FUZZ-IEEE 2006, pages 1460–1467, Vancouver, Canada, July 2006. [87] W. W. Tan and J. Lai. Development of a type-2 fuzzy proportional controller. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, volume 2, pages 1305–1310, 2004. [88] W.W. Tan and A.L. Dexter. Self-learning neurofuzzy controller of a liquid helium cryostat. Control Engineering Practice, 7:1209–1220, 1999. Bibliography 210 [89] H. Ushida, T. Yamaguchi, and T. Takagi. Fuzzy-associative-memory-based knowledge construction with an application to a human-machine interface. IEEE Transactions on Industrial Electronics, 46(4):851 – 860, 1999. [90] C. Wagner and H. Hagras. A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots. In Proc. FUZZ-IEEE 2007, pages 193 – 198, London, 2007. [91] C. H. Wang, C. S. Cheng, and T. T. Lee. Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Transactions on Systems, Man and Cybernetics: Part B, 34:1462 – 1478, June 2004. [92] L. X. Wang. A Course in Fuzzy Systems and Control. Prentice Hall, Upper Saddle River, NJ 07458, 1997. [93] L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approximation, and orthogonal leat squares learning. IEEE Transaction on Neural Networks, 3:807–813, 1992. [94] D. Wu and W.W. Tan. A simplified architecture for type-2 FLSs and its application to nonlinear control. In Proceedings 2004 IEEE International Conference on Cybernetics and Intelligent Systems, pages 485 – 490, 2004. [95] H. Wu and J.M. Mendel. Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 10(5):622 – 639, October 2002. [96] L.A. Zadeh. From circuit theory to system theory. In Proc. Insitution of Radio Engineers, volume 50, pages 856–865, 1962. [97] L.A. Zadeh. Fuzzy sets. Informat. Control, 8:338–353, 1965. [98] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-1. Information Sciences, 8:199 – 249, 1975. Bibliography 211 [99] J. Zeng and Z. Q. Liu. Type-2 fuzzy hidden markov models and their application to speech recognition. IEEE Transactions on Fuzzy Systems, 14(3):454– 467, 2006. [100] J. Zeng and Z. Q. Liu. Type-2 fuzzy sets for handling uncertainty in pattern recognition. In Proc. FUZZ-IEEE 2006, pages 6597 – 6602, Vancouver, Canada, July 2006. [101] Z. Y. zhao, M. Tomizuka, and S. Isaka. Fuzzy gain scheduling of PID controllers. IEEE Transactions on Systems, Man and Cybernetics, 23(5):1392– 1398, 1993. [...]... neural networks to learn the fuzzy control rules and the membership functions of a fuzzy logic control system The combination brings the low-level computational power and learning ability of neural networks into fuzzy logic systems to automate and realize the design of fuzzy logic control systems; it also provides the high level IF-THEN rule thinking and reasoning of fuzzy logic systems into neural networks... uncertain or complex relationship and examine the advantage of the extra freedom in type-2 fuzzy sets This thesis seeks to develop controllers utilizing extensional fuzzy logic theories, namely non-singleton fuzzy logic and type-2 fuzzy logic and evaluate these controllers performance on handling different kinds of uncertainty In view of the above discussion, the specific objectives are as follows: 1 To... Type-2 fuzzy logic and neural networks[56] Lee and Lin applied type-2 fuzzy neural systems with adaptive filter to nonlinear uncertain systems[ 39] Singh and et al also proposed a type-2 fuzzy neural model based controller for a nonlinear system[85] Wang, Chen and Lee developed a type2 fuzzy neural network to handle uncertainty with dynamical optimal learning[91] Excellent results were obtained for the... reasoning of fuzzy logic systems into neural networks 1.3 Extension to Type-1 Fuzzy Logic Theory In spite of the many applications utilizing type-1 fuzzy controllers, type-1 fuzzy set and fuzzy logic system (FLS) is not adequate for handling all kinds of uncertainty when constructing rule-based FLS[57] It is known that the uncertain knowledge used to construct a FLS may arise from the following sources:... type-2 fuzzy controller in handling uncertainty[83] Lin and et al designed a type-2 fuzzy logic controller for buck DC-DC converters[48] There are some other works that utilized neural based system to learn the parameters of type-2 fuzzy controllers since type-1 fuzzy neural systems have been successfully developed and applied in last decade Melin and Castillo designed an adaptive controller for non-linear... since the birth of fuzzy controllers for real systems in 1975[92] Mamdani and Assilian first established the basic framework of fuzzy controller based on Mam- Chapter 1 Introduction 3 dani fuzzy logic system (FLS) and applied the fuzzy controller to control a steam engine[52] Control of cement kilns was another early industrial application[21] Since the first consumer product using fuzzy logic was marketed... may also possibly be lacking Fuzzy sets, the foundation of fuzzy theory, were introduced forty years ago as a way of expressing non-probabilistic uncertainties[97] Since then, fuzzy theory has been applied to construct different kinds of fuzzy controllers to control systems where tradition methods may not have good results 1.2 Historical Review on Fuzzy Control Zadeh proposed fuzzy theory more than 40... improve the performance on minimizing the effect of uncertain information in the input 2 To develop an adaptive type-reduction method based on properties of centroid for an interval type-2 fuzzy logic controller to obtain a variable control surface To evaluate the performance of such a type-2 fuzzy logic controller with variable control surface to track a reference trajectory when the system are uncertain. .. type-2 fuzzy- neuro controller (FNC) using BP algorithm for updating the consequent and antecedent parameters online To evaluate the online performance of a type-2 fuzzy- neuro controller when it is applied to a nonlinear and uncertain systems Chapter 1 Introduction 11 Fuzzy neural network (FNN) system can be tuned both for neuron parameters and the structure of network, but the uncertain information... controller The fuzzy PID controller is now actually non-linear version of conventional PID controller The fuzzy PID controllers are generally superior to the conventional ones, particularly for higher-order, time-valued, and nonlinear systems, and for those systems that have only vague mathematical models which are difficult, if not impossible, for a conventional PID to handle Such nonlinear fuzzy PID controllers . Type-1 Fuzzy Logic Theory In spite of the many applications utilizing type-1 fuzzy controllers, type-1 fuzzy set and fuzzy logic system (FLS) is not adequate for handling all kinds of uncertainty when. distributions” [96]. Later, Zadeh formalized these ideas into the paper Fuzzy Sets”. The fuzzy logic theory introduced by Zadeh is also termed type-1 fuzzy logic. Since then, fuzzy logic theory has developed. Non-singleton type-1 fuzzy logic systems . . . . . . . . . . . . 5 1.3.2 Type-2 fuzzy logic systems . . . . . . . . . . . . . . . . . . . . 5 1.3.3 Recent research in type-2 fuzzy controllers . .