Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 160 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
160
Dung lượng
4,43 MB
Nội dung
INVESTIGATION OF PEPTIDE‐LIPID INTERACTION BY FLUORESCENCE CORRELATION SPECTROSCOPY GUO LIN (B.Sc.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2010 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy This work was performed in the Biophysical Fluorescence Laboratory, Department of Chemistry, National University of Singapore under the supervision of Associate Professor Thorsten Wohland. The results have been partly published in: Guo, L., J. Y. Har, J. Sankaran, Y. Hong, B. Kannan and T. Wohland (2008). "Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study." Chemphyschem 9(5): 721‐8. Kannan, B., L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama and T. Wohland (2007). "Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge‐coupled device camera." Anal Chem 79(12): 4463‐70. Yu, L., L. Guo, J. L. Ding, B. Ho, S. S. Feng, J. Popplewell, M. Swann and T. Wohland (2009). "Interaction of an artificial antimicrobial peptide with lipid membranes." Biochim Biophys Acta 1788(2): 333‐44. Leptihn, S., L. Guo, V. Frecer, B. Ho and J. Ding (2010). "One step at a time: Action mechanism of Sushi1 antimicrobial peptide and derived molecules." Virulence 1(1): 42‐44. Sankaran, J., M. Manna, L. Guo, R. Kraut and T. Wohland (2009). "Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross‐ correlation spectroscopy." Biophys J 97(9): 2630‐9. I Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Acknowledgement A doctoral thesis like this, involving various fields, would not be possible without the help of many people. I would like to take this opportunity to acknowledge the persons who provided great help in my study. First, I would like to acknowledge my supervisor Associate Professor Thorsten Wohland from Department of Chemistry for providing such an interesting research project. I am also grateful for his invaluable guidance, support and patience throughout the project. I would like to thank Professor Ding Jeak Ling from Department of Biological Science and Associate Professor Ho Bow from Department of Microbiology for their scientific suggestions and discussions on the project. I am also grateful to all my colleagues from Biophysical Fluorescence Laboratory for their kind help and support. Especially Lanlan Yu for her great advices on the project of antimicrobial peptides; Ling Chin Hwang and Xiaotao Pan for their helpful discussions on Fluorescence Correlation Spectroscopy; Ping Liu, Xianke Shi and Sebastian Leptihn for their kind support on biological relevant topics; Kannan Balakrishnan, Jia Yi Har, Manna Manoj Kumar and Jagadish Sankaran for their great help on the Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy project. And last but not least I would like to thank my parents for their understanding, support and love for all these years. II Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Acknowledgement II Table of Contents . III Summary . VII List of Figures . IX List of Tables . XI Chapter 1 1.1 Introduction . 1 Introduction to Antimicrobial peptides 3 1.1.1 Antimicrobial peptides 5 1.1.1.1 Biological activities of antimicrobial peptides 5 1.1.1.2 Origins of antimicrobial peptides 5 1.1.1.3 Structural features of antimicrobial peptides . 8 1.1.1.4 Therapeutic potential of antimicrobial peptides 13 1.1.2 Designed antimicrobial peptides . 13 1.1.2.1 Designed antimicrobial peptides . 15 1.1.2.2 De novo designed V peptide family . 16 1.1.3 Mechanism of antimicrobial peptides 18 1.1.3.1 Biological membranes . 19 1.1.3.2 Model membranes . 24 1.1.3.3 Mechanisms of antimicrobial peptides . 26 1.1.3.4 Methods to study mechanism of antimicrobial peptides 30 1.2 Conventional Fluorescence Correlation Spectroscopy . 34 1.2.1 Basic Theory – Autocorrelation Function 36 1.2.2 Basic Setup ‐ Confocal Microscope 43 1.2.3 Combining Fluorescence Correlation Spectroscopy with a Laser Scanning Microscope . 44 Chapter 2 Investigation of the binding affinity of modified antimicrobial peptide to membrane mimics . 46 2.1 Introduction . 46 2.2 Materials and methods 47 2.2.1 Materials 47 2.2.2 Peptides 47 2.2.3 Small unilamellar vesicles (SUVs) preparation . 48 2.2.4 Interaction of modified V4 peptides with LPS 48 III Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy 2.2.5 Interaction of modified V4 peptides with SUVs . 48 2.2.6 FCS Instrumentation and confocal imaging 49 2.3 Results and Discussion . 50 2.3.1 Calibration of the FCS setup 50 2.3.2 Modified AMPs are more soluble compared with V4 51 2.3.3 Modified antimicrobial peptide can bind to LPS strongly 55 2.3.4 Modified antimicrobial peptide can bind to POPG strongly 59 2.3.5 Modified antimicrobial peptides show low binding affinity to POPC 61 2.3.6 Comparison between different V peptides . 62 Chapter 3 Investigation of the mechanisms of antimicrobial peptides interacting with membrane mimics . 66 3.1 Introduction . 66 3.2 Materials and methods 68 3.2.1 Materials 68 3.2.2 Peptides 68 3.2.3 Fluorophore entrapping vesicle preparation 68 3.2.4 Fluorophore labeled vesicle preparation 69 3.2.5 Interaction of MV4s with rhodamine 6G entrapped LUVs (REVs) and Rho‐PE labeled LUVs (RLVs) . 69 3.2.6 3.3 FCS instrumentation and confocal imaging 69 Results and discussion . 70 3.3.1 Modified antimicrobial peptides induce leakage of rhodamine 6G entrapped in POPG LUVs . 70 3.3.2 Modified antimicrobial peptides interact with Rho‐PE labeled POPG LUVs . 74 3.3.3 Modified antimicrobial peptides interact with Rho‐PE labeled POPC LUVs 78 3.3.4 Visualization of Modified peptides interacting with Rho‐PE labeled LUVs . 79 3.3.5 Comparison between different V peptides . 79 3.4 Confocal visualization of peptide‐lipid interaction 82 3.4.1 Materials and methods 83 3.4.1.1 Materials 83 3.4.1.2 GUVs preparation 83 3.4.1.3 Immobilization of GUVs on cover slide . 83 3.4.1.4 Confocal imaging 84 3.4.2 3.5 Visualization of interaction between V4 and GUVs . 84 In vivo measurements 87 IV Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy 3.5.1 Materials and methods 88 3.5.1.1 Peptides 88 3.5.1.2 Preparation of bacterial culture 88 3.5.1.3 Bacterial assay 89 3.5.2 Monitoring the GFP leakage from Gram‐negative bacteria . 89 Chapter 4 Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy as a tool to monitor the peptide‐lipid interaction . 92 4.1 Introduction to ITIR‐FCS . 92 4.1.1 Total internal reflection (TIR) illumination . 92 4.1.2 Imaging total internal reflection fluorescence correlation spectroscopy 94 4.1.3 Basic setup . 98 4.1.4 Basic theory ‐ Autocorrelation function for ITIR‐FCS 100 4.2 Characterization of ITIR‐FCS 102 4.2.1 Introduction to different fluorescence techniques 103 4.2.1.1 Z‐scan FCS . 104 4.2.1.2 Fluorescence recovery after photobleaching . 105 4.2.1.3 Single particle tracking 107 4.2.2 Materials and Methods . 109 4.2.2.1 Lipids and dyes . 109 4.2.2.2 Peptides 109 4.2.2.3 Preparation of SLB . 109 4.2.2.4 Preparation of GUVs 110 4.2.2.5 Immobilization of GUVs . 110 4.2.2.6 FCS instrumentation and measurement . 110 4.2.2.7 FRAP instrumentation and measurement 111 4.2.2.8 SPT and ITIR‐FCS Instrumentation . 111 4.2.2.9 SPT measurement 111 4.2.2.10 4.2.3 ITIR‐FCS measurement . 112 Results and Discussion . 112 4.2.3.1 Results 112 4.2.3.2 Comparison of different techniques . 116 4.2.3.3 Features of ITIR‐FCS . 121 4.3 Utilizing ITIR‐FCS to investigate the behavior of antimicrobial peptides on lipid membrane 122 V Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy 4.3.1 Introduction . 122 4.3.2 Materials and Methods . 122 4.3.3 Results and Discussion . 123 Chapter 5 Conclusions and Outlook . 127 5.1 Conclusion 127 5.2 Outlook . 131 Reference . 134 VI Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Summary In this work I investigate the action of antimicrobial peptides (AMPs) with single molecule sensitive fluorescence spectroscopy methods. AMPs are novel and promising candidates of antibiotics. AMPs kill the pathogen by permeabilizing the bacterial membrane. So it is very hard for bacteria to develop drug resistance. De novo designed AMPs can greatly enlarge the pool of available peptide candidates, eliminating some of the cytotoxic features of the natural ones. As a de novo designed peptide, V4 originated from a LPS (lipopolysaccharide) ‐binding motif, showed its good combination of strong antimicrobial effect and low cytotoxic/hemolytic effect. However, its application is limited due to its low solubility. To overcome this limitation, a series of modified V4 (MV4s) was designed to have better solubility. In this study, the interaction between MV4s and different lipid model membranes was investigated using single molecule sensitive fluorescence spectroscopy methods, such as fluorescence correlation spectroscopy (FCS) and imaging total internal reflection fluorescence correlation spectroscopy (ITIR‐FCS), together with laser scanning confocal imaging. A similar mechanism of MV4s compared to V4 was observed: inducing lipid aggregation before inducing the lipid membranes disruption. By comparing different MV4s, we found that a) highly positively charged structure maintained preferential binding to negatively charged lipid, b) higher hydrophobicity gave rise to a higher activity against both negatively charged and zwitterionic lipid, and c) two binding motifs in MV4s may play a crucial role to maintain their activity. A good consistency was found between predicted and actual property of peptides. Further study of AMPs on live E. coli VII Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy suggested that peptides with medium hydrophobicity showed the highest antimicrobial activity. By investigating different members of the V4 peptide family, this study contributes to our understanding of their mechanism of antimicrobial activity and selectivity. It thus provides further guidelines for the rational design of antimicrobial peptides. VIII Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy List of Figures Fig 1.1 Schematic representation of the Gram‐negative bacteria cell wall. 20 Fig 1.2 Schematic representation of cell wall from Gram‐positive bacteria. 20 Fig 1.3 Structure of lipid A. 21 Fig 1.4 Schematic drawing of different model membrane. 26 Fig 1.5 The barrel‐stave model. 27 Fig 1.6 The carpet model. 28 Fig 1.7 The toroidal model. 29 Fig 1.8 Principle of FCS. 37 Fig 1.9 Principle of ACF curves. 41 Fig 1.10 Schematic drawing of a typical FCS setup 43 Fig 2.1 Principle of affinity measurement. 47 Fig 2.2 Comparison between TV4‐TMR and TMR. 52 Fig 2.3 Comparison between V4norv‐TMR, V4abu‐TMR, V4ala‐TMR and TMR. 52 Fig 2.4 ACF and intensity trace obtained for V4norv‐TMR. 53 Fig 2.5 Confocal image of V4norv‐TMR. 55 Fig 2.6 ACF obtained for V4ala‐TMR. 55 Fig 2.7 ACF curves obtained for titrating LPS into different peptides. 57 Fig 2.8 Interaction between LPS and different peptides. 57 Fig 2.9 LPS dissolved the peptide aggregates. 58 Fig 2.10 V4norv‐TMR, V4abu‐TMR, V4ala‐TMR interacting with POPG SUVs. 60 Fig 2.11 TV4 showed almost no affinity to POPG SUVs. 61 Fig 2.12 binding affinity of different MV4‐TMR to POPG SUVs. 61 Fig 2.13 MV4s showed almost no affinity to POPC SUVs. 63 Fig 3.1 Principle of leakage measurement. 67 Fig 3.2 Principle of disruption measurement. 67 Fig 3.3 Comparison between POPG REV and free R6G. 70 IX Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy peptides on membranes could greatly improve our understanding on the mechanism of interactions between V peptides and lipid membranes. To further extend the usage of ITIR‐FCS, it can be combined with AFM. Firstly, in addition to fluorescence images, the fast dynamics of molecules on membrane can be observed in high‐throughput screening using ITIR‐FCS. At the same time, high resolution AFM images of the membrane morphology at the same location can be obtained. Correlations between dynamics and morphology can provide information to resolve the action mechanism of peptides. ITIR‐FCS can also be easily adapted to in vivo measurement, making it a useful tool study peptide behavior on biological membrane (mammalian or bacteria cells) which is much more complicated and biological relevant compared to the model membrane used in vitro. 133 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy References Adkins, E. M., D. J. Samuvel, et al. (2007). "Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching." Biochemistry 46(37): 10484‐97. Agerberth, B., J. Y. Lee, et al. (1991). "Amino acid sequence of PR‐39. Isolation from pig intestine of a new member of the family of proline‐arginine‐rich antibacterial peptides." Eur J Biochem 202(3): 849‐54. Alaouie, A. M., R. N. Lewis, et al. (2007). "Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid‐ peptide interactions in nanoporous substrate‐supported lipid model membranes." Langmuir 23(13): 7229‐34. Alberts, B. (2002). "Molecular biology of the cell." Ambroggio, E. E., F. Separovic, et al. (2005). "Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein." Biophys J 89(3): 1874‐81. Andres, E. and J. L. Dimarcq (2004). "Cationic antimicrobial peptides: update of clinical development." J Intern Med 255(4): 519‐20. Andreu, D. and L. Rivas (1998). "Animal antimicrobial peptides: an overview." Biopolymers 47(6): 415‐33. Axelrod, D. (1981). "Cell‐substrate contacts illuminated by total internal reflection fluorescence." J Cell Biol 89(1): 141‐5. Axelrod, D., D. E. Koppel, et al. (1976). "Mobility measurement by analysis of fluorescence photobleaching recovery kinetics." Biophys J 16(9): 1055‐69. Bacia, K., S. A. Kim, et al. (2006). "Fluorescence cross‐correlation spectroscopy in living cells." Nat Methods 3(2): 83‐9. Bacia, K., D. Scherfeld, et al. (2004). "Fluorescence correlation spectroscopy relates rafts in model and native membranes." Biophys J 87(2): 1034‐43. Bates, I. R., P. W. Wiseman, et al. (2006). "Investigating membrane protein dynamics in living cells." Biochem Cell Biol 84(6): 825‐31. Baumann, G. and P. Mueller (1974). "A molecular model of membrane excitability." J Supramol Struct 2(5‐6): 538‐57. Benda, A., M. Benes, et al. (2003). "How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy." Langmuir 19(10): 4120‐4126. Berland, K. M., P. T. So, et al. (1995). "Two‐photon fluorescence correlation spectroscopy: method and application to the intracellular environment." Biophys J 68(2): 694‐701. Besenicar, M., P. Macek, et al. (2006). "Surface plasmon resonance in protein‐membrane interactions." Chem Phys Lipids 141(1‐2): 169‐78. Blondelle, S. E. and R. A. Houghten (1992). "Design of model amphipathic peptides having potent antimicrobial activities." Biochemistry 31(50): 12688‐94. Blondelle, S. E., K. Lohner, et al. (1999). "Lipid‐induced conformation and lipid‐binding properties of cytolytic and antimicrobial peptides: determination and biological specificity." Biochim Biophys Acta 1462(1‐2): 89‐108. 134 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Bocchinfuso, G., A. Palleschi, et al. (2009). "Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations." J Pept Sci. Bodanszky, M. (1988). Peptide chemistry: a practical textbook, Springer. Boman, H. G. (1995). "Peptide antibiotics and their role in innate immunity." Annu Rev Immunol 13: 61‐92. Boman, H. G., B. Agerberth, et al. (1993). "Mechanisms of action on Escherichia coli of cecropin P1 and PR‐39, two antibacterial peptides from pig intestine." Infect Immun 61(7): 2978‐84. Boman, H. G., D. Wade, et al. (1989). "Antibacterial and antimalarial properties of peptides that are cecropin‐melittin hybrids." FEBS Lett 259(1): 103‐6. Brabetz, W., S. Muller‐Loennies, et al. (1997). "Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K‐12 results in an Re‐type lipopolysaccharide with a high degree of 2‐aminoethanol phosphate substitution." Eur J Biochem 247(2): 716‐24. Breithaupt, H. (1999). "The new antibiotics." Nat Biotechnol 17(12): 1165‐9. Brock, R. and T. Jovin (1998). "Fluorescence correlation microscopy (FCM)‐fluorescence correlation spectroscopy (FCS) taken into the cell." Cellular and molecular biology (Noisy‐le‐Grand, France) 44(5): 847. Brogden, K. A. (2005). "Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?" Nat Rev Microbiol 3(3): 238‐50. Brogden, K. A., A. J. De Lucca, et al. (1996). "Isolation of an ovine pulmonary surfactant‐ associated anionic peptide bactericidal for Pasteurella haemolytica." Proc Natl Acad Sci U S A 93(1): 412‐6. Brotz, H., G. Bierbaum, et al. (1998). "The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II." Antimicrob Agents Chemother 42(1): 154‐60. Brozell, A. M., M. A. Muha, et al. (2006). "A class of supported membranes: formation of fluid phospholipid bilayers on photonic band gap colloidal crystals." J Am Chem Soc 128(1): 62‐3. Bulet, P., C. Hetru, et al. (1999). "Antimicrobial peptides in insects; structure and function." Dev Comp Immunol 23(4‐5): 329‐44. Burkhardt, M., K. G. Heinze, et al. (2005). "Four‐color fluorescence correlation spectroscopy realized in a grating‐based detection platform." Opt Lett 30(17): 2266‐8. Burkhardt, M. and P. Schwille (2006). "Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy." Optics Express 14(12): 5013‐5020. Chang, W. K., W. C. Wimley, et al. (2008). "Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy." Biochim Biophys Acta 1778(10): 2430‐6. Chen, H. C., J. H. Brown, et al. (1988). "Synthetic magainin analogues with improved antimicrobial activity." FEBS Lett 236(2): 462‐6. Chen, Y., B. C. Lagerholm, et al. (2006). "Methods to measure the lateral diffusion of membrane lipids and proteins." Methods 39(2): 147‐53. Csordas, A. and H. Michl (1970). "Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombina species." Monatsh. Chem 101: 182‐189. 135 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Culbertson, C. T., S. C. Jacobson, et al. (2002). "Diffusion coefficient measurements in microfluidic devices." Talanta 56(2): 365‐373. Dathe, M., J. Meyer, et al. (2002). "General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides." Biochim Biophys Acta 1558(2): 171‐86. Dathe, M., M. Schumann, et al. (1996). "Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes." Biochemistry 35(38): 12612‐22. Dathe, M. and T. Wieprecht (1999). "Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells." Biochim Biophys Acta 1462(1‐2): 71‐87. Dathe, M., T. Wieprecht, et al. (1997). "Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides." FEBS Lett 403(2): 208‐12. De Smet, K. and R. Contreras (2005). "Human antimicrobial peptides: defensins, cathelicidins and histatins." Biotechnol Lett 27(18): 1337‐47. Dertinger, T., V. Pacheco, et al. (2007). "Two‐focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements." Chemphyschem 8(3): 433‐43. Dertinger, T., I. von der Hocht, et al. (2006). "Surface sticking and lateral diffusion of lipids in supported bilayers." Langmuir 22(22): 9339‐44. Destoumieux, D., M. Munoz, et al. (2000). "Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda)." Cell Mol Life Sci 57(8‐9): 1260‐71. Digman, M. A., P. Sengupta, et al. (2005). "Fluctuation correlation spectroscopy with a laser‐scanning microscope: exploiting the hidden time structure." Biophys J 88(5): L33‐6. Dinarello, C. A. (2000). "Proinflammatory cytokines." Chest 118(2): 503‐8. Dittrich, P. S. and P. Schwille (2002). "Spatial two‐photon fluorescence cross‐correlation spectroscopy for controlling molecular transport in microfluidic structures." Anal Chem 74(17): 4472‐9. Ehret‐Sabatier, L., D. Loew, et al. (1996). "Characterization of novel cysteine‐rich antimicrobial peptides from scorpion blood." J Biol Chem 271(47): 29537‐44. Eigen, M. and R. Rigler (1994). "Sorting single molecules: application to diagnostics and evolutionary biotechnology." Proc Natl Acad Sci U S A 91(13): 5740‐7. Eisenberg, D., E. Schwarz, et al. (1984). "Analysis of membrane and surface protein sequences with the hydrophobic moment plot." Journal of Molecular Biology 179(1): 125. Elson, E. and D. Magde (1974). "Fluorescence correlation spectroscopy. I. Conceptual basis and theory." Biopolymers 13(1). Elson, E. L. (1985). "Fluorescence Correlation Spectroscopy and Photobleaching Recovery." Annual Review of Physical Chemistry 36(1): 379‐406. Epand, R. M. (1998). "Lipid polymorphism and protein‐lipid interactions." Biochim Biophys Acta 1376(3): 353‐68. Epand, R. M. and H. J. Vogel (1999). "Diversity of antimicrobial peptides and their mechanisms of action." Biochim Biophys Acta 1462(1‐2): 11‐28. Erridge, C., E. Bennett‐Guerrero, et al. (2002). "Structure and function of lipopolysaccharides." Microbes Infect 4(8): 837‐51. 136 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Falla, T. J., D. N. Karunaratne, et al. (1996). "Mode of action of the antimicrobial peptide indolicidin." J Biol Chem 271(32): 19298‐303. Fauchere, J. (1996). "Lipophilicity in peptide chemistry and peptide drug design." Lipophilicity in Drug Action and Toxicology, VCH, Weinheim: 355. Florack, D. E. and W. J. Stiekema (1994). "Thionins: properties, possible biological roles and mechanisms of action." Plant Mol Biol 26(1): 25‐37. Fox, C. B., J. R. Wayment, et al. (2009). "Single‐Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers." Anal Chem. Frecer, V., B. Ho, et al. (2000). "Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action." Eur J Biochem 267(3): 837‐52. Frecer, V., B. Ho, et al. (2004). "De novo design of potent antimicrobial peptides." Antimicrob Agents Chemother 48(9): 3349‐57. Ganz, T. (2003). "Defensins: antimicrobial peptides of innate immunity." Nat Rev Immunol 3(9): 710‐20. Gell, C., D. J. Brockwell, et al. (2001). "Accurate Use of Single Molecule Fluorescence Correlation Spectroscopy to Determine Molecular Diffusion Times." Single Mol 2(3): 177‐181. Gordon, G. W., B. Chazotte, et al. (1995). "Analysis of simulated and experimental fluorescence recovery after photobleaching. Data for two diffusing components." Biophys J 68(3): 766‐78. Gordon, Y. J., L. C. Huang, et al. (2005). "Human cathelicidin (LL‐37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity." Curr Eye Res 30(5): 385‐94. Gordon, Y. J., E. G. Romanowski, et al. (2005). "A review of antimicrobial peptides and their therapeutic potential as anti‐infective drugs." Curr Eye Res 30(7): 505‐15. Gosch, M., H. Blom, et al. (2005). "Parallel dual‐color fluorescence cross‐correlation spectroscopy using diffractive optical elements." J Biomed Opt 10(5): 054008. Gosch, M., A. Serov, et al. (2004). "Parallel single molecule detection with a fully integrated single‐photon 2x2 CMOS detector array." J Biomed Opt 9(5): 913‐21. Gough, M., R. E. Hancock, et al. (1996). "Antiendotoxin activity of cationic peptide antimicrobial agents." Infect Immun 64(12): 4922‐7. Grunwald, D., A. Hoekstra, et al. (2006). "Direct observation of single protein molecules in aqueous solution." Chemphyschem 7(4): 812‐5. Habermann, E. (1972). "Bee and wasp venoms." Science 177(46): 314‐22. Hamuro, Y., J. Schneider, et al. (1999). "De Novo Design of Antibacterial [beta]‐ Peptides." J. Am. Chem. Soc 121(51): 12200‐12201. Hancock, R. E. (1997). "Peptide antibiotics." Lancet 349(9049): 418‐22. Hancock, R. E. (1999). "Host defence (cationic) peptides: what is their future clinical potential?" Drugs 57(4): 469‐73. Hancock, R. E. and D. S. Chapple (1999). "Peptide antibiotics." Antimicrob Agents Chemother 43(6): 1317‐23. Hancock, R. E. and R. Lehrer (1998). "Cationic peptides: a new source of antibiotics." Trends Biotechnol 16(2): 82‐8. Hansen, R. and J. Harris (1998). "Total internal reflection fluorescence correlation spectroscopy for counting molecules at solid/liquid interfaces." Anal. Chem 70(13): 2565‐2575. 137 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Harwig, S., K. Swiderek, et al. (1995). "Determination of disulphide bridges in PG‐2, an antimicrobial peptide from porcine leukocytes." Journal of Peptide Science 1(3). Hassler, K., M. Leutenegger, et al. (2005). "Total internal reflection fluorescence correlation spectroscopy (TIR‐FCS) with low background and high count‐rate per molecule." Optics Express 13(19): 7415‐7423. Haustein, E. and P. Schwille (2007). "Fluorescence correlation spectroscopy: novel variations of an established technique." Annu Rev Biophys Biomol Struct 36: 151‐ 69. Hebert, B., S. Costantino, et al. (2005). "Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells." Biophys J 88(5): 3601‐14. Heinze, K. G., M. Jahnz, et al. (2004). "Triple‐color coincidence analysis: one step further in following higher order molecular complex formation." Biophys J 86(1 Pt 1): 506‐16. Heinze, K. G., A. Koltermann, et al. (2000). "Simultaneous two‐photon excitation of distinct labels for dual‐color fluorescence crosscorrelation analysis." Proc Natl Acad Sci U S A 97(19): 10377‐82. Heinze, K. G., M. Rarbach, et al. (2002). "Two‐photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics." Biophys J 83(3): 1671‐81. Hergannan, J. A. and J. V. Rechhart (1997). "Drosophila immunity." Trends Cell Biol 7(8): 309‐16. Hide, M., T. Tsutsui, et al. (2002). "Real‐time analysis of ligand‐induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance‐ based biosensor." Anal Biochem 302(1): 28‐37. Hoess, A., S. Watson, et al. (1993). "Crystal structure of an endotoxin‐neutralizing protein from the horseshoe crab, Limulus anti‐LPS factor, at 1.5 A resolution." EMBO J 12(9): 3351‐6. Hruby, V. J. and G. Tollin (2007). "Plasmon‐waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G‐protein interactions and quantifying affinities." Curr Opin Pharmacol 7(5): 507‐14. Hughes, V. M. and N. Datta (1983). "Conjugative plasmids in bacteria of the 'pre‐ antibiotic' era." Nature 302(5910): 725‐6. Hultmark, D., H. Steiner, et al. (1980). "Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia." Eur J Biochem 106(1): 7‐16. Huttner, W. B. and A. A. Schmidt (2002). "Membrane curvature: a case of endofeelin'." Trends Cell Biol 12(4): 155‐8. Hwang, L. C., M. Gosch, et al. (2006). "Simultaneous multicolor fluorescence cross‐ correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation." Biophys J 91(2): 715‐27. Hwang, L. C. and T. Wohland (2004). "Dual‐color fluorescence cross‐correlation spectroscopy using single laser wavelength excitation." Chemphyschem 5(4): 549‐51. Hwang, L. C. and T. Wohland (2005). "Single wavelength excitation fluorescence cross‐ correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies." J Chem Phys 122(11): 114708. 138 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Hwang, L. C. and T. Wohland (2007). "Recent advances in fluorescence cross‐correlation spectroscopy." Cell Biochem Biophys 49(1): 1‐13. Hwang, P. M., N. Zhou, et al. (1998). "Three‐dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin." Biochemistry 37(12): 4288‐98. Kalfa, V. C., H. P. Jia, et al. (2001). "Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells." Antimicrob Agents Chemother 45(11): 3256‐61. Kang, S. and M. Elimelech (2009). "Bioinspired single bacterial cell force spectroscopy." Langmuir 25(17): 9656‐9. Kannan, B., L. Guo, et al. (2007). "Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge‐coupled device camera." Anal Chem 79(12): 4463‐70. Kannan, B., J. Y. Har, et al. (2006). "Electron multiplying charge‐coupled device camera based fluorescence correlation spectroscopy." Anal Chem 78(10): 3444‐51. Kask, P., P. Piksarv, et al. (1985). "Fluorescence correlation spectroscopy in the nanosecond time range: Photon antibunching in dye fluorescence." European Biophysics Journal 12(3): 163‐166. Kask, P., P. Piksarv, et al. (1989). "Separation of the rotational contribution in fluorescence correlation experiments." Biophysical Journal 55(2): 213‐220. Kastrup, L., H. Blom, et al. (2005). "Fluorescence fluctuation spectroscopy in subdiffraction focal volumes." Phys Rev Lett 94(17): 178104. Kaushalya, S. K., J. Balaji, et al. (2005). "Fluorescence correlation microscopy with real‐ time alignment readout." Appl Opt 44(16): 3262‐5. Kawabata, S., R. Nagayama, et al. (1996). "Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin‐binding activity." J Biochem 120(6): 1253‐60. Kim, H., D. Lee, et al. (2002). "Antibacterial activities of peptides designed as hybrids of antimicrobial peptides." Biotechnology Letters 24(5): 347‐353. Kiss, G. and H. Michl (1962). "On the venomous skin secretion of the orange speckled frog Bombina variegata." Toxicon 1: 33‐39. Kolin, D. L., D. Ronis, et al. (2006). "k‐Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics." Biophys J 91(8): 3061‐75. Kondejewski, L. H., S. W. Farmer, et al. (1996). "Gramicidin S is active against both gram‐ positive and gram‐negative bacteria." Int J Pept Protein Res 47(6): 460‐6. Kondejewski, L. H., S. W. Farmer, et al. (1996). "Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs." J Biol Chem 271(41): 25261‐8. Kondejewski, L. H., M. Jelokhani‐Niaraki, et al. (1999). "Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity." J Biol Chem 274(19): 13181‐92. Koppel, D. E. (1974). "Statistical accuracy in fluorescence correlation spectroscopy." Physical Review A 10(6): 1938‐1945. Kreil, G. (1994). "Antimicrobial peptides from amphibian skin: an overview." Ciba Found Symp 186: 77‐85; discussion 85‐90. 139 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Krichevsky, O. and G. Bonnet (2002). "Fluorescence correlation spectroscopy: the technique and its applications." Reports on Progress in Physics 65(2): 251‐298. Ladokhin, A. S. and S. H. White (2001). "'Detergent‐like' permeabilization of anionic lipid vesicles by melittin." Biochim Biophys Acta 1514(2): 253‐60. Laederach, A., A. H. Andreotti, et al. (2002). "Solution and micelle‐bound structures of tachyplesin I and its active aromatic linear derivatives." Biochemistry 41(41): 12359‐68. Lee, C. (2008). "Therapeutic challenges in the era of antibiotic resistance." Int J Antimicrob Agents 32 Suppl 4: S197‐9. Lee, D. G., Y. Park, et al. (2004). "Structure‐antiviral activity relationships of cecropin A‐ magainin 2 hybrid peptide and its analogues." J Pept Sci 10(5): 298‐303. Lee, D. L. and R. S. Hodges (2003). "Structure‐activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S." Biopolymers 71(1): 28‐48. Lee, J. Y., A. Boman, et al. (1989). "Antibacterial peptides from pig intestine: isolation of a mammalian cecropin." Proc Natl Acad Sci U S A 86(23): 9159‐62. Lee, M. T., F. Y. Chen, et al. (2004). "Energetics of pore formation induced by membrane active peptides." Biochemistry 43(12): 3590‐9. Lehrer, R. I., A. Barton, et al. (1989). "Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity." J Clin Invest 84(2): 553‐61. Lemaitre, B., J. M. Reichhart, et al. (1997). "Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms." Proc Natl Acad Sci U S A 94(26): 14614‐9. Leptihn, S., J. Y. Har, et al. (2009). "Single molecule resolution of the antimicrobial action of quantum dot‐labeled sushi peptide on live bacteria." BMC Biol 7: 22. Li, A., P. Y. Lee, et al. (2007). "Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria." Biochim Biophys Acta 1768(3): 411‐8. Li, D., J. Xiong, et al. (2004). "Three‐dimensional tracking of single secretory granules in live PC12 cells." Biophys J 87(3): 1991‐2001. Li, P., M. Sun, et al. (2006). "Molecular mechanisms that govern the specificity of Sushi peptides for Gram‐negative bacterial membrane lipids." Biochemistry 45(35): 10554‐62. Li, P., T. Wohland, et al. (2004). "Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) antimicrobial peptide. The importance of an intermolecular disulfide bond in S3 dimer for binding, disruption, and neutralization of LPS." J Biol Chem 279(48): 50150‐6. Liu, D. and W. F. DeGrado (2001). "De novo design, synthesis, and characterization of antimicrobial beta‐peptides." J Am Chem Soc 123(31): 7553‐9. Liu, P., S. Ahmed, et al. (2008). "The F‐techniques: advances in receptor protein studies." Trends Endocrinol Metab 19(5): 181‐90. Liu, P., T. Sudhaharan, et al. (2007). "Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross‐correlation spectroscopy." Biophys J 93(2): 684‐98. Lourenzoni, M. R., A. M. Namba, et al. (2007). "Study of the interaction of human defensins with cell membrane models: relationships between structure and biological activity." J Phys Chem B 111(38): 11318‐29. 140 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Ludtke, S. J., K. He, et al. (1996). "Membrane pores induced by magainin." Biochemistry 35(43): 13723‐8. Madl, J., S. Rhode, et al. (2006). "A combined optical and atomic force microscope for live cell investigations." Ultramicroscopy 106(8‐9): 645‐51. Magde, D., E. Elson, et al. (1972). "Thermodynamic Fluctuations in a Reacting System— Measurement by Fluorescence Correlation Spectroscopy." Physical Review Letters 29(11): 705‐708. Magde, D., E. L. Elson, et al. (1974). "Fluorescence correlation spectroscopy. II. An experimental realization." Biopolymers 13(1): 29‐61. Maget‐Dana, R. (1999). "The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane‐lytic peptides and their interactions with lipid membranes." Biochim Biophys Acta 1462(1‐2): 109‐40. Maher, S. and S. McClean (2006). "Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro." Biochem Pharmacol 71(9): 1289‐98. Makovitzki, A. and Y. Shai (2005). "pH‐dependent antifungal lipopeptides and their plausible mode of action." Biochemistry 44(28): 9775‐84. Mandard, N., P. Sodano, et al. (1998). "Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two‐ dimensional nuclear magnetic resonance data." Eur J Biochem 256(2): 404‐10. Matsuzaki, K. (1999). "Why and how are peptide‐lipid interactions utilized for self‐ defense? Magainins and tachyplesins as archetypes." Biochim Biophys Acta 1462(1‐2): 1‐10. Matsuzaki, K., M. Harada, et al. (1991). "Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers." Biochim Biophys Acta 1063(1): 162‐70. Matsuzaki, K., O. Murase, et al. (1996). "An antimicrobial peptide, magainin 2, induced rapid flip‐flop of phospholipids coupled with pore formation and peptide translocation." Biochemistry 35(35): 11361‐8. Matsuzaki, K., K. Sugishita, et al. (1997). "Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram‐negative bacteria." Biochim Biophys Acta 1327(1): 119‐30. Matsuzaki, K., K. Sugishita, et al. (1998). "Relationship of membrane curvature to the formation of pores by magainin 2." Biochemistry 37(34): 11856‐63. Matsuzaki, K., K. Sugishita, et al. (1999). "Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide‐containing liposomes as a model for outer membranes of gram‐negative bacteria." FEBS Lett 449(2‐3): 221‐4. McGillivray, D. J., G. Valincius, et al. (2009). "Structure of functional Staphylococcus aureus alpha‐hemolysin channels in tethered bilayer lipid membranes." Biophys J 96(4): 1547‐53. McPhee, J. B. and R. E. Hancock (2005). "Function and therapeutic potential of host defence peptides." J Pept Sci 11(11): 677‐87. Mecke, A., D. K. Lee, et al. (2005). "Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI‐78 in lipid bilayers." Biophys J 89(6): 4043‐50. Meseth, U., T. Wohland, et al. (1999). "Resolution of fluorescence correlation measurements." Biophys J 76(3): 1619‐31. 141 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Milon, S., R. Hovius, et al. (2003). "Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments." Chemical Physics 288(2): 171‐186. Miyata, T., F. Tokunaga, et al. (1989). "Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity." J Biochem 106(4): 663‐8. Mozsolits, H. and M. I. Aguilar (2002). "Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide‐membrane interactions." Biopolymers 66(1): 3‐18. Mozsolits, H., H. J. Wirth, et al. (2001). "Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance." Biochim Biophys Acta 1512(1): 64‐76. Naito, A., T. Nagao, et al. (2000). "Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid‐state (31)P and (13)C NMR spectroscopy." Biophys J 78(5): 2405‐17. Nakamura, T., H. Furunaka, et al. (1988). "Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure." J Biol Chem 263(32): 16709‐13. Nikaido, H. and M. Vaara (1985). "Molecular basis of bacterial outer membrane permeability." Microbiol Rev 49(1): 1‐32. Ohsugi, Y., K. Saito, et al. (2006). "Lateral mobility of membrane‐binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy." Biophys J 91(9): 3456‐64. Oppenheim, J. J., A. Biragyn, et al. (2003). "Roles of antimicrobial peptides such as defensins in innate and adaptive immunity." Ann Rheum Dis 62 Suppl 2: ii17‐21. Oren, Z., J. Hong, et al. (1999). "A comparative study on the structure and function of a cytolytic alpha‐helical peptide and its antimicrobial beta‐sheet diastereomer." Eur J Biochem 259(1‐2): 360‐9. Orivel, J., V. Redeker, et al. (2001). "Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii." J Biol Chem 276(21): 17823‐9. Ormo, M., A. B. Cubitt, et al. (1996). "Crystal structure of the Aequorea victoria green fluorescent protein." Science 273(5280): 1392‐5. Otvos, L., Jr. (2000). "Antibacterial peptides isolated from insects." J Pept Sci 6(10): 497‐ 511. Otvos, L., Jr., I. O, et al. (2000). "Interaction between heat shock proteins and antimicrobial peptides." Biochemistry 39(46): 14150‐9. Pan, C. Y., T. T. Chao, et al. (2007). "Shrimp (Penaeus monodon) anti‐lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa sepsis in mice." Int Immunopharmacol 7(5): 687‐700. Pan, X., W. Foo, et al. (2007). "Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements." Rev Sci Instrum 78(5): 053711. Pan, X., H. Yu, et al. (2007). "Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy." J Biomed Opt 12(1): 014034. Parillo, J. (1993). "Mechanisms of disease: Pathogenic mechanisms of septic shock." N Eng J Med 328: 1471‐1477. 142 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Park, C. B., H. S. Kim, et al. (1998). "Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions." Biochem Biophys Res Commun 244(1): 253‐7. Park, Y. and K. S. Hahm (2005). "Antimicrobial peptides (AMPs): peptide structure and mode of action." J Biochem Mol Biol 38(6): 507‐16. Patrzykat, A., C. L. Friedrich, et al. (2002). "Sublethal concentrations of pleurocidin‐ derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli." Antimicrob Agents Chemother 46(3): 605‐14. Pawley, J. B. (2006). Handbook of Biological Confocal Microscopy. New York, Springer. Petersen, N. O., P. L. Hoddelius, et al. (1993). "Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application." Biophys J 65(3): 1135‐46. Petrasek, Z. and P. Schwille (2007). "Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy." Biophys J. Piers, K. L., M. H. Brown, et al. (1994). "Improvement of outer membrane‐permeabilizing and lipopolysaccharide‐binding activities of an antimicrobial cationic peptide by C‐terminal modification." Antimicrob Agents Chemother 38(10): 2311‐6. Poo, M. and R. A. Cone (1974). "Lateral diffusion of rhodopsin in the photoreceptor membrane." Nature 247(5441): 438‐441. Pouny, Y., D. Rapaport, et al. (1992). "Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes." Biochemistry 31(49): 12416‐23. Powers, J. P., A. Rozek, et al. (2004). "Structure‐activity relationships for the beta‐hairpin cationic antimicrobial peptide polyphemusin I." Biochim Biophys Acta 1698(2): 239‐50. Prenner, E. J., R. N. Lewis, et al. (1999). "The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes." Biochim Biophys Acta 1462(1‐2): 201‐21. Przybylo, M., J. Sykora, et al. (2006). "Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions." Langmuir 22(22): 9096‐9. Qian, H. and E. Elson (1991). "Analysis of confocal laser‐microscope optics for 3‐D fluorescence correlation spectroscopy." Appl. Opt 30(10): 1185?195. Qian, H., M. P. Sheetz, et al. (1991). "Single particle tracking. Analysis of diffusion and flow in two‐dimensional systems." Biophys J 60(4): 910‐21. Quinn, J. G., S. O'Neill, et al. (2000). "Development and application of surface plasmon resonance‐based biosensors for the detection of cell‐ligand interactions." Anal Biochem 281(2): 135‐43. Quinones‐Mateu, M. E., M. M. Lederman, et al. (2003). "Human epithelial beta‐defensins 2 and 3 inhibit HIV‐1 replication." AIDS 17(16): F39‐48. Raetz, C. R. (1990). "Biochemistry of endotoxins." Annu Rev Biochem 59: 129‐70. Raetz, C. R. and C. Whitfield (2002). "Lipopolysaccharide endotoxins." Annu Rev Biochem 71: 635‐700. Reddy, K. V., R. D. Yedery, et al. (2004). "Antimicrobial peptides: premises and promises." Int J Antimicrob Agents 24(6): 536‐47. 143 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Ried, C., C. Wahl, et al. (1996). "High affinity endotoxin‐binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti‐lipopolysaccharide factor." J Biol Chem 271(45): 28120‐7. Rigler, R. (1995). "Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology." J Biotechnol 41(2‐3): 177‐86. Rigler, R., Mets, et al. (1993). "Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion." European Biophysics Journal 22(3): 169‐175. Rosenfeld, Y., N. Papo, et al. (2006). "Endotoxin (lipopolysaccharide) neutralization by innate immunity host‐defense peptides. Peptide properties and plausible modes of action." J Biol Chem 281(3): 1636‐43. Rossetto, G., P. Bergese, et al. (2007). "Atomic force microscopy evaluation of the effects of a novel antimicrobial multimeric peptide on Pseudomonas aeruginosa." Nanomedicine 3(3): 198‐207. Rossi, C., J. Homand, et al. (2003). "Differential mechanisms for calcium‐dependent protein/membrane association as evidenced from SPR‐binding studies on supported biomimetic membranes." Biochemistry 42(51): 15273‐83. Rozek, A., C. L. Friedrich, et al. (2000). "Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles." Biochemistry 39(51): 15765‐74. Ruttinger, S., R. Macdonald, et al. (2006). "Accurate single‐pair Forster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single‐photon counting, and fluorescence correlation spectroscopy." J Biomed Opt 11(2): 024012. Saenko, E., A. Sarafanov, et al. (2001). "Comparison of the properties of phospholipid surfaces formed on HPA and L1 biosensor chips for the binding of the coagulation factor VIII." J Chromatogr A 921(1): 49‐56. Saito, T., S. Kawabata, et al. (1995). "A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity." J Biochem 117(5): 1131‐7. Sako, Y., S. Minoghchi, et al. (2000). "Single‐molecule imaging of EGFR signalling on the surface of living cells." Nat Cell Biol 2(3): 168‐72. Salomon, R. A. and R. N. Farias (1992). "Microcin 25, a novel antimicrobial peptide produced by Escherichia coli." J Bacteriol 174(22): 7428‐35. Sansom, M. S. (1991). "The biophysics of peptide models of ion channels." Prog Biophys Mol Biol 55(3): 139‐235. Saxton, M. J. and K. Jacobson (1997). "Single‐particle tracking: applications to membrane dynamics." Annu Rev Biophys Biomol Struct 26: 373‐99. Schibli, D. J., P. M. Hwang, et al. (1999). "Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane‐bound peptide fold." Biochemistry 38(51): 16749‐55. Schnaitman, C. A. and J. D. Klena (1993). "Genetics of lipopolysaccharide biosynthesis in enteric bacteria." Microbiol Rev 57(3): 655‐82. Schuster, F. L. and L. S. Jacob (1992). "Effects of magainins on ameba and cyst stages of Acanthamoeba polyphaga." Antimicrob Agents Chemother 36(6): 1263‐71. 144 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Schwille, P., U. Haupts, et al. (1999). "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one‐ and two‐photon excitation." Biophys J 77(4): 2251‐65. Schwille, P. and E. Haustein (2001). "Fluorescence correlation spectroscopy. An introduction to its concepts and applications." Biophysics Textbook Online: 1?3. Schwille, P., F. J. Meyer‐Almes, et al. (1997). "Dual‐color fluorescence cross‐correlation spectroscopy for multicomponent diffusional analysis in solution." Biophys J 72(4): 1878‐86. Scott, M. G., M. R. Gold, et al. (1999). "Interaction of cationic peptides with lipoteichoic acid and gram‐positive bacteria." Infect Immun 67(12): 6445‐53. Shai, Y. (1999). "Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha‐helical antimicrobial and cell non‐selective membrane‐lytic peptides." Biochim Biophys Acta 1462(1‐2): 55‐70. Shai, Y. (2002). "From innate immunity to de‐novo designed antimicrobial peptides." Curr Pharm Des 8(9): 715‐25. Shai, Y. and Z. Oren (2001). "From "carpet" mechanism to de‐novo designed diastereomeric cell‐selective antimicrobial peptides." Peptides 22(10): 1629‐41. Shaw, J. E., J. R. Alattia, et al. (2006). "Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy." J Struct Biol 154(1): 42‐58. Shi, J., C. R. Ross, et al. (1996). "Antibacterial activity of a synthetic peptide (PR‐26) derived from PR‐39, a proline‐arginine‐rich neutrophil antimicrobial peptide." Antimicrob Agents Chemother 40(1): 115‐21. Sinha, S., N. Cheshenko, et al. (2003). "NP‐1, a rabbit alpha‐defensin, prevents the entry and intercellular spread of herpes simplex virus type 2." Antimicrob Agents Chemother 47(2): 494‐500. Sisan, D. R., R. Arevalo, et al. (2006). "Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope." Biophys J 91(11): 4241‐ 52. Sitaram, N. and R. Nagaraj (1999). "Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity." Biochim Biophys Acta 1462(1‐2): 29‐54. Skinner, J. P., Y. Chen, et al. (2005). "Position‐sensitive scanning fluorescence correlation spectroscopy." Biophys J 89(2): 1288‐301. Sorscher, S. M., J. C. Bartholomew, et al. (1980). "The use of fluorescence correlations spectroscopy to probe chromatin in the cell nucleus." Biochim Biophys Acta 610(1): 28‐46. Soumpasis, D. M. (1983). "Theoretical analysis of fluorescence photobleaching recovery experiments." Biophys J 41(1): 95‐7. Starchev, K., J. Zhang, et al. (1998). "Applications of Fluorescence Correlation Spectroscopy—Particle Size Effect." Journal of colloid and interface science 203(1): 189‐196. Steiner, H., D. Hultmark, et al. (1981). "Sequence and specificity of two antibacterial proteins involved in insect immunity." Nature 292(5820): 246‐8. Stout, A. and D. Axelrod (1989). "Evanescent field excitation of fluorescence by epi‐ illumination microscopy." Appl. Opt 28(24): 5237?242. 145 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Subbalakshmi, C. and N. Sitaram (1998). "Mechanism of antimicrobial action of indolicidin." FEMS Microbiol Lett 160(1): 91‐6. Tam, J. P., Y. A. Lu, et al. (2002). "Correlations of cationic charges with salt sensitivity and microbial specificity of cystine‐stabilized beta ‐strand antimicrobial peptides." J Biol Chem 277(52): 50450‐6. Tamba, Y. and M. Yamazaki (2005). "Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability." Biochemistry 44(48): 15823‐33. Tan, N. S., B. Ho, et al. (2000). "High‐affinity LPS binding domain(s) in recombinant factor C of a horseshoe crab neutralizes LPS‐induced lethality." FASEB J 14(7): 859‐70. Tan, N. S., M. L. Ng, et al. (2000). "Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides." FASEB J 14(12): 1801‐13. Tang, M., A. J. Waring, et al. (2007). "Phosphate‐mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid‐state NMR." J Am Chem Soc 129(37): 11438‐46. Tang, Y. Q., J. Yuan, et al. (1999). "A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha‐defensins." Science 286(5439): 498‐502. Tencza, S. B., J. P. Douglass, et al. (1997). "Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins." Antimicrob Agents Chemother 41(11): 2394‐8. Terry, B., E. Matthews, et al. (1995). "Molecular characterization of recombinant green fluorescent protein by fluorescence correlation microscopy." Biochemical and biophysical research communications 217(1): 21‐27. Thennarasu, S., D. K. Lee, et al. (2005). "Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A." Chem Phys Lipids 137(1‐2): 38‐51. Thompson, N. (1991). "Fluorescence correlation spectroscopy." Topics in fluorescence spectroscopy 1: 337?78. Thompson, N. L. and D. Axelrod (1983). "Immunoglobulin surface‐binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy." Biophys J 43(1): 103‐14. Thompson, N. L., T. P. Burghardt, et al. (1981). "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy." Biophys J 33(3): 435‐54. Thompson, N. L. and B. L. Steele (2007). "Total internal reflection with fluorescence correlation spectroscopy." Nat Protoc 2(4): 878‐90. Tollin, G., Z. Salamon, et al. (2003). "Plasmon‐waveguide resonance spectroscopy: a new tool for investigating signal transduction by G‐protein coupled receptors." Life Sci 73(26): 3307‐11. Tossi, A., L. Sandri, et al. (2000). "Amphipathic, alpha‐helical antimicrobial peptides." Biopolymers 55(1): 4‐30. Tracey, K. J., Y. Fong, et al. (1987). "Anti‐cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia." Nature 330(6149): 662‐4. Triantafilou, M. and K. Triantafilou (2005). "The dynamics of LPS recognition: complex orchestration of multiple receptors." J Endotoxin Res 11(1): 5‐11. 146 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Utsugi, T., A. J. Schroit, et al. (1991). "Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes." Cancer Res 51(11): 3062‐6. Varki, A., R. Cummings, et al. (2002). Essentials of glycobiology, CSHL Press. Wang, W., S. M. Owen, et al. (2004). "Activity of alpha‐ and theta‐defensins against primary isolates of HIV‐1." J Immunol 173(1): 515‐20. Weidemann, T., M. Wachsmuth, et al. (2002). "Analysis of ligand binding by two‐colour fluorescence cross‐correlation spectroscopy." Single Molecules 3(1): 49‐61. Widengren, J., R. Rigler, et al. (1994). "Triplet‐state monitoring by fluorescence correlation spectroscopy." Journal of Fluorescence 4(3): 255‐258. Wieprecht, T., M. Dathe, et al. (1997). "Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment." FEBS Lett 417(1): 135‐40. Wiseman, P. W., J. A. Squier, et al. (2000). "Two‐photon image correlation spectroscopy and image cross‐correlation spectroscopy." J Microsc 200(Pt 1): 14‐25. Wohland, T., R. Rigler, et al. (2001). "The standard deviation in fluorescence correlation spectroscopy." Biophys J 80(6): 2987‐99. Wolf, D. E. (1989). "Designing, building, and using a fluorescence recovery after photobleaching instrument." Methods Cell Biol 30: 271‐306. Yamada, K., S. S. Shinoda, et al. (2006). "Synthesis of low‐hemolytic antimicrobial dehydropeptides based on gramicidin s." J Med Chem 49(26): 7592‐5. Yang, L., T. A. Harroun, et al. (2001). "Barrel‐stave model or toroidal model? A case study on melittin pores." Biophys J 81(3): 1475‐85. Yang, L., T. M. Weiss, et al. (1999). "Supramolecular structures of peptide assemblies in membranes by neutron off‐plane scattering: method of analysis." Biophys J 77(5): 2648‐56. Yasin, B., W. Wang, et al. (2004). "Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry." J Virol 78(10): 5147‐56. Yenugu, S., K. G. Hamil, et al. (2004). "The androgen‐regulated epididymal sperm‐binding protein, human beta‐defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial beta‐defensin." Endocrinology 145(7): 3165‐73. Yonezawa, A., J. Kuwahara, et al. (1992). "Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action." Biochemistry 31(11): 2998‐3004. Yu, L. (2006). Investigation of the Interaction of Antimicrobial Peptides with Lipids and Lipid Membranes. Department of Chemistry, National University of Singapore. Ph.D. Thesis. Yu, L., J. Ding, et al. (2008). "Investigation of the Mechanisms of Antimicrobial Peptides Interacting with Membranes by Fluorescence Correlation Spectroscopy." The Open Chemical Physics Journal 1(1): 62‐79. Yu, L., J. L. Ding, et al. (2005). "Investigation of a novel artificial antimicrobial peptide by fluorescence correlation spectroscopy: an amphipathic cationic pattern is sufficient for selective binding to bacterial type membranes and antimicrobial activity." Biochim Biophys Acta 1716(1): 29‐39. Yu, L., L. Guo, et al. (2009). "Interaction of an artificial antimicrobial peptide with lipid membranes." Biochim Biophys Acta 1788(2): 333‐44. 147 Investigation of Peptide‐Lipid Interaction by Fluorescence Correlation Spectroscopy Yu, L., M. Tan, et al. (2006). "Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide." Anal Chim Acta 556(1): 216‐25. Zasloff, M. (1987). "Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor." Proceedings of the National Academy of Sciences 84(15): 5449‐5453. Zasloff, M. (2002). "Antimicrobial peptides of multicellular organisms." Nature 415(6870): 389‐95. Zasloff, M., B. Martin, et al. (1988). "Antimicrobial activity of synthetic magainin peptides and several analogues." Proceedings of the National Academy of Sciences 85(3): 910‐913. Zhu, W. L. and S. Y. Shin (2009). "Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys‐ linked two‐stranded peptide." Chem Biol Drug Des 73(2): 209‐15. 148 [...]... The reduction of disulfide bonds presented in β‐sheet structures may change the activity or even mechanism of the interaction of peptides (Andreu et al. 1998). 12 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy 1.1.1.4 Therapeutic potential of antimicrobial peptides Considering the possibilities of thousands of natural peptides and ... modifications of V4 peptides were proposed in the current study. Fluorescence imaging and spectroscopy were used in this study to investigate how peptides interact with different membrane system. More specifically, the aims are: To investigate how different hydrophobicity would affect the solubility of the 1 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy ... adsorption when peptides interact with lipid membranes. Moreover investigation could be performed on different types and strains of Gram‐negative and 2 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy Gram‐positive bacteria, providing a much more comprehensive idea on the effect of AMPs on different bacteria. In this thesis fluorescence imaging and spectroscopy are proved to be useful tools .. .Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy Fig 3.4 Interaction between different peptides and POPG REVs. 73 Fig 3.5 Different peptides showed different activity against POPG REVs. 74 Fig 3.6 Interaction between different peptides and POPG RLVs. 75 Fig 3.7 ACF and intensity trace for POPG RLV aggregates and fragments. 76 Fig 3.8 Different peptides showed different activity against POPG RLVs. ... of AMPs neutralizing LPS can help to lower the risk of suffering endotoxic shock during and after treatment of bacterial infection (Hancock 1999). The eradication of Gram‐ 16 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy negative bacteria by cationic peptides targeting LPS (Boman 1995; Gough et al. 1996; Hancock 1999) brings the idea of de novo design of AMPs based on this LPS‐/LA‐ binding motif. ... negatively charged phospholipids. In constrast, the outer leaflet of mammalian cells is mainly composed of zwitterionic lipids, most of the negatively charged lipids are segregated into the inner leaflet, thus possessing a neutrally charged outer surface (Matsuzaki 1999). 19 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy The difference in the surface charge between bacterial and mammalian cells gives rise to ... from scorpion. Thoinin from a number of plant species (Florack et al. 1994), bacteriocins (Hancock et al. 1999) from Gram‐positive and Gram‐negative bacteria and LLPs from virus (Tencza et al. 1997) are identified. 7 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy Other promising sources of AMPs are synthetic peptides. A series of AMPs have been synthesized by modifying the sequence of their natural analogues, or according to ... activity of the peptides will be provided. To elucidate the possible mechanisms of interaction between AMP and membranes. To apply new techniques (imaging total internal reflection fluorescence correlation spectroscopy) to study the peptide lipid interaction. The study is aimed to enhance the understanding of the specificity of the V peptide family and their mode of ... Table 1.1 Clinical developments of cationic antimicrobial peptides 14 Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy side‐effects on the host organism. And in this section, a brief overview of these studies will be provided. 1.1.2.1 Designed antimicrobial peptides In general, researchers attempt to improve the performance of certain AMPs based ... Fig 4.14 Another set of ITIR‐FCS data showing different result. 125 Fig 4.15 TIRF image of uneven distribution of V4. 126 X Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy List of Tables Table 1.1 Clinical developments of cationic antimicrobial peptides. 14 Table 1.2 Predicted molecular properties of modified V4. 18 Table 2.1 Comparison between different MV4‐TMR and TMR. 53 . of Chemistry,NationalUniversity of Singaporeunderthesupervision of AssociateProfessor ThorstenWohland. Theresultshavebeenpartlypublishedin: Guo,L.,J.Y.Har,J.Sankaran,Y.Hong,B.KannanandT.Wohland(2008)."Molecular diffusionmeasurementin lipid bilayersoverwideconcentrationranges:a comparativestudy."Chemphyschem9(5):721‐8. Kannan,B.,L.Guo,T.Sudhaharan,S.Ahmed,I.MaruyamaandT.Wohland(2007). "Spatiallyresolvedtotalinternalreflection fluorescence correlation microscopy usinganelectronmultiplyingcharge‐coupleddevicecamera."AnalChem79(12): 4463‐70. Yu,L.,L.Guo,J.L.Ding,B.Ho,S.S.Feng,J.Popplewell,M.SwannandT.Wohland (2009)." ;Interaction of anartificialantimicrobial peptide with lipid membranes."BiochimBiophysActa1788(2):333‐44. Leptihn,S.,L.Guo,V.Frecer,B.HoandJ.Ding(2010)."Onestepatatime:Action mechanism of Sushi1antimicrobial peptide andderivedmolecules."Virulence 1(1):42‐44. Sankaran,J.,M.Manna,L.Guo,R.KrautandT.Wohland(2009)."Diffusion,transport, andcellmembraneorganizationinvestigated by imaging fluorescence cross‐ correlation spectroscopy. "BiophysJ97(9):2630‐9. Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy II Acknowledgement Adoctoralthesislikethis,involvingvariousfields,wouldnotbepossiblewithout the. activity. By investigatingdifferentmembers of theV4 peptide family,thisstudycontributes toourunderstanding of theirmechanism of antimicrobialactivityandselectivity.Itthus providesfurtherguidelinesfortherationaldesign of antimicrobialpeptides. Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy IX List of Figures Fig1.1Schematicrepresentation of theGram‐negativebacteriacellwall.. affect the solubility of the Investigation of Peptide Lipid Interaction by Fluorescence Correlation Spectroscopy 2 peptides. To study the binding affinity of modified V4 to