Effects of hydrogen peroxide on different models of wound healing

171 342 0
Effects of hydrogen peroxide on different models of wound healing

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

EFFECTS OF HYDROGEN PEROXIDE ON DIFFERENT MODELS OF WOUND HEALING LOO ENG KIAT, ALVIN NATIONAL UNIVERSITY OF SINGAPORE 2011 Acknowledgements I started this project knowing next to nothing about wound healing so this thesis would not have been possible without the guidance and discussions from the well-experienced (past and present) members of the lab including (alphabetical order) Aina Hoi, Ho Rongjian, Irwin Cheah, Jan Gruber, Jetty Lee, Long Lee Hua, Sebastian Schafer, Sherry Huang, Ryan Hartwell, Tang Soon Yew and Wong Yee Ting. I would also like to thank John Common and Ng Kee Woei from Prof. Birgit Lane’s lab in Institute of Medical Biology for helping me get started with the scratch wound assay. I would like to give thanks to Pan Ning, Mary Ng and A/P Ong Wei Yi for helping me get started with the histology work. My thesis advisory committee members, A/P Phan Toan Thang and Prof Sit Kim Ping have also been especially helpful and supportive throughout my PhD studies. Most importantly, I would like to thank my supervisor, Prof. Barry Halliwell, for being extremely patient with me, nudging me towards the right direction without ever telling me what (or what not) to do, giving me more than my fair share of opportunities and believing in me even when I have doubts about myself. Finally, I would also like to thank all the administrative staff (past and present) in NGS office, particularly Wee An-Hway Ivy, Chuan Irene Christina and Elissa Horn, all NGS Scholars’ Alliance members and all the staff and students of neurobiology program for making the past four years memorable and interesting. i Contributors to the thesis Animal handling, surgery and tissue collection were performed by Ho Rongjian (HR), Wong Yee Ting (WYT) and myself, Loo Eng Kiat Alvin (LEKA). Experiments for figure 3.4 were performed by HR. Experiments for figures 4.7, 4.8, 4.9 and 4.10 were performed by HR and analyzed by HR and LEKA. Experiments for figures 4.14 and 4.15 were performed and analyzed by WYT. All other experiments were performed by LEKA. I would like to thank all the contributors to the thesis. Journal publications and international conference attended Published Loo, A. E.; Ho, R.; Halliwell, B. Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model. Free Radic Biol Med 51:884-892; 2011. In preparation Loo, A. E. & Halliwell, B. Keratinocytes and fibroblasts display differential sensitivity to H2O2. Loo, A. E.; Wong, Y.T.; Halliwell, B. Effects of H2O2 on wound healing and oxidative damage in an excision wound model. Conference poster presented at Society for Free Radical Biology and Medicine 17th Annual Meeting, Nov 17th – 21 2010. Loo, A.E.; Ho, R.; Wong, Y.T.; Halliwell, B. Mechanism of hydrogen peroxide induced keratinocyte cell sheet migration. ii Acknowledgements i Contributors to thesis ii Journal publications and international conference attended ii Table of Content iii Summary vi List of table vii List of figures vii List of abbreviations and keywords ix Chapter A review of the role of H2O2 in wound healing 1.1 1.2 The wound healing process 1.1.1 Inflammatory phase 1.1.2 Is inflammation beneficial in wound healing 1.1.3 Proliferation and Remodelling Phase Evidence for increased ROS and oxidative damage in wounds 1.2.1 Superoxide anion (O2•-) 10 1.2.2 Hydrogen Peroxide (H2O2) 11 1.2.3 Evidence for increased ROS in wounds 12 1.2.4 Evidence for increased oxidative damage in 14 wounds 1.3 1.4 H2O2 as a signaling molecule 16 1.3.1 Principles of H2O2 signaling 16 1.3.2 H2O2, re-epithelialization and MAPK 18 1.3.3 H2O2 as a regulator of cytokine expression 22 Hypothesis and objectives 29 Chapter Materials and methods 2.1 Materials 31 2.2 Culturing of cells 34 2.3 Monolayer scratch wound migration assay 34 2.4 Multiple scratch wound assay 35 iii 2.5 Effect of conditioned medium on ERK and p38 activation 36 2.6 Western blot analysis 37 2.7 Quantification of Cytokines in conditioned Medium 39 2.8 Lactate dehydrogenase activity assay 40 2.9 RNA extraction and semi-quantitative RT-PCR 41 2.10 Effect of H2O2 conditioned medium on cell migration 43 2.11 Cell viability assay 43 2.12 Degradation of H2O2 by HaCaT keratinocytes 44 2.13 Immunofluorescence staining of pERK and pp38 in HaCaT 45 keratinocytes 2.14 Co-culture model of cell migration 46 2.15 Animal handling and excision wound model 48 2.16 Preparation of histological sections 49 2.17 Immunohistochemistry 49 2.18 Connective tissue stain 51 2.19 Immunofluorescence staining of macrophages and 52 neutrophils in animal tissues 2.20 F2-Isoprostanes extraction and analysis 52 Chapter 3, Results I Effects of H2O2 on in vitro models of wound healing 3.1 Effect of H2O2 on HaCaT keratinocytes migration 56 3.1.1 56 Low concentrations of H2O2 increases keratinocyte migration and induce phosphorylation of ERK1/2 and p38 MAPK 3.1.2 Persistent ERK1/2 phosphorylation is needed for 65 H2O2-induced cell migration 3.1.3 EGF receptor phosphorylation is upstream of 67 ERK1/2 but not p38 MAPK phosphorylation 3.1.4 EGF receptor phosphorylation induced by scratch 69 wounding is ligand-dependent but that induced by iv H2O2 is ligand-independent 3.1.5 Role of p38 in H2O2-induced cell migration, a 71 cautionary tale 3.1.6 Persistent ERK1/2 signaling is needed for H2O2- 74 induced proliferation 3.2 Effects of H2O2 on cytokine secretion in keratinocytes 77 3.2.1 77 Conditioned media from H2O2 treated keratinocytes can activate ERK 3.2.2 H2O2 induces expression of VEGF mRNA 80 3.2.3 H2O2 induces expression of pro-inflammatory and 81 pro-angiogenic cytokines 3.2.4 Conditioned medium alone does not induce cell 86 migration 3.3 Effects of H2O2 on a keratinocyte-fibroblast co-culture 87 model of wound healing 3.3.1 3.4 Co-culture model of re-epithelialization Brief discussion 88 92 Chapter 4, Results II Effects of H2O2 on an in vitro models of wound healing 4.1 Biphasic effects of H2O2 on wound closure 93 4.2 Effects of H2O2 on connective tissue formation and MMP 94 production 4.3 Effects of H2O2 on angiogenesis 101 4.4 Effects of H2O2 on leukocyte recruitment 102 4.5 Effects of H2O2 on ERK1/2 and p38 phosphorylation 107 4.6 Effects of wounding and H2O2 on lipid oxidation 110 4.7 Brief discussion 113 Effects of H2O2 on ERK1/2 phosphorylation and HaCaT 115 Chapter Discussion 5.1 keratinocyte migration 5.2 Effects of H2O2 on p38 phosphorylation and HaCaT 118 v keratinocyte migration 5.3 Effects of H2O2 on re-epithelialization in the co-culture model 5.4 Effects of antioxidants on re-epithelialization in the monolayer scratch wound model and co-culture model 120 122 123 128 5.5 Effects of H2O2 on cytokine secretion 132 5.6 Effects of H2O2 on wound closure and connective tissue 134 formation in the excision wound model 5.7 Effects of H2O2 on angiogenesis in the excision wound 134 136 model 5.8 Effects of H2O2 on ERK1/2 and p38 phosphorylation in the excision wound model 5. Effects of H2O2 on inflammatory cell infiltration in an in vivo model of wound healing 5.10 Effects of H2O2 on oxidative damage in the excision wound model Conclusion 140 vi Summary It has been established that low concentrations of H2O2 are produced in wounds. Yet at the same time, there is evidence that excessive oxidative damage is correlated with chronic wounds. In this thesis we explored the effects of H2O2 in keratinocyte cell culture models and an in vivo excision wound model of wound healing. H2O2 stimulates a persistent ERK phosphorylation in HaCaT keratinocytes which was found to be important in cell proliferation and migration. H2O2 also increases the production of proinflammatory and pro-angiogenic cytokines such as Vascular endothelial growth factor, Interleukin-8, Granulocyte-macrophage colony-stimulating factor, Tumor necrosis factor-α, interleukin-6 and Interferon gamma-induced protein 10, in HaCaT keratinocytes. H2O2 was found to increase re-epithelialization in a primary fibroblast-keratinocyte co-culture model as well. In a C57BL/6 mice excision wound model, low concentrations of H2O2 (10 mM) were found to enhance angiogenesis while high concentrations of H2O2 (166 mM) retarded wound closure and connective tissue formation. High concentrations of H2O2 also increased the levels of MMP-8 in the wounds, which could be the cause of reduced connective tissue formation. Wounding was found to increase oxidative lipid damage, as measured by F2isoprostanes, but H2O2 treatment does not significantly increase it even at concentrations that delay wound healing. This challenges the putative claim that oxidative damage contributes to the pathology of poor healing wounds. vii List of Tables Table Table Table Table Standard reduction potential of some common radical species Effects of selected cytokines on wound healing Cytokines that are measured in the custom bead-based multiplex ELISA Comparison of cytokine concentrations h after H2O2 stimulation and with literature values of cytokine concentration required to stimulate an observable phenotype 18 21-22 75 115 List of Figures Fig. 1.1 Fig. 1.2 Fig. 2.1 Fig. 2.2 Fig. 2.3 Fig. 2.4 Fig. 2.5 Fig. 3.1 Fig. 3.2 Fig. 3.3 Fig. 3.4 Fig. 3.5 Fig. 3.6 Fig. 3.7 Fig. 3.8 Fig. 3.9 Fig. 3.10 Fig. 3.11 Fig. 3.12 Fig. 3.13 Fig. 3.14 Fig. 3.15 Fig. 3.16 Fig. 3.17 Fig. 4.1 Fig. 4.2 Fig. 4.3 Schematic diagram illustrating the multiple oxidation states of thiols. Schematic diagram of the mitogen-activated protein kinase signaling cascade Representative photos of the multiple scratch wound assay A representative calibration curve for protein quantification by DC protein assay Standard curve for cell number determination by crystal violet staining A representative calibration curve for H2O2 quantification by FOX2 assay Schematic diagram of the layout of the keratinocyte-fibroblast co-culture re-epithelialization assay Low concentrations of H2O2 stimulate cell proliferation and migration Both scratch wounding and H2O2 activate ERK1/2 Both scratch wounding and H2O2 activate p38 Cells show localization of phosphorylated ERK1/2 and p38 at the wound edge when scratch wounded Sustained ERK1/2 activity is needed for cell migration Scratch wounding and H2O2-induce EGFR phosphorylation is associated with ERK1/2 but not p38 phosphorylation. EGFR phosphorylation induced by H2O2 is ligand-independent but the EGFR phosphorylation induced by scratch wounding is ligand-dependent p38 is not needed for H2O2-induced migration but high concentrations of p38 inhibitor can inhibit keratinocyte migration A crosstalk exists between ERK and p38 where inhibition of one pathway leads to activation of the other Sustained ERK1/2 activation is needed for H2O2-induced proliferation Conditioned media induce ERK1/2 but not p38 phosphorylation in quiescent cells H2O2 induce the expression of VEGF-A 121 and 165 H2O2-induced cytokine secretion and their dependence on the ERK and p38 pathway The LDH activity of conditioned medium from cells treated with U0126, SB203580 and/or H2O2 Conditioned medium from cells treated with 500 µM H2O2 is not sufficient to induce cell migration H2O2 promotes keratinocyte migration in a co-culture model of reepithelialization and NAC retards it Cell viability of fibroblast-keratinocyte co-culture after treatment with H2O2 or NAC Biphasic effect of H2O2 on wound closure Validation of Masson-Goldner trichrome stain quantification 166 mM H2O2 retards connective tissue formation but 10 mM H2O2 does not affect connective tissue formation 17 20 36 38 40 45 47 58 - 60 61 - 62 63 - 64 64 66 68 – 69 70 72 - 73 75 76 - 77 78 - 80 81 84 -85 86 87 90 - 91 92 94 96 97 viii Fig. 4.4 Fig. 4.5 Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9 Fig. 4.10 Fig. 4.11 Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 166 mM H H2O2 treatment increases MMP-8 Effect of H2O2 on MMP-9 levels Effect of H2O2 on TIMP-1 levels 10 mM H2O2 induce angiogenesis but 166 mM H2O2 has no effect on angiogenesis Time course of neutrophil infiltration 166 mM H2O2 causes persistent neutrophil infiltration on day postwounding Time course of macrophage infiltration H2O2 does not affect macrophage infiltration on day post-wound Wounding increases ERK1/2 phosphorylation which can be further increased by 166 mM H2O2 treatment Wounding increases p38 phosphorylation which can be further increased by 166 mM H2O2 treatment Wounding increases F2-isoprostanes levels but 166 mM H2O2 does not increase it further Comparison of F2-isoprostanes levels per unit fresh tissue weight and changes in arachidonic acid over time 99 100 101 102 104 105 106 107 109 110 112 113 ix [41] Soininen, R.; Haka-Risku, T.; Prockop, D. J.; Tryggvason, K. Complete primary structure of the alpha 1-chain of human basement membrane (type IV) collagen. FEBS Lett 225:188-194; 1987. [42] Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 453:314-321; 2008. [43] Oliver, R. F. An autoradiographic study of 3H-thymidine incorporation and distribution in the dermis of healing skin incisions in the pig. Br J Exp Pathol 60:65-71; 1979. [44] Clark, R. A. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 306:42-48; 1993. [45] Bailey, A. J.; Sims, T. J.; Le, L.; bazin, S. Collagen polymorphism in experimental granulation tissue. Biochem Biophys Res Commun 66:1160-1165; 1975. [46] Gabbiani, G.; Ryan, G. B.; Majne, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549-550; 1971. [47] Gabbiani, G.; Hirschel, B. J.; Ryan, G. B.; Statkov, P. R.; Majno, G. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135:719-734; 1972. [48] Wagner, R. C. Endothelial cell embryology and growth. Adv Microcirc 9:45-75; 1980. [49] Levenson, S. M.; Geever, E. F.; Crowley, L. V.; Oates, J. F., 3rd; Berard, C. W.; Rosen, H. The Healing of Rat Skin Wounds. Ann Surg 161:293-308; 1965. [50] Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you it and what the results mean? Br J Pharmacol 142:231-255; 2004. [51] Nauseef, W. M. Biological roles for the NOX family NADPH oxidases. J Biol Chem 283:16961-16965; 2008. [52] Nauseef, W. M. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122:277-291; 2004. [53] Gardner, P. R.; Raineri, I.; Epstein, L. B.; White, C. W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270:13399-13405; 1995. [54] Fushida-Takemura, H.; Fukuda, M.; Maekawa, N.; Chanoki, M.; Kobayashi, H.; Yashiro, N.; Ishii, M.; Hamada, T.; Otani, S.; Ooshima, A. Detection of lysyl oxidase gene expression in rat skin during wound healing. Arch Dermatol Res 288:7-10; 1996. [55] Henzler, T.; Steudle, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H(2)O(2) across water channels. J Exp Bot 51:2053-2066; 2000. [56] Juarez, J. C.; Manuia, M.; Burnett, M. E.; Betancourt, O.; Boivin, B.; Shaw, D. E.; Tonks, N. K.; Mazar, A. P.; Donate, F. Superoxide dismutase (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci U S A 105:7147-7152; 2008. [57] Halliwell, B.; Gutteridge, J. M. C. Free radicals in biology and medicine. Oxford ; New York: Oxford University Press; 2007. [58] Roy, S.; Khanna, S.; Nallu, K.; Hunt, T. K.; Sen, C. K. Dermal wound healing is subject to redox control. Mol Ther 13:211-220; 2006. [59] Ojha, N.; Roy, S.; He, G.; Biswas, S.; Velayutham, M.; Khanna, S.; Kuppusamy, P.; Zweier, J. L.; Sen, C. K. Assessment of wound-site redox environment and the significance of Rac2 in cutaneous healing. Free Radic Biol Med 44:682-691; 2008. [60] Klyubin, I. V.; Kirpichnikova, K. M.; Gamaley, I. A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur J Cell Biol 70:347-351; 1996. [61] Li, M.; Firth, J. D.; Putnins, E. E. An in vitro analysis of mechanical woundinginduced ligand-independent KGFR activation. J Dermatol Sci 53:182-191; 2009. [62] Sung, H. J.; Eskin, S. G.; Sakurai, Y.; Yee, A.; Kataoka, N.; McIntire, L. V. Oxidative stress produced with cell migration increases synthetic phenotype of vascular smooth muscle cells. Ann Biomed Eng 33:1546-1554; 2005. 143 [63] Nam, H. J.; Park, Y. Y.; Yoon, G.; Cho, H.; Lee, J. H. Co-treatment with hepatocyte growth factor and TGF-beta1 enhances migration of HaCaT cells through NADPH oxidasedependent ROS generation. Exp Mol Med 42:270-279; 2010. [64] Hordijk, P. L. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453-462; 2006. [65] Liu, S.; Kapoor, M.; Leask, A. Rac1 expression by fibroblasts is required for tissue repair in vivo. Am J Pathol 174:1847-1856; 2009. [66] Kmin, A.; Schafer, M.; Epp, N.; Bugnon, P.; Born-Berclaz, C.; Oxenius, A.; Klippel, A.; Bloch, W.; Werner, S. Peroxiredoxin is required for blood vessel integrity in wounded skin. J Cell Biol 179:747-760; 2007. [67] Gupta, A.; Singh, R. L.; Raghubir, R. Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol Cell Biochem 241:1-7; 2002. [68] Shukla, A.; Rasik, A. M.; Patnaik, G. K. Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic Res 26:93-101; 1997. [69] Rasik, A. M.; Shukla, A. Antioxidant status in delayed healing type of wounds. Int J Exp Pathol 81:257-263; 2000. [70] Yeoh-Ellerton, S.; Stacey, M. C. Iron and 8-isoprostane levels in acute and chronic wounds. J Invest Dermatol 121:918-925; 2003. [71] Singh, S. K.; Sahay, R. K.; Krishna, A. Oxidative stress in diabetic foot ulcer. Diabetes Metab Syndr 2:109-113; 2008. [72] Martinez-Sanchez, G.; Al-Dalain, S. M.; Menendez, S.; Re, L.; Giuliani, A.; Candelario-Jalil, E.; Alvarez, H.; Fernandez-Montequin, J. I.; Leon, O. S. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol 523:151-161; 2005. [73] Aksenov, M. Y.; Aksenova, M. V.; Butterfield, D. A.; Geddes, J. W.; Markesbery, W. R. Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103:373-383; 2001. [74] Moseley, R.; Hilton, J. R.; Waddington, R. J.; Harding, K. G.; Stephens, P.; Thomas, D. W. Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair and Regen 12:419-429; 2004. [75] Mudge, B. P.; Harris, C.; Gilmont, R. R.; Adamson, B. S.; Rees, R. S. Role of glutathione redox dysfunction in diabetic wounds. Wound Repair Regen 10:52-58; 2002. [76] Winterbourn, C. C.; Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549-561; 2008. [77] Banerjee, R. Redox biochemistry. Hoboken, N.J.: Wiley-Interscience; 2008. [78] Barton, J. P.; Packer, J. E.; Sims, R. J. Kinetics of the reaction of hydrogen peroxide with cysteine and cysteamine. Journal of the Chemical Society, Perkin Transactions 2:15471549; 1973. [79] Barford, D.; Jia, Z.; Tonks, N. K. Protein tyrosine phosphatases take off. Nat Struct Biol 2:1043-1053; 1995. [80] Rossomando, A. J.; Payne, D. M.; Weber, M. J.; Sturgill, T. W. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A 86:6940-6943; 1989. [81] MacCorkle, R. A.; Tan, T. H. Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 43:451-461; 2005. [82] Huang, C.; Jacobson, K.; Schaller, M. D. MAP kinases and cell migration. J Cell Sci 117:4619-4628; 2004. [83] Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808-811; 1994. [84] Rouse, J.; Cohen, P.; Trigon, S.; Morange, M.; Alonso-Llamazares, A.; Zamanillo, D.; Hunt, T.; Nebreda, A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027-1037; 1994. 144 [85] Dieckgraefe, B. K.; Weems, D. M.; Santoro, S. A.; Alpers, D. H. ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced signal transduction. Biochem Biophys Res Commun 233:389-394; 1997. [86] Zeigler, M. E.; Chi, Y.; Schmidt, T.; Varani, J. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase production in growth factor-stimulated human epidermal keratinocytes. J Cell Physiol 180:271-284; 1999. [87] Li, W.; Nadelman, C.; Henry, G.; Fan, J.; Muellenhoff, M.; Medina, E.; Gratch, N. S.; Chen, M.; Han, J.; Woodley, D. The p38-MAPK/SAPK pathway is required for human keratinocyte migration on dermal collagen. J Invest Dermatol 117:1601-1611; 2001. [88] Fitsialos, G.; Chassot, A. A.; Turchi, L.; Dayem, M. A.; LeBrigand, K.; Moreilhon, C.; Meneguzzi, G.; Busca, R.; Mari, B.; Barbry, P.; Ponzio, G. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 282:1509015102; 2007. [89] Guyton, K. Z.; Liu, Y.; Gorospe, M.; Xu, Q.; Holbrook, N. J. Activation of mitogenactivated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138-4142; 1996. [90] Zhang, J.; Jin, N.; Liu, Y.; Rhoades, R. A. Hydrogen peroxide stimulates extracellular signal-regulated protein kinases in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 19:324-332; 1998. [91] Xu, Y.; Shao, Y.; Voorhees, J. J.; Fisher, G. J. Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes. J Biol Chem 281:27389-27397; 2006. [92] Knebel, A.; Rahmsdorf, H. J.; Ullrich, A.; Herrlich, P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15:5314-5325; 1996. [93] Haskew-Layton, R. E.; Payappilly, J. B.; Smirnova, N. A.; Ma, T. C.; Chan, K. K.; Murphy, T. H.; Guo, H.; Langley, B.; Sultana, R.; Butterfield, D. A.; Santagata, S.; Alldred, M. J.; Gazaryan, I. G.; Bell, G. W.; Ginsberg, S. D.; Ratan, R. R. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 107:17385-17390; 2010. [94] Amstad, P.; Crawford, D.; Muehlematter, D.; Zbinden, I.; Larsson, R.; Cerutti, P. Oxidants stress induces the proto-oncogenes, C-fos and C-myc in mouse epidermal cells. Bull Cancer 77:501-502; 1990. [95] Rao, G. N.; Berk, B. C. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593-599; 1992. [96] Adams, R. H.; Porras, A.; Alonso, G.; Jones, M.; Vintersten, K.; Panelli, S.; Valladares, A.; Perez, L.; Klein, R.; Nebreda, A. R. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109-116; 2000. [97] Mudgett, J. S.; Ding, J.; Guh-Siesel, L.; Chartrain, N. A.; Yang, L.; Gopal, S.; Shen, M. M. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 97:10454-10459; 2000. [98] Tamura, K.; Sudo, T.; Senftleben, U.; Dadak, A. M.; Johnson, R.; Karin, M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102:221-231; 2000. [99] Beardmore, V. A.; Hinton, H. J.; Eftychi, C.; Apostolaki, M.; Armaka, M.; Darragh, J.; McIlrath, J.; Carr, J. M.; Armit, L. J.; Clacher, C.; Malone, L.; Kollias, G.; Arthur, J. S. Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25:10454-10464; 2005. [100] Thuraisingam, T.; Xu, Y. Z.; Eadie, K.; Heravi, M.; Guiot, M. C.; Greemberg, R.; Gaestel, M.; Radzioch, D. MAPKAPK-2 Signaling Is Critical for Cutaneous Wound Healing. J Invest Dermatol; 2009. 145 [101] Yao, Y.; Li, W.; Wu, J.; Germann, U. A.; Su, M. S.; Kuida, K.; Boucher, D. M. Extracellular signal-regulated kinase is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 100:12759-12764; 2003. [102] Saba-El-Leil, M. K.; Vella, F. D.; Vernay, B.; Voisin, L.; Chen, L.; Labrecque, N.; Ang, S. L.; Meloche, S. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4:964-968; 2003. [103] Satoh, Y.; Saitoh, D.; Takeuchi, A.; Ojima, K.; Kouzu, K.; Kawakami, S.; Ito, M.; Ishihara, M.; Sato, S.; Takishima, K. ERK2 dependent signaling contributes to wound healing after a partial-thickness burn. Biochem Biophys Res Commun 381:118-122; 2009. [104] Cheng, B.; Liu, H. W.; Fu, X. B.; Sun, T. Z.; Sheng, Z. Y. Recombinant human platelet-derived growth factor enhanced dermal wound healing by a pathway involving ERK and c-fos in diabetic rats. J Dermatol Sci 45:193-201; 2007. [105] Zhang, J.; Dong, J.; Gu, H.; Yu, S.; Zhang, X.; Gou, Y.; Xu, W.; Burd, A.; Huang, L.; Miyado, K.; Huang, Y.; Chan, H. C. CD9 Is Critical for Cutaneous Wound Healing through JNK Signaling. J Invest Dermatol 132:226-236; 2012. [106] Ramet, M.; Lanot, R.; Zachary, D.; Manfruelli, P. JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145-156; 2002. [107] Koehler, K.; Mielke, K.; Schunck, M.; Neumann, C.; Herdegen, T.; Proksch, E. Distinct roles of JNK-1 and ERK-2 isoforms in permeability barrier repair and wound healing. Eur J Cell Biol 90:565-571; 2011. [108] Barrientos, S.; Stojadinovic, O.; Golinko, M. S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair and Regen 16:585-601; 2008. [109] Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 366:17361743; 2005. [110] Goldman, R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17:24-35; 2004. [111] Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835-870; 2003. [112] Engelhardt, E.; Toksoy, A.; Goebeler, M.; Debus, S.; Brocker, E. B.; Gillitzer, R. Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 153:1849-1860; 1998. [113] Rennekampff, H. O.; Hansbrough, J. F.; Kiessig, V.; Dore, C.; Sticherling, M.; Schroder, J. M. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93:41-54; 2000. [114] Strieter, R. M.; Polverini, P. J.; Kunkel, S. L.; Arenberg, D. A.; Burdick, M. D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D.; et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348-27357; 1995. [115] Pradhan, L.; Cai, X.; Wu, S.; Andersen, N. D.; Martin, M.; Malek, J.; Guthrie, P.; Veves, A.; Logerfo, F. W. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res 167:336-342; 2011. [116] Pukstad, B. S.; Ryan, L.; Flo, T. H.; Stenvik, J.; Moseley, R.; Harding, K.; Thomas, D. W.; Espevik, T. Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. J Dermatol Sci 59:115-122; 2010. [117] Iocono, J. A.; Colleran, K. R.; Remick, D. G.; Gillespie, B. W.; Ehrlich, H. P.; Garner, W. L. Interleukin-8 levels and activity in delayed-healing human thermal wounds. Wound Repair Regen 8:216-225; 2000. [118] Tuschil, A.; Lam, C.; Haslberger, A.; Lindley, I. Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J Invest Dermatol 99:294-298; 1992. 146 [119] Liechty, K. W.; Crombleholme, T. M.; Cass, D. L.; Martin, B.; Adzick, N. S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 77:80-84; 1998. [120] Hol, J.; Wilhelmsen, L.; Haraldsen, G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J Leukoc Biol 87:501-508; 2009. [121] Bryan, D.; Walker, K. B.; Ferguson, M.; Thorpe, R. Cytokine gene expression in a murine wound healing model. Cytokine 31:429-438; 2005. [122] Wetzler, C.; Kampfer, H.; Stallmeyer, B.; Pfeilschifter, J.; Frank, S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol 115:245-253; 2000. [123] DeForge, L. E.; Preston, A. M.; Takeuchi, E.; Kenney, J.; Boxer, L. A.; Remick, D. G. Regulation of interleukin gene expression by oxidant stress. J Biol Chem 268:25568-25576; 1993. [124] Remick, D. G.; Villarete, L. Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates. J Leukoc Biol 59:471-475; 1996. [125] Nemeth, E.; Halasz, A.; Barath, A.; Domokos, M.; Galfi, P. Effect of hydrogen peroxide on interleukin-8 synthesis and death of Caco-2 cells. Immunopharmacol Immunotoxicol 29:297-310; 2007. [126] Josse, C.; Boelaert, J. R.; Best-Belpomme, M.; Piette, J. Importance of posttranscriptional regulation of chemokine genes by oxidative stress. Biochem J 360:321-333; 2001. [127] Kina, S.; Nakasone, T.; Takemoto, H.; Matayoshi, A.; Makishi, S.; Sunagawa, N.; Liang, F.; Phonaphonh, T.; Sunakawa, H. Regulation of chemokine production via oxidative pathway in HeLa cells. Mediators Inflamm 2009:183760; 2009. [128] Lee, Y. S.; Bak, E. J.; Kim, M.; Park, W.; Seo, J. T.; Yoo, Y. J. Induction of IL-8 in periodontal ligament cells by H(2)O (2). J Microbiol 46:579-584; 2008. [129] Pelaia, G.; Cuda, G.; Vatrella, A.; Gallelli, L.; Fratto, D.; Gioffre, V.; D'Agostino, B.; Caputi, M.; Maselli, R.; Rossi, F.; Costanzo, F. S.; Marsico, S. A. Effects of hydrogen peroxide on MAPK activation, IL-8 production and cell viability in primary cultures of human bronchial epithelial cells. J Cell Biochem 93:142-152; 2004. [130] Shi, M. M.; Chong, I.; Godleski, J. J.; Paulauskis, J. D. Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology 97:309-315; 1999. [131] DiPietro, L. A.; Polverini, P. J.; Rahbe, S. M.; Kovacs, E. J. Modulation of JE/MCP-1 expression in dermal wound repair. Am J Pathol 146:868-875; 1995. [132] Xing, L.; Remick, D. G. Mechanisms of oxidant regulation of monocyte chemotactic protein production in human whole blood and isolated mononuclear cells. Shock 28:178185; 2007. [133] Jaramillo, M.; Olivier, M. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5'monophosphate (cAMP)-dependent pathways: involvement of NF-kappa B, activator protein 1, and cAMP response element binding protein. J Immunol 169:7026-7038; 2002. [134] Kilgore, K. S.; Imlay, M. M.; Szaflarski, J. P.; Silverstein, F. S.; Malani, A. N.; Evans, V. M.; Warren, J. S. Neutrophils and reactive oxygen intermediates mediate glucan-induced pulmonary granuloma formation through the local induction of monocyte chemoattractant protein-1. Lab Invest 76:191-201; 1997. [135] DiPietro, L. A.; Burdick, M.; Low, Q. E.; Kunkel, S. L.; Strieter, R. M. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest 101:1693-1698; 1998. 147 [136] Shi, M. M.; Godleski, J. J.; Paulauskis, J. D. Regulation of macrophage inflammatory protein-1alpha mRNA by oxidative stress. J Biol Chem 271:5878-5883; 1996. [137] Gallucci, R. M.; Simeonova, P. P.; Matheson, J. M.; Kommineni, C.; Guriel, J. L.; Sugawara, T.; Luster, M. I. Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 14:2525-2531; 2000. [138] Liechty, K. W.; Adzick, N. S.; Crombleholme, T. M. Diminished interleukin (IL-6) production during scarless human fetal wound repair. Cytokine 12:671-676; 2000. [139] McFarland-Mancini, M. M.; Funk, H. M.; Paluch, A. M.; Zhou, M.; Giridhar, P. V.; Mercer, C. A.; Kozma, S. C.; Drew, A. F. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J Immunol 184:7219-7228; 2010. [140] Terunuma, A.; Aiba, S.; Tagami, H. Cytokine mRNA profiles in cultured human skin component cells exposed to various chemicals: a simulation model of epicutaneous stimuli induced by skin barrier perturbation in comparison with that due to exposure to haptens or irritant. J Dermatol Sci 26:85-93; 2001. [141] Colston, J. T.; Chandrasekar, B.; Freeman, G. L. A novel peroxide-induced calcium transient regulates interleukin-6 expression in cardiac-derived fibroblasts. J Biol Chem 277:23477-23483; 2002. [142] Chen, B.; Wei, J.; Wang, W.; Cui, G.; Zhao, Y.; Zhu, X.; Zhu, M.; Guo, W.; Yu, J. Identification of signaling pathways involved in aberrant production of adipokines in adipocytes undergoing oxidative stress. Arch Med Res 40:241-248; 2009. [143] Wu, W. C.; Hu, D. N.; Gao, H. X.; Chen, M.; Wang, D.; Rosen, R.; McCormick, S. A. Subtoxic levels hydrogen peroxide-induced production of interleukin-6 by retinal pigment epithelial cells. Mol Vis 16:1864-1873; 2010. [144] Yoshida, Y.; Maruyama, M.; Fujita, T.; Arai, N.; Hayashi, R.; Araya, J.; Matsui, S.; Yamashita, N.; Sugiyama, E.; Kobayashi, M. Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells. Am J Physiol 276:L900-908; 1999. [145] Zhang, J.; Johnston, G.; Stebler, B.; Keller, E. T. Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase. Antioxid Redox Signal 3:493-504; 2001. [146] Kosmidou, I.; Vassilakopoulos, T.; Xagorari, A.; Zakynthinos, S.; Papapetropoulos, A.; Roussos, C. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Am J Respir Cell Mol Biol 26:587-593; 2002. [147] Mori, R.; Kondo, T.; Ohshima, T.; Ishida, Y.; Mukaida, N. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963-974; 2002. [148] Goren, I.; Muller, E.; Pfeilschifter, J.; Frank, S. Severely impaired insulin signaling in chronic wounds of diabetic ob/ob mice: a potential role of tumor necrosis factor-alpha. Am J Pathol 168:765-777; 2006. [149] Valen, G.; Erl, W.; Eriksson, P.; Wuttge, D.; Paulsson, G.; Hansson, G. K. Hydrogen peroxide induces mRNA for tumour necrosis factor alpha in human endothelial cells. Free Radic Res 31:503-512; 1999. [150] Nakao, N.; Kurokawa, T.; Nonami, T.; Tumurkhuu, G.; Koide, N.; Yokochi, T. Hydrogen peroxide induces the production of tumor necrosis factor-alpha in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immun 14:190-196; 2008. [151] Galiano, R. D.; Tepper, O. M.; Pelo, C. R.; Bhatt, K. A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H. G.; Gurtner, G. C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164:1935-1947; 2004. [152] Scappaticci, F. A.; Fehrenbacher, L.; Cartwright, T.; Hainsworth, J. D.; Heim, W.; Berlin, J.; Kabbinavar, F.; Novotny, W.; Sarkar, S.; Hurwitz, H. Surgical wound healing 148 complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173-180; 2005. [153] Brauchle, M.; Funk, J. O.; Kind, P.; Werner, S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 271:21793-21797; 1996. [154] Sen, C. K.; Khanna, S.; Babior, B. M.; Hunt, T. K.; Ellison, E. C.; Roy, S. Oxidantinduced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 277:33284-33290; 2002. [155] Kuroki, M.; Voest, E. E.; Amano, S.; Beerepoot, L. V.; Takashima, S.; Tolentino, M.; Kim, R. Y.; Rohan, R. M.; Colby, K. A.; Yeo, K. T.; Adamis, A. P. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98:1667-1675; 1996. [156] Chua, C. C.; Hamdy, R. C.; Chua, B. H. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25:891-897; 1998. [157] Kosmidou, I.; Xagorari, A.; Roussos, C.; Papapetropoulos, A. Reactive oxygen species stimulate VEGF production from C(2)C(12) skeletal myotubes through a PI3K/Akt pathway. Am J Physiol Lung Cell Mol Physiol 280:L585-592; 2001. [158] Cho, M.; Hunt, T. K.; Hussain, M. Z. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280:H2357-2363; 2001. [159] Hu, Y.; Liang, D.; Li, X.; Liu, H. H.; Zhang, X.; Zheng, M.; Dill, D.; Shi, X.; Qiao, Y.; Yeomans, D.; Carvalho, B.; Angst, M. S.; Clark, J. D.; Peltz, G. The role of interleukin-1 in wound biology. Part II: In vivo and human translational studies. Anesth Analg 111:15341542; 2010. [160] Thomay, A. A.; Daley, J. M.; Sabo, E.; Worth, P. J.; Shelton, L. J.; Harty, M. W.; Reichner, J. S.; Albina, J. E. Disruption of interleukin-1 signaling improves the quality of wound healing. Am J Pathol 174:2129-2136; 2009. [161] Kawada, A.; Hiruma, M.; Noguchi, H.; Ishibashi, A.; Motoyoshi, K.; Kawada, I. Granulocyte and macrophage colony-stimulating factors stimulate proliferation of human keratinocytes. Arch Dermatol Res 289:600-602; 1997. [162] Bussolino, F.; Wang, J. M.; Defilippi, P.; Turrini, F.; Sanavio, F.; Edgell, C. J.; Aglietta, M.; Arese, P.; Mantovani, A. Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471-473; 1989. [163] Fang, Y.; Shen, J.; Yao, M.; Beagley, K. W.; Hambly, B. D.; Bao, S. Granulocytemacrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines. Br J Dermatol 162:478-486; 2009. [164] Mann, A.; Breuhahn, K.; Schirmacher, P.; Blessing, M. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol 117:1382-1390; 2001. [165] Hu, X.; Sun, H.; Han, C.; Wang, X.; Yu, W. Topically applied rhGM-CSF for the wound healing: A systematic review. Burns 37:728-740; 2010. [166] Lekstrom-Himes, J. A.; Kuhns, D. B.; Alvord, W. G.; Gallin, J. I. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol 174:411-417; 2005. [167] Zmijewski, J. W.; Zhao, X.; Xu, Z.; Abraham, E. Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am J Physiol Cell Physiol 293:C255-266; 2007. [168] Sambo, P.; Fadlon, E. J.; Sironi, M.; Matteucci, C.; Introna, M.; Mantovani, A.; Colotta, F. Reactive oxygen intermediates cause rapid release of the interleukin-1 decoy receptor from human myelomonocytic cells. Blood 87:1682-1686; 1996. 149 [169] Schindler, R.; Clark, B. D.; Dinarello, C. A. Dissociation between interleukin-1 beta mRNA and protein synthesis in human peripheral blood mononuclear cells. J Biol Chem 265:10232-10237; 1990. [170] Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81:33s-40s; 1983. [171] Liang, C. C.; Park, A. Y.; Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329-333; 2007. [172] Nachlas, M. M.; Margulies, S. I.; Goldberg, J. D.; Seligman, A. M. The determination of lactic dehydrogenase with a tetrazolium salt. Anal Biochem 1:317-326; 1960. [173] Jazwa, A.; Loboda, A.; Golda, S.; Cisowski, J.; Szelag, M.; Zagorska, A.; Sroczynska, P.; Drukala, J.; Jozkowicz, A.; Dulak, J. Effect of heme and heme oxygenase-1 on vascular endothelial growth factor synthesis and angiogenic potency of human keratinocytes. Free Radic Biol Med 40:1250-1263; 2006. [174] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63; 1983. [175] Long, L. H.; Clement, M. V.; Halliwell, B. Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 273:50-53; 2000. [176] Beers, R. F., Jr.; Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133-140; 1952. [177] Ghahary, A.; Karimi-Busheri, F.; Marcoux, Y.; Li, Y.; Tredget, E. E.; Taghi Kilani, R.; Li, L.; Zheng, J.; Karami, A.; Keller, B. O.; Weinfeld, M. Keratinocyte-releasable stratifin functions as a potent collagenase-stimulating factor in fibroblasts. J Invest Dermatol 122:1188-1197; 2004. [178] DiPietro, L. A.; Burns, A. L. Wound healing : methods and protocols. Totowa, N.J.: Humana Press; 2003. [179] Hume, D. A.; Halpin, D.; Charlton, H.; Gordon, S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A 81:4174-4177; 1984. [180] Hirsch, S.; Gordon, S. Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4. Immunogenetics 18:229-239; 1983. [181] Lee, C. Y.; Huang, S. H.; Jenner, A. M.; Halliwell, B. Measurement of F2isoprostanes, hydroxyeicosatetraenoic products, and oxysterols from a single plasma sample. Free Radic Biol Med 44:1314-1322; 2008. [182] Jenner, A.; Ren, M.; Rajendran, R.; Ning, P.; Huat, B. T.; Watt, F.; Halliwell, B. Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic Biol Med 42:559-566; 2007. [183] Gottrup, F.; Agren, M. S.; Karlsmark, T. Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 8:83-96; 2000. [184] Boukamp, P.; Petrussevska, R. T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761-771; 1988. [185] Piperno, E.; Berssenbruegge, D. A. Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 2:738-739; 1976. [186] Ceconi, C.; Curello, S.; Cargnoni, A.; Ferrari, R.; Albertini, A.; Visioli, O. The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of Nacetyl cysteine. J Mol Cell Cardiol 20:5-13; 1988. [187] Favata, M. F.; Horiuchi, K. Y.; Manos, E. J.; Daulerio, A. J.; Stradley, D. A.; Feeser, W. S.; Van Dyk, D. E.; Pitts, W. J.; Earl, R. A.; Hobbs, F.; Copeland, R. A.; Magolda, R. L.; 150 Scherle, P. A.; Trzaskos, J. M. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623-18632; 1998. [188] Han, Y.; Caday, C. G.; Nanda, A.; Cavenee, W. K.; Huang, H. J. Tyrphostin AG 1478 preferentially inhibits human glioma cells expressing truncated rather than wild-type epidermal growth factor receptors. Cancer Res 56:3859-3861; 1996. [189] Cuenda, A.; Rouse, J.; Doza, Y. N.; Meier, R.; Cohen, P.; Gallagher, T. F.; Young, P. R.; Lee, J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229-233; 1995. [190] Lim, I. J.; Phan, T. T.; Bay, B. H.; Qi, R.; Huynh, H.; Tan, W. T.; Lee, S. T.; Longaker, M. T. Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner. Am J Physiol Cell Physiol 283:C212-222; 2002. [191] Hasty, K. A.; Hibbs, M. S.; Kang, A. H.; Mainardi, C. L. Secreted forms of human neutrophil collagenase. J Biol Chem 261:5645-5650; 1986. [192] Hanemaaijer, R.; Sorsa, T.; Konttinen, Y. T.; Ding, Y.; Sutinen, M.; Visser, H.; van Hinsbergh, V. W.; Helaakoski, T.; Kainulainen, T.; Ronka, H.; Tschesche, H.; Salo, T. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J Biol Chem 272:3150431509; 1997. [193] Kivela-Rajamaki, M.; Maisi, P.; Srinivas, R.; Tervahartiala, T.; Teronen, O.; Husa, V.; Salo, T.; Sorsa, T. Levels and molecular forms of MMP-7 (matrilysin-1) and MMP-8 (collagenase-2) in diseased human peri-implant sulcular fluid. J Periodontal Res 38:583-590; 2003. [194] Rosas, M.; Thomas, B.; Stacey, M.; Gordon, S.; Taylor, P. R. The myeloid 7/4antigen defines recently generated inflammatory macrophages and is synonymous with Ly6B. J Leukoc Biol 88:169-180; 2010. [195] Austyn, J. M.; Gordon, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805-815; 1981. [196] Schafer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol Res 58:165-171; 2008. [197] Wlaschek, M.; Scharffetter-Kochanek, K. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen 13:452-461; 2005. [198] Pan, Q.; Qiu, W.; Huo, Y.; Yao, Y.; Lou, M. F. Low Levels of Hydrogen Peroxide Stimulates Corneal Epithelial Cell Adhesion, Migration and Wound Healing. Invest Ophthalmol Vis Sci 52:1723-1734; 2010. [199] Basuroy, S.; Dunagan, M.; Sheth, P.; Seth, A.; Rao, R. K. Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 299:G186-195; 2010. [200] Alexandrova, A. Y.; Kopnin, P. B.; Vasiliev, J. M.; Kopnin, B. P. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res 312:2066-2073; 2006. [201] Wang, X.; Martindale, J. L.; Liu, Y.; Holbrook, N. J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333:291-300; 1998. [202] Perluigi, M.; Di Domenico, F.; Blarzino, C.; Foppoli, C.; Cini, C.; Giorgi, A.; Grillo, C.; De Marco, F.; Butterfield, D. A.; Schinina, M. E.; Coccia, R. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Proteome Sci 8:13-26; 2010. [203] Heasley, L. E.; Johnson, G. L. The beta-PDGF receptor induces neuronal differentiation of PC12 cells. Mol Biol Cell 3:545-553; 1992. [204] Qui, M. S.; Green, S. H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9:705-717; 1992. 151 [205] Santos, S. D.; Verveer, P. J.; Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324-330; 2007. [206] Chan, H. L.; Chou, H. C.; Duran, M.; Gruenewald, J.; Waterfield, M. D.; Ridley, A.; Timms, J. F. Major role of epidermal growth factor receptor and Src kinases in promoting oxidative stress-dependent loss of adhesion and apoptosis in epithelial cells. J Biol Chem 285:4307-4318; 2010. [207] Goke, M.; Kanai, M.; Lynch-Devaney, K.; Podolsky, D. K. Rapid mitogen-activated protein kinase activation by transforming growth factor alpha in wounded rat intestinal epithelial cells. Gastroenterology 114:697-705; 1998. [208] Block, E. R.; Klarlund, J. K. Wounding sheets of epithelial cells activates the epidermal growth factor receptor through distinct short- and long-range mechanisms. Mol Biol Cell 19:4909-4917; 2008. [209] Boucher, I.; Yang, L.; Mayo, C.; Klepeis, V.; Trinkaus-Randall, V. Injury and nucleotides induce phosphorylation of epidermal growth factor receptor: MMP and HB-EGF dependent pathway. Exp Eye Res 85:130-141; 2007. [210] Hill, L. M.; Gavala, M. L.; Lenertz, L. Y.; Bertics, P. J. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185:3028-3034; 2010. [211] Downward, J.; Parker, P.; Waterfield, M. D. Autophosphorylation sites on the epidermal growth factor receptor. Nature 311:483-485; 1984. [212] Ravid, T.; Sweeney, C.; Gee, P.; Carraway, K. L., 3rd; Goldkorn, T. Epidermal growth factor receptor activation under oxidative stress fails to promote c-Cbl mediated down-regulation. J Biol Chem 277:31214-31219; 2002. [213] Ferreiro, I.; Joaquin, M.; Islam, A.; Gomez-Lopez, G.; Barragan, M.; Lombardia, L.; Dominguez, O.; Pisano, D. G.; Lopez-Bigas, N.; Nebreda, A. R.; Posas, F. Whole genome analysis of p38 SAPK-mediated gene expression upon stress. BMC Genomics 11:144; 2010. [214] Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signalregulating kinase (ASK) 1. EMBO J 17:2596-2606; 1998. [215] Tobiume, K.; Matsuzawa, A.; Takahashi, T.; Nishitoh, H.; Morita, K.; Takeda, K.; Minowa, O.; Miyazono, K.; Noda, T.; Ichijo, H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222-228; 2001. [216] Hall-Jackson, C. A.; Goedert, M.; Hedge, P.; Cohen, P. Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene 18:2047-2054; 1999. [217] Hotokezaka, H.; Sakai, E.; Kanaoka, K.; Saito, K.; Matsuo, K.; Kitaura, H.; Yoshida, N.; Nakayama, K. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366-47372; 2002. [218] Junttila, M. R.; Li, S. P.; Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954-965; 2008. [219] Wang, Z.; Yang, H.; Tachado, S. D.; Capo-Aponte, J. E.; Bildin, V. N.; Koziel, H.; Reinach, P. S. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Invest Ophthalmol Vis Sci 47:5267-5275; 2006. [220] Estrada, Y.; Dong, J.; Ossowski, L. Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferation. Pigment Cell Melanoma Res 22:6676; 2009. [221] Sharma, G. D.; He, J.; Bazan, H. E. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 278:21989-21997; 2003. [222] Coulombe, P. A. Wound epithelialization: accelerating the pace of discovery. J Invest Dermatol 121:219-230; 2003. 152 [223] Goulet, F.; Poitras, A.; Rouabhia, M.; Cusson, D.; Germain, L.; Auger, F. A. Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblasts in vitro. Burns 22:107-112; 1996. [224] O'Leary, R.; Arrowsmith, M.; Wood, E. J. Characterization of the living skin equivalent as a model of cutaneous re-epithelialization. Cell Biochem Funct 20:129-141; 2002. [225] Irani, K.; Xia, Y.; Zweier, J. L.; Sollott, S. J.; Der, C. J.; Fearon, E. R.; Sundaresan, M.; Finkel, T.; Goldschmidt-Clermont, P. J. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649-1652; 1997. [226] Ridley, A. J.; Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389-399; 1992. [227] Saunders, J. A.; Rogers, L. C.; Klomsiri, C.; Poole, L. B.; Daniel, L. W. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radic Biol Med 49:2058-2067; 2010. [228] Sundaresan, M.; Yu, Z. X.; Ferrans, V. J.; Irani, K.; Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296299; 1995. [229] Kong, G.; Lee, S.; Kim, K. S. Inhibition of rac1 reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells. J Korean Med Sci 16:712718; 2001. [230] Du, J.; Sun, C.; Hu, Z.; Yang, Y.; Zhu, Y.; Zheng, D.; Gu, L.; Lu, X. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One 5:e15940; 2010. [231] Sandler, H.; Stoecklin, G. Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans 36:491-496; 2008. [232] Taylor, G. A.; Thompson, M. J.; Lai, W. S.; Blackshear, P. J. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem 270:13341-13347; 1995. [233] Mahtani, K. R.; Brook, M.; Dean, J. L.; Sully, G.; Saklatvala, J.; Clark, A. R. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21:6461-6469; 2001. [234] Essafi-Benkhadir, K.; Pouyssegur, J.; Pages, G. Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability. Methods Mol Biol 661:451-469; 2010. [235] Bhattacharyya, S.; Gutti, U.; Mercado, J.; Moore, C.; Pollard, H. B.; Biswas, R. MAPK signaling pathways regulate IL-8 mRNA stability and IL-8 protein expression in cystic fibrosis lung epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 300:L81-87; 2011. [236] Zhao, W.; Liu, M.; D'Silva, N. J.; Kirkwood, K. L. Tristetraprolin Regulates Interleukin-6 Expression Through p38 MAPK-Dependent Affinity Changes with mRNA 3' Untranslated Region. J Interferon Cytokine Res 31:629-637; 2011. [237] Galbis-Martinez, M.; Saenz, L.; Ramirez, P.; Parrilla, P.; Yelamos, J. Poly(ADPribose) polymerase-1 modulates interferon-gamma-inducible protein (IP)-10 expression in murine embryonic fibroblasts by stabilizing IP-10 mRNA. Mol Immunol 47:1492-1499; 2010. [238] Shaw, G.; Kamen, R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659-667; 1986. [239] Milanini, J.; Vinals, F.; Pouyssegur, J.; Pages, G. p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273:18165-18172; 1998. 153 [240] Milanini-Mongiat, J.; Pouyssegur, J.; Pages, G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277:20631-20639; 2002. [241] Okajima, E.; Thorgeirsson, U. P. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem Biophys Res Commun 270:108-111; 2000. [242] Tanaka, T.; Kanai, H.; Sekiguchi, K.; Aihara, Y.; Yokoyama, T.; Arai, M.; Kanda, T.; Nagai, R.; Kurabayashi, M. Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 32:1955-1967; 2000. [243] Kozawa, O.; Kawamura, H.; Hatakeyama, D.; Matsuno, H.; Uematsu, T. Endothelin-1 induces vascular endothelial growth factor synthesis in osteoblasts: involvement of p38 mitogen-activated protein kinase. Cell Signal 12:375-380; 2000. [244] Itaya, H.; Imaizumi, T.; Yoshida, H.; Koyama, M.; Suzuki, S.; Satoh, K. Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide. Thromb Haemost 85:171-176; 2001. [245] Lin, H. H.; Lai, S. C.; Chau, L. Y. Heme oxygenase-1/carbon monoxide induces vascular endothelial growth factor expression via p38 kinase-dependent activation of Sp1. J Biol Chem 286:3829-3838; 2011. [246] Whitmarsh, A. J.; Shore, P.; Sharrocks, A. D.; Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269:403-407; 1995. [247] Raingeaud, J.; Whitmarsh, A. J.; Barrett, T.; Derijard, B.; Davis, R. J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16:1247-1255; 1996. [248] Zhu, S.; Yoon, K.; Sterneck, E.; Johnson, P. F.; Smart, R. C. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A 99:207-212; 2002. [249] Johnson, B. V.; Bert, A. G.; Ryan, G. R.; Condina, A.; Cockerill, P. N. Granulocytemacrophage colony-stimulating factor enhancer activation requires cooperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization. Mol Cell Biol 24:7914-7930; 2004. [250] Jeong, S. H.; Park, J. H.; Kim, J. N.; Park, Y. H.; Shin, S. Y.; Lee, Y. H.; Kye, Y. C.; Son, S. W. Up-regulation of TNF-alpha secretion by cigarette smoke is mediated by Egr-1 in HaCaT human keratinocytes. Exp Dermatol 19:e206-212; 2010. [251] Johansen, C.; Funding, A. T.; Otkjaer, K.; Kragballe, K.; Jensen, U. B.; Madsen, M.; Binderup, L.; Skak-Nielsen, T.; Fjording, M. S.; Iversen, L. Protein expression of TNF-alpha in psoriatic skin is regulated at a posttranscriptional level by MAPK-activated protein kinase 2. J Immunol 176:1431-1438; 2006. [252] Liu, H.; Sidiropoulos, P.; Song, G.; Pagliari, L. J.; Birrer, M. J.; Stein, B.; Anrather, J.; Pope, R. M. TNF-alpha gene expression in macrophages: regulation by NF-kappa B is independent of c-Jun or C/EBP beta. J Immunol 164:4277-4285; 2000. [253] Faggioli, L.; Costanzo, C.; Donadelli, M.; Palmieri, M. Activation of the Interleukin-6 promoter by a dominant negative mutant of c-Jun. Biochim Biophys Acta 1692:17-24; 2004. [254] Gottlieb, A. B.; Luster, A. D.; Posnett, D. N.; Carter, D. M. Detection of a gamma interferon-induced protein IP-10 in psoriatic plaques. J Exp Med 168:941-948; 1988. [255] Boorsma, D. M.; Flier, J.; Sampat, S.; Ottevanger, C.; de Haan, P.; Hooft, L.; Willemze, R.; Tensen, C. P.; Stoof, T. J. Chemokine IP-10 expression in cultured human keratinocytes. Arch Dermatol Res 290:335-341; 1998. [256] Nazar, A. S.; Cheng, G.; Shin, H. S.; Brothers, P. N.; Dhib-Jalbut, S.; Shin, M. L.; Vanguri, P. Induction of IP-10 chemokine promoter by measles virus: comparison with interferon-gamma shows the use of the same response element but with differential DNAprotein binding profiles. J Neuroimmunol 77:116-127; 1997. 154 [257] Gough, D. J.; Sabapathy, K.; Ko, E. Y.; Arthur, H. A.; Schreiber, R. D.; Trapani, J. A.; Clarke, C. J.; Johnstone, R. W. A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes. J Biol Chem 282:938-946; 2007. [258] Hancock, G. E.; Kaplan, G.; Cohn, Z. A. Keratinocyte growth regulation by the products of immune cells. J Exp Med 168:1395-1402; 1988. [259] Grossman, R. M.; Krueger, J.; Yourish, D.; Granelli-Piperno, A.; Murphy, D. P.; May, L. T.; Kupper, T. S.; Sehgal, P. B.; Gottlieb, A. B. Interleukin is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 86:6367-6371; 1989. [260] Pillai, S.; Bikle, D. D.; Eessalu, T. E.; Aggarwal, B. B.; Elias, P. M. Binding and biological effects of tumor necrosis factor alpha on cultured human neonatal foreskin keratinocytes. J Clin Invest 83:816-821; 1989. [261] Yang, X. H.; Man, X. Y.; Cai, S. Q.; Yao, Y. G.; Bu, Z. Y.; Zheng, M. Expression of VEGFR-2 on HaCaT cells is regulated by VEGF and plays an active role in mediating VEGF induced effects. Biochem Biophys Res Commun 349:31-38; 2006. [262] Bennett, L. L.; Rosenblum, R. S.; Perlov, C.; Davidson, J. M.; Barton, R. M.; Nanney, L. B. An in vivo comparison of topical agents on wound repair. Plast Reconstr Surg 108:675687; 2001. [263] Trengove, N. J.; Stacey, M. C.; MacAuley, S.; Bennett, N.; Gibson, J.; Burslem, F.; Murphy, G.; Schultz, G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442-452; 1999. [264] Nwomeh, B. C.; Liang, H. X.; Cohen, I. K.; Yager, D. R. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res 81:189-195; 1999. [265] Miller, E. J.; Harris, E. D., Jr.; Chung, E.; Finch, J. E., Jr.; McCroskery, P. A.; Butler, W. T. Cleavage of Type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry 15:787-792; 1976. [266] Murphy, G.; McAlpine, C. G.; Poll, C. T.; Reynolds, J. J. Purification and characterization of a bone metalloproteinase that degrades gelatin and types IV and V collagen. Biochim Biophys Acta 831:49-58; 1985. [267] Tester, A. M.; Cox, J. H.; Connor, A. R.; Starr, A. E.; Dean, R. A.; Puente, X. S.; Lopez-Otin, C.; Overall, C. M. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One 2:e312; 2007. [268] Nwomeh, B. C.; Liang, H. X.; Diegelmann, R. F.; Cohen, I. K.; Yager, D. R. Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen 6:127-134; 1998. [269] Dumont, P.; Burton, M.; Chen, Q. M.; Gonos, E. S.; Frippiat, C.; Mazarati, J. B.; Eliaers, F.; Remacle, J.; Toussaint, O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28:361-373; 2000. [270] Wall, I. B.; Moseley, R.; Baird, D. M.; Kipling, D.; Giles, P.; Laffafian, I.; Price, P. E.; Thomas, D. W.; Stephens, P. Fibroblast Dysfunction Is a Key Factor in the Non-Healing of Chronic Venous Leg Ulcers. J Invest Dermatol; 2008. [271] Haller, G.; Faltin-Traub, E.; Faltin, D.; Kern, C. Oxygen embolism after hydrogen peroxide irrigation of a vulvar abscess. Br J Anaesth 88:597-599; 2002. [272] Despond, O.; Fiset, P. Oxygen venous embolism after the use of hydrogen peroxide during lumbar discectomy. Can J Anaesth 44:410-413; 1997. [273] Morikawa, H.; Mima, H.; Fujita, H.; Mishima, S. Oxygen embolism due to hydrogen peroxide irrigation during cervical spinal surgery. Can J Anaesth 42:231-233; 1995. [274] Patel, V.; Kelleher, M.; McGurk, M. Clinical use of hydrogen peroxide in surgery and dentistry--why is there a safety issue? Br Dent J 208:61-64. 155 [275] Galiano, R. D.; Michaels, J. t.; Dobryansky, M.; Levine, J. P.; Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 12:485-492; 2004. [276] Hembry, R. M.; Bernanke, D. H.; Hayashi, K.; Trelstad, R. L.; Ehrlich, H. P. Morphologic examination of mesenchymal cells in healing wounds of normal and tight skin mice. Am J Pathol 125:81-89; 1986. [277] Michaels, J.; Churgin, S. S.; Blechman, K. M.; Greives, M. R.; Aarabi, S.; Galiano, R. D.; Gurtner, G. C. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen 15:665-670; 2007. [278] Abercrombie, M.; James, D. W.; Newcombe, J. F. Wound contraction in rabbit skin, studied by splinting the wound margins. J Anat 94:170-182; 1960. [279] Ahn, S. T.; Mustoe, T. A. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg 24:17-23; 1990. [280] Arbiser, J. L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E. R.; Brown, L. F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R. S.; Lambeth, J. D. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99:715-720; 2002. [281] Xia, C.; Meng, Q.; Liu, L. Z.; Rojanasakul, Y.; Wang, X. R.; Jiang, B. H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823-10830; 2007. [282] Connor, K. M.; Subbaram, S.; Regan, K. J.; Nelson, K. K.; Mazurkiewicz, J. E.; Bartholomew, P. J.; Aplin, A. E.; Tai, Y. T.; Aguirre-Ghiso, J.; Flores, S. C.; Melendez, J. A. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280:16916-16924; 2005. [283] Polytarchou, C.; Papadimitriou, E. Antioxidants inhibit angiogenesis in vivo through down-regulation of nitric oxide synthase expression and activity. Free Radic Res 38:501-508; 2004. [284] Polytarchou, C.; Papadimitriou, E. Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity. Eur J Pharmacol 510:31-38; 2005. [285] Yasuda, M.; Ohzeki, Y.; Shimizu, S.; Naito, S.; Ohtsuru, A.; Yamamoto, T.; Kuroiwa, Y. Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells. Life Sci 64:249-258; 1999. [286] Buettner, G. R.; Ng, C. F.; Wang, M.; Rodgers, V. G.; Schafer, F. Q. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 41:1338-1350; 2006. [287] Luo, J.-D.; Wang, Y.-Y.; Fu, W.-L.; Wu, J.; Chen, A. F. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type diabetic mice. Circulation 110:2484-2493; 2004. [288] Marrotte, E. J.; Chen, D. D.; Hakim, J. S.; Chen, A. F. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest 120:4207-4219; 2010. [289] Treiber, N.; Peters, T.; Sindrilaru, A.; Huber, R.; Kohn, M.; Menke, A.; Briviba, K.; Kreppel, F.; Basu, A.; Maity, P.; Koller, M.; Iben, S.; Wlaschek, M.; Kochanek, S.; Scharffetter-Kochanek, K. Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation. Arch Dermatol Res 301:273-287; 2009. [290] Huang, S. S.; Zheng, R. L. Biphasic regulation of angiogenesis by reactive oxygen species. Pharmazie 61:223-229; 2006. 156 [291] Rajashekhar, G.; Kamocka, M.; Marin, A.; Suckow, M. A.; Wolter, W. R.; Badve, S.; Sanjeevaiah, A. R.; Pumiglia, K.; Rosen, E.; Clauss, M. Pro-inflammatory angiogenesis is mediated by p38 MAP kinase. J Cell Physiol 226:800-808; 2011. [292] Mu, P.; Liu, Q.; Zheng, R. Biphasic regulation of H2O2 on angiogenesis implicated NADPH oxidase. Cell Biol Int 34:1013-1020; 2010. [293] O'Sullivan, A.; O'Malley, D.; Coffey, J.; Wang, J. H.; Redmond, H. Inhibition of Nuclear Factor-kappaB and p38 Mitogen-Activated Protein Kinase Does Not Always Have Adverse Effects on Wound Healing. Surg Infect 11:1-5; 2009. [294] Ipaktchi, K.; Mattar, A.; Niederbichler, A. D.; Hoesel, L. M.; Vollmannshauser, S.; Hemmila, M. R.; Minter, R. M.; Su, G. L.; Wang, S. C.; Arbabi, S. Topical p38 MAPK inhibition reduces bacterial growth in an in vivo burn wound model. Surgery 142:86-93; 2007. [295] Tian, H.; Lu, Y.; Shah, S. P.; Hong, S. 14S,21R-dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J Biol Chem 286:4443-4453; 2011. [296] Prince, L. R.; Whyte, M. K.; Sabroe, I.; Parker, L. C. The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11:397-403; 2011. [297] Goren, I.; Kampfer, H.; Podda, M.; Pfeilschifter, J.; Frank, S. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Diabetes 52:2821-2832; 2003. [298] Pirila, E.; Korpi, J. T.; Korkiamaki, T.; Jahkola, T.; Gutierrez-Fernandez, A.; LopezOtin, C.; Saarialho-Kere, U.; Salo, T.; Sorsa, T. Collagenase-2 (MMP-8) and matrilysin-2 (MMP-26) expression in human wounds of different etiologies. Wound Repair Regen 15:4757; 2007. [299] Butterfield, D. A.; Gnjec, A.; Poon, H. F.; Castegna, A.; Pierce, W. M.; Klein, J. B.; Martins, R. N. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease: an initial assessment. J Alzheimers Dis 10:391-397; 2006. [300] Lampe, M. A.; Williams, M. L.; Elias, P. M. Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24:131-140; 1983. [301] Chatenay, F.; Corcuff, P.; Saint-Leger, D.; Leveque, J. L. Alterations in the composition of human stratum corneum lipids induced by inflammation. Photodermatol Photoimmunol Photomed 7:119-122; 1990. [302] Nomura, T.; Terashi, H.; Omori, M.; Sakurai, A.; Sunagawa, T.; Hasegawa, M.; Tahara, S. Lipid analysis of normal dermis and hypertrophic scars. Wound Repair Regen 15:833-837; 2007. [303] Gutteridge, J. M.; Quinlan, G. J. Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. J Appl Biochem 5:293-299; 1983. [304] Wade, C. R.; van Rij, A. M. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides. Life Sci 43:1085-1093; 1988. [305] Cracowski, J. L.; Durand, T.; Bessard, G. Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 23:360-366; 2002. [306] Galeano, M.; Torre, V.; Deodato, B.; Campo, G. M.; Colonna, M.; Sturiale, A.; Squadrito, F.; Cavallari, V.; Cucinotta, D.; Buemi, M.; Altavilla, D. Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice. Surgery 129:467-477; 2001. [307] Gupta, A.; Kumar, R.; Pal, K.; Banerjee, P. K.; Sawhney, R. C. A preclinical study of the effects of seabuckthorn (Hippophae rhamnoides L.) leaf extract on cutaneous wound healing in albino rats. Int J Low Extrem Wounds 4:88-92; 2005. 157 [308] Gupta, A.; Kumar, R.; Pal, K.; Singh, V.; Banerjee, P. K.; Sawhney, R. C. Influence of sea buckthorn (Hippophae rhamnoides L.) flavone on dermal wound healing in rats. Mol Cell Biochem 290:193-198; 2006. [309] Singh, M.; Govindarajan, R.; Nath, V.; Rawat, A. K.; Mehrotra, S. Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J Ethnopharmacol 107:67-72; 2006. [310] Pattanayak, S. P.; Sunita, P. Wound healing, anti-microbial and antioxidant potential of Dendrophthoe falcata (L.f) Ettingsh. J Ethnopharmacol 120:241-247; 2008. [311] Shetty, S.; Udupa, S.; Udupa, L. Evaluation of Antioxidant and Wound Healing Effects of Alcoholic and Aqueous Extract of Ocimum sanctum Linn in Rats. Evid Based Complement Alternat Med 5:95-101; 2008. [312] Chigurupati, S.; Mughal, M. R.; Chan, S. L.; Arumugam, T. V.; Baharani, A.; Tang, S. C.; Yu, Q. S.; Holloway, H. W.; Wheeler, R.; Poosala, S.; Greig, N. H.; Mattson, M. P. A synthetic uric acid analog accelerates cutaneous wound healing in mice. PLoS One 5:e10044; 2010. [313] Long, L. H.; Hoi, A.; Halliwell, B. Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch Biochem Biophys 501:162-169; 2010. [314] Khanna, S.; Venojarvi, M.; Roy, S.; Sharma, N.; Trikha, P.; Bagchi, D.; Bagchi, M.; Sen, C. K. Dermal wound healing properties of redox-active grape seed proanthocyanidins. Free Radic Biol Med 33:1089-1096; 2002. [315] Kmin, A.; Schaer, M.; Epp, N.; Bugnon, P.; Born-Berclaz, C.; Oxenius, A.; Klippel, A.; Bloch, W.; Werner, S. Peroxiredoxin is required for blood vessel integrity in wounded skin. J Cell Biol 179:747-760; 2007. [316] Craig, R. D. Collagen biosynthesis in normal human skin, normal and hypertrophic scar and keloid. Eur J Clin Invest 5:69-74; 1975. [317] Amadeu, T.; Braune, A.; Mandarim-de-Lacerda, C.; Porto, L. C.; Desmouliere, A.; Costa, A. Vascularization pattern in hypertrophic scars and keloids: a stereological analysis. Pathol Res Pract 199:469-473; 2003. [318] van der Veer, W. M.; Niessen, F. B.; Ferreira, J. A.; Zwiers, P. J.; de Jong, E. H.; Middelkoop, E.; Molema, G. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen 19:292-301; 2011. [319] Beer, T. W.; Baldwin, H. C.; Goddard, J. R.; Gallagher, P. J.; Wright, D. H. Angiogenesis in pathological and surgical scars. Hum Pathol 29:1273-1278; 1998. [320] Longaker, M. T.; Whitby, D. J.; Adzick, N. S.; Crombleholme, T. M.; Langer, J. C.; Duncan, B. W.; Bradley, S. M.; Stern, R.; Ferguson, M. W.; Harrison, M. R. Studies in fetal wound healing, VI. Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg 25:63-68; discussion 68-69; 1990. [321] Wilgus, T. A.; Bergdall, V. K.; Dipietro, L. A.; Oberyszyn, T. M. Hydrogen peroxide disrupts scarless fetal wound repair. Wound Repair Regen 13:513-519; 2005. 158 [...]... beneficial in wound healing, the discussion would be incomplete without mentioning the role of inflammation in would healing 3 A common misconception is that ROS in wounds equates to inflammation and vice versa Hence, my objective to determine if ROS is beneficial in wound healing is perceived as being equivalent to the significantly more profound question of whether inflammation is beneficial in wound healing. .. Myofibroblasts are aligned along the lines of contraction which in turn are aligned in the direction of skin tension [46] In full thickness wounds, contraction is an important part of healing In animals with loose skin, such as the dorsal area of rodents, it is the predominant mechanism for wound closure Myofibroblasts have increased expression of smooth muscle differentiation markers such as α-smooth... application of a 0.15% solution of H2O2 did not affect wound closure in mice but promoted angiogenesis On the other hand a 3% solution delayed wound healing and even higher concentrations killed the mice [58] Similarly, knockout of the antioxidant enzyme peroxiredoxin 6 results in severe hemorrhages during wound healing [66] From these observations, we hypothesized that low levels of ROS may contribute to wound. .. acute and chronic wounds compared to intact skin but chronic wounds have higher levels of MDA than acute wounds [67-69] F2-isoprostanes, another marker of lipid peroxidation, have also been shown to be higher in chronic wound fluids than acute wound fluids [70] However studies on wound fluid fails to answer the fundamental question of whether wounding increases oxidative damage Using 4-Hydroxynonenal as... healing This assumption is wrong on several accounts Firstly, while neutrophils and macrophages are important sources of ROS, they are not the only source of ROS in wounds Resident cells are also important sources of ROS and will be discussed in section 1.3 Secondly, inflammation need not be associated with increased ROS Upon phagocytosis of a foreign body, the oxygen consumption rate of phagocytes increase... infection [23-25] It is clear that ROS are not the only way that inflammatory cells kill bacteria and therefore the presence of inflammatory cells in wounds cannot be taken as unequivocal proof of increased ROS in wounds Having established that the investigation of the role of ROS in wounds is a problem distinct from the role of inflammation in wounds, what is our current knowledge of the role of inflammation... current knowledge of the role of inflammation in wound healing? Removal of macrophages from wounds with the use of macrophage antisera retards wound healing [26] while the removal of neutrophils with antisera results in faster healing [27] PU.1 is a key transcription factor for the differentiation of common myeloid progenitor cells to the granulocytes and monocytes lineage PU.1 knockout mice lack macrophages,... after wounding [3] The concentrations of H2O2 found in wounds range from 50 [58] – 250 [3] µM, depending on the model and method used It was further found that DUOX (there is only 1 isoform of DUOX in zebrafish) is the cellular source of ROS in this model The production of H2O2 precedes the infiltration of leukocytes and is shown to serve as a leukocyte chemoattractant In vitro studies have also demonstrated... is complex and there is no one straightforward answer to whether inflammation is beneficial in wound healing Only one fact is certain; none of the inflammatory cells are absolutely required for healing [30] 1.1.3 Proliferation and Remodelling Phase The two main activities of the proliferation phase are the restoration of the epidermis and the dermis After these, the healed wound is remodeled into a... the role of ROS in wounds, one would need to measure the amount of oxidative damage in wounds 1.2.4 Evidence for increased oxidative damage in wounds Previous studies have attempted to measure oxidative damage in wounds However these are not without limitations The most commonly used oxidative damage marker studied in wound healing is malondialdehyde (MDA), a product of lipid peroxidation Among the . H 2 O 2 on an in vitro models of wound healing 4.1 Biphasic effects of H 2 O 2 on wound closure 4.2 Effects of H 2 O 2 on connective tissue formation and MMP production 4.3 Effects of H 2 O 2 . monolayer scratch wound model and co-culture model 5.5 Effects of H 2 O 2 on cytokine secretion 5.6 Effects of H 2 O 2 on wound closure and connective tissue formation in the excision wound. model 5.7 Effects of H 2 O 2 on angiogenesis in the excision wound model 5.8 Effects of H 2 O 2 on ERK1/2 and p38 phosphorylation in the excision wound model 5. 9 Effects of H 2 O 2 on inflammatory

Ngày đăng: 10/09/2015, 08:26

Từ khóa liên quan

Mục lục

  • cover page.pdf

  • Content

  • Final Ver4

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan