1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nonrigid registration methods for myocardial perfusion mri and cerebral diffusion tensor mri 2

34 335 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 4,87 MB

Nội dung

118 RESULTS Figure 5.11: The MD slices in axial view (left), and overlaid with the results of first registration (middle), and the second round of registration (right) This figure should be viewed in color § 5.3 Diffusion MRI 119 Figure 5.12: Comparison of corpus callosum bundles reconstructed by using manual seeding(middle) and our method The left figure shows the label map for manual seeding Fig 5.12 compares the corpus callosum constructed by manually seeded tractography (middle) and by the proposed automatic fiber-to-DTI registration method As shown, the shape of the deformed corpus callosum model well matches the fibers reconstructed by manually seeded tractography while the tractography result is incomplete, e.g., in the yellow rectangular region, due to early termination Further, even with a carefully delineated seeding region, it is still very difficult to avoid outlier fibers in tractography A bundle of outlier fibers are highlighted in the red rectangle for example Since outlier fibers in our fiber model have been removed by experts, the fibers reconstructed by our method is clean 120 RESULTS To evaluate the consistency of this fiber-to-DTI registration among subjects, we warp backward the FA volume of each subject to the fiber model space and examine the averaged volume Fig 5.13 displays the averaged FA of all the subjects after back-warping As shown, the averaged FA images appear rather blurry without using any registration due to the misalignment among subjects The major skeleton of the WM becomes much clearer after affine registration which compensates variations of size, position, and orientation As expected, the averaged images given by nonrigid fiber-toDTI are the sharpest which demonstrated consistent alignment given by our fiber-to-DTI registration We also computed the pixel-wise standard deviation of back-warped FA volumes to quantitatively assess the group alignment Fig 5.14 shows the statistics of such pixel-wise standard deviation within the brain area By using our nonrigid fiber-to-DTI registration, more points ”move” to the left side indicating the reduction of the standard deviation, i.e., the improvement of group alignments The mean standard deviations are 0.25, 0.20, and 0.18 respectively for no registration, affine fiber-to-DTI registration and nonrigid fiber-to-DTI registration The reduction of mean standard deviations demonstrated that our nonrigid fiber-to-DTI registration method improved the alignment of the FA volumes and thus indicating more accurate intersubject correspondence § 5.3 Diffusion MRI 121 Figure 5.13: The average FA images after back-warping From top to bottom shows sagittal, coronal, and axial views From left to right shows the results using no registration, affine registration, and non-rigid registration 122 RESULTS x 10 No Registration Affine Registration Nonrgid Registration Noumber of pixels 3.5 2.5 1.5 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Pixel−wise standard deviation 0.4 0.45 0.5 Figure 5.14: The histograms of pixel-wise FA standard deviations within the brain area after back-warping all the subjects to the brain fiber model domain Previous clinical studies (Nitkunan et al., 2008) suggested that DTI measures should have strong correlations with cognitive impairment We therefore quantitatively validate our results by assessing the partial correlations (controlled for age, gender, and education) between the averaged FA and widely used cognitive scores: the Montreal Cognitive Assessment (MoCA, Nasreddine et al (2005)); the Mini-Mental State Examination (MMSE , Folstein et al (1975)); and the Color Trails Test 1&2 (CTT1, CTT2, D’Elia et al (1996)) The correlation tests are performed among all the subjects with valid cognitive scores and there are about 45 subjects for each cognitive score Table 5.3 shows correlations for the average FA along fibers, among the whole brain volumes and the average skeletonised FA by TBSS(Smith et al., 2006) ‘Corr.’ represents the correlation in absolute value, and ‘Sig.’ stands for the t-test significance level Compared with the skeletonished FA § 5.3 Diffusion MRI 123 value of TBSS, our along-fiber FA correlates better with the cognitive scores Among the four cognitive measures, TBSS correlates best with CTT-2 at 0.671 while the correlation between our along fiber measure and CTT-2 is 0.760 which surpassed TBSS by 13.3% Besides, both our along fiber measure and TBSS skeletonised FA remarkably outperform the whole brain average The correlations with cognitive scores are quite low for brain stem, which is known to be responsible for basic life functions like heart-beating and breathing Fig 5.15 shows the average measurements over the whole brain and the fibers reconstructed by our method As shown, the measurements generated by our results better separate the healthy subjects and patients 124 RESULTS MOCA MMSE CTT-1 CTT-2 Along All Fibers Corr Sig 0.601 0.000 0.629 0.000 0.628 0.000 0.760 0.000 Corpus Callosum Corr Sig 0.569 0.000 0.608 0.000 0.660 0.000 0.762 0.000 Corona Radiata Corr Sig 0.551 0.000 0.548 0.000 0.397 0.005 0.647 0.000 Arcuate Region Corr Sig 0.540 0.000 0.577 0.000 0.452 0.001 0.658 0.000 Occipito Frontal Corr Sig 0.601 0.000 0.566 0.000 0.532 0.000 0.708 0.000 Superior Cingulum Corr Sig 0.507 0.000 0.563 0.000 0.533 0.000 0.646 0.000 Brain Stem Corr Sig 0.157 0.275 0.065 0.654 0.148 0.315 0.052 0.735 Whole Brain Corr Sig 0.387 0.006 0.396 0.004 0.317 0.028 0.559 0.000 TBSS Corr Sig 0.544 0.000 0.582 0.000 0.610 0.000 0.671 0.000 Table 5.3: Correlations between MRI scores and cognitive scores For all the entries except ‘TBSS’ and ‘whole brain’, the MRI score is the average FA value along the fibers obtained by the proposed method ‘TBSS’ uses the average of skeletonised FA values (Smith et al., 2006) as the MRI score For ‘whole brain’, the MRI score is the average FA for the entire brain region Brain masks are produced by 3D Slicer § 5.3 Diffusion MRI 125 0.8 0.7 0.6 DTI measures 0.5 0.4 0.3 0.2 0.1 Healthy subjects Patients 0 10 15 20 25 30 35 subjects 0.8 0.7 0.6 DTI measures 0.5 0.4 0.3 0.2 0.1 Healthy subjects Patients 0 10 15 20 25 30 35 subjects Figure 5.15: Comparison of MR measurements between healthy subjects and patients The top figure shows the results using mean FA, while the bottom figure shows measurements along our reconstructed fibers 126 RESULTS Chapter Conclusion and Future Work This chapter concludes the thesis and discusses the limitation of the presented work and the direction of future work Section § 6.1 summarizes the research objectives of this thesis and highlights the technical contributions The limitations of the work and the recommendations of future research are presented in Section § 6.2 § 6.1 Conclusion and Discussion Perfusion MRI and diffusion MRI are important tools for early detection of myocardial and cerebral ischemia respectively Due to patient respiration and arrhythmia, nonrigid registration is important for pixel-wise perfusion signal analysis which is likely to greatly improve early myocardial ischemia diagnosis In brain diffusion MRI analysis, reconstructing brain fibers from DTI is challenging due to the large amount of fiber tracts and the presence of WM lesions This thesis introduced a nonrigid registration method for perfusion MRI sequence calibration and a nonrigid fiber-to-DTI registration 127 BIBLIOGRAPHY 137 Calamante, F., Tournier, J.-D., Jackson, G D., Connelly, A., DEC 2010 Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping NeuroImage 53 (4), 1233–1243 Candes, E J., Li, X., Ma, Y., Wright, J., MAY 2011 Robust Principal Component Analysis? J ACM 58 (3) Cercignani, M., Bammer, R., Sormani, M., Fazekas, F., Filippi, M., APR 2003 Inter-sequence and inter-imaging unit variability of diffusion tensor MR imaging histogram-derived metrics of the brain in healthy volunteers AJNR Am J Neuroradiol 24 (4), 638–643 Cercignani, M., Inglese, M., Pagani, E., Comi, G., Filippi, M., MAY 2001 Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis AJNR Am J Neuroradiol 22 (5), 952–958 Chan, T., Vese, L., Feb 2001a Active contours without edges IEEE Trans Image Process 10 (2), 266 – 277 Chan, T., Vese, L., Dec 2001b A multiphase level set framework for image segmentation using the mumford and shah model Int J Comput Vis 50 (3), 271–293 Chan, T., Zhu, W., 2005 Level set based shape prior segmentation In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit Vol IEEE, pp 1164 – 1170 Chiang, M.-C., Leow, A D., Klunder, A D., Dutton, R A., Barysheva, M., Rose, S E., McMahon, K L., de Zubicaray, G I., Toga, A W., Thomp- 138 BIBLIOGRAPHY son, P M., APR 2008 Fluid registration of diffusion tensor images using information theory IEEE Trans Med Imaging 27 (4), 442456 Cremers, D., Tischhăuser, F., Weickert, J., Schnărr, C., 2002 Diffusion a o snakes: Introducing statistical shape knowledge into the mumford-shah functional Int J Comput Vis 50, 295–313 D’Elia, L., Satz, P., Uchiyama, C., White, T., 1996 Color Trails Test Professional manual Psychological Assessment Resources, Odessa, FL Ducreux, D., Huynh, I., Fillard, P., Renoux, J., Petit-Lacour, M., MarsotDupuch, K., Lasjaunias, P., AUG 2005 Brain MR diffusion tensor imaging and fibre tracking to differentiate between two diffuse axonal injuries Neuroradiology 47 (8), 604–608 Ebrahimi, M., Martel, A L., 2009 A general PDE-framework for registration of contrast enhanced images In: Med Image Comput Comput Assist Interv pp 811–819 Eckstein, I., Shattuck, D W., Stein, J L., McMahon, K L., de Zubicaray, G., Wright, M J., Thompson, P M., Toga, A W., 2009 Active fibers: Matching deformable tract templates to diffusion tensor images NeuroImage 47 (Supplement 2), T82 – T89 Folstein, M F., Folstein, S E., McHugh, P R., 1975 ”Mini-mental state” a practical method for grading the cognitive state of patients for the clinician J Psychiatr Res BIBLIOGRAPHY 139 Gaens, T., Maes, F., Vandermeulen, D., Suetens, P., 1998 Non-rigid multimodal image registration using mutual information In: Wells, WM and Colchester, A and Delp, S (Ed.), Med Image Comput Comput Assist Interv Vol 1496 pp 1099–1106 Gao, J., Ablitt, N., Elkington, N., Yang, G., 2002 Deformation modelling based on PLSR for cardiac magnetic resonance perfusion imaging In: Med Image Comput Comput Assist Interv pp 612–619 Gupta, S., Solaiyappan, M., Beache, G., Arai, A., Foo, T., Mar 2003 Fast method for correcting image misregistration due to organ motion in timeseries MRI data Magn Reson Med 49 (3), 506–514 Hajnal, J., Hawkes, D., Hill, D., 2001 Medical image registration Biomedical engineering series CRC Press Han, X., Xu, C., Prince, J., 2003 A topology preserving level set method for geometric deformable models IEEE Trans Pattern Anal Mach Intell 25, 755– 768 Hennemuth, A., Seeger, A., Friman, O., Miller, S., Klumpp, B., Oeltze, S., Peitgen, H.-O., 2008 A comprehensive approach to the analysis of contrast enhanced cardiac MR images IEEE Trans Med Imaging 27 (3), 1592–1610 Hestenes, M., Stiefel, E., Dec 1952 Methods of conjugate gradients for solving linear systems J Res Natl Bur Stand 49, 409–436 Jolly, M.-P., Xue, H., Grady, L., Guehring, J., 2009 Combining registration and minimum surfaces for the segmentation of the left ventricle in cardiac 140 BIBLIOGRAPHY cine MR images In: Med Image Comput Comput Assist Interv pp 910– 918 Joutel, A., Monet-Lepretre, M., Gosele, C., Baron-Menguy, C., Hammes, A., Schmidt, S., Lemaire-Carrette, B., Domenga, V., Schedl, A., Lacombe, P., Hubner, N., FEB 2010 Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease J Clin Invest 120 (2), 433–445 Juntu, J., Sijbers, J., Van Dyck, D., Gielen, J., 2005 Bias field correction for MRI images In: Kurzynski, M and Puchala, E and Wozniak, M and Zolnierek, A (Ed.), Computer Recognition Systems, Proceedings Advances in Soft Computing pp 543–551 Kellman, P., Arai, A., 2007 Imaging sequences for first pass perfusion–a review J Cardiovasc Magn Reson (3), 525–37 Kim, B., Boes, J., Frey, K., Meyer, C., JAN 1997 Mutual information for automated unwarping of rat brain autoradiographs NeuroImage (1), 31– 40 Kishore, S P., Michelow, M D., 2011 The global burden of dissease In: Public Health in the 21st Century Praeger Klassen, C., Nguyen, M., Siuciak, A., Wilke, N M., Mar 2006 Magnetic resonance first pass perfusion imaging for detecting coronary artery disease Eur J Radiol 57, 412 – 416 BIBLIOGRAPHY 141 Kroon, D.-J., 2011 non-rigid b-spline grid image registration Available on MATLAB central, file ID: #20057 Lancaster, J., Rainey, L., Summerlin, J., Freitas, C., Fox, P., Evans, A., Toga, A., Mazziotta, J., 1997 Automated labeling of the human brain: A preliminary report on the development and evaluation of a forwardtransform method Hum Brain Mapp (4), 238C242 Lancaster, J., Woldorff, M., Parsons, L., Liotti, M., Freitas, E., Rainey, L., Kochunov, P., Nickerson, D., Mikiten, S., Fox, P., JUL 2000 Automated Talairach Atlas labels for functional brain mapping Hum Brain Mapp 10 (3), 120–131 Le Bihan, D., Mangin, J., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H., APR 2001 Diffusion tensor imaging: Concepts and applications J Magn Reson Imaging 13 (4), 534–546 Liu, D., Nocedal, J., Dec 1989 On the limited memory BFGS method for large-scale optimization Math Program 45 (3), 503–528 Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P., APR 1997 Multimodality image registration by maximization of mutual information IEEE Trans Med Imaging 16 (2), 187–198 Melbourne, A., Atkinson, D., White, M J., Collins, D., Leach, M., Hawkes, D., Sep 2007 Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR) Phys Med Biol 52 (17), 5147–5156 142 BIBLIOGRAPHY Milles, J., van der Geest, R J., Jerosch-Herold, M., Reiber, J., Lelieveldt, B., Nov 2008 Fully automated motion correction in first-pass myocardial perfusion MR image sequences IEEE Trans Med Imaging 27 (11), 1611– 1621 Modersitzki, J., 2004 Numerical methods for image registration Numerical mathematics and scientific computation Oxford University Press Moelich, M., Chan, T., Feb 2003 Joint segmentation and registration using logic models Tech rep., UCLA CAM Moseley, M., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M., Weinstein, P., MAY 1990 Early Detection of Regional Cerebral-Ischemia in Cats - Comparison of Diffusion-Weighted and T2-Weighted MRI and Spectroscopy Magn Reson Med 14 (2), 330–346 Nasreddine, Z., Phillips, N., B´dirian, V., Charbonneau, S., Whitehead, V., e Collin, I., Cummings, J., Chertkow, H., 2005 The montreal cognitive assessment, (moca): a brief screening tool for mild cognitive impairment J Am Geriatr Soc 53 (4), 695–9 Nitkunan, A., Barrick, T R., Charlton, R A., Clark, C A., Markus, H S., 2008 Multimodal mri in cerebral small vessel disease: Its relationship with cognition and sensitivity to changes over time Stroke 39, 1999–2005 O’Donnell, L J., Westin, C.-F., November 2007 Automatic tractography segmentation using a high-dimensional white matter atlas IEEE Trans Med Imaging 26 (11), 1562–1575 BIBLIOGRAPHY 143 ´ Olafsd´ttir, H., Stegmann, M., Ersboll, B., Larsson, H., 2006 A compario son of FFD-based nonrigid registration and aams applied to myocardial perfusion MRI In: Proc Soc Photo Opt Instrum Eng pp 614416–1–9 Otsu, N., jan 1979 A threshold selection method from gray-level histograms IEEE Trans Syst Man Cybern (1), 62 –66 Panting, J., Gatehouse, P., Yang, G., Jerosch-Herold, M., Wilke, N., DN, D F., Pennell, D., Feb 2001 Echo-planar magnetic resonance myocardial perfusion imaging: parametric map analysis and comparison with thallium SPECT J Magn Reson Imaging 13, 192 – 200 Pluim, J., Maintz, J., Viergever, M., AUG 2003 Mutual-information-based registration of medical images: A survey IEEE Trans Med Imaging 22 (8), 986–1004 Prins, N., van Dijk, E., den Heijer, T., Vermeer, S., Jolles, J., Koudstaal, P., Hofman, A., Breteler, M., SEP 2005 Cerebral small-vessel disease and decline in information processing speed, executive function and memory Brain 128 (Part 9), 2034–2041 Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G., 2009 Evaluation framework for algorithms segmenting short axis cardiac MRI Insight Journal Reimer, K A., Lowe, J E., Rasmussen, M M., Jennings, R B., 1977 Wavefront phenomenon of ischemic cell-death myocardial infarct size vs duration of coronary-occlusion in dogs Circulation 56 (5), 786–794 144 BIBLIOGRAPHY Roman, G., Erkinjuntti, T., Wallin, A., Pantoni, L., Chui, H., NOV 2002 Subcortical ischaemic vascular dementia Lancet Neurol (7), 426–436 Rousson, M., Paragios, N., 2008 Prior knowledge, level set representations & visual grouping Int J Comput Vis 76, 231 – 243 Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D., Aug 1999 Nonrigid registration using free-form deformations: application to breast MR images IEEE Trans Med Imaging 18 (8), 712–721 Sederberg, T W., Parry, S R., 1986 Free-form deformation of solid geometric models In: SIGGRAPH pp 151–160 Simmons, A., Tofts, P., Barker, G., Arridge, S., JUL 1994 Sources of intensity nonuniformity in spin-echo images at 1.5-t Magn Reson Med 32 (1), 121–128 Smith, S M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T E., Mackay, C E., Watkins, K E., Ciccarelli, O., Cader, M Z., Matthews, P M., Behrens, T E J., JUL 15 2006 Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data NeuroImage 31 (4), 1487– 1505 Staempfli, P., Jaermann, T., Crelier, G., Kollias, S., Valavanis, A., Boesiger, P., MAR 2006 Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging NeuroImage 30 (1), 110–120 Stegmann, M B., Larsson, H B W., Jun 2003 Motion-compensation of BIBLIOGRAPHY 145 cardiac perfusion MRI using a statistical texture ensemble In: Functional Imaging and Modeling of the Heart pp 151–161 Studholme, C., Hill, D., Hawkes, D., JAN 1999 An overlap invariant entropy measure of 3D medical image alignment Pattern Recognit 32 (1), 71–86 Sun, Y., Jolly, M.-P., Moura, J M F., Sep 2004a Contrast-invariant registration of cardiac and renal MR perfusion images In: Med Image Comput Comput Assist Interv Sun, Y., Moura, J M F., Ho, C., April 2004b Subpixel registration in renal perfusion MR image sequence In: Proc IEEE Int Symp Biomed Imaging Szeliski, R., Coughlan, J., 1994 Hierarchical spline-based image registration In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit pp 194– 201 Szeliski, R., Coughlan, J., Mar-Apr 1997 Spline-based image registration Int J Comput Vis 22 (3), 199–218 T.F Cootes, D Cooper, C T., Graham, J., 1995 Active shape models their training and application Comput Vis Image Underst 61, 38–59 Thirion, J P., June 1996 Non-rigid matching using demons In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit pp 245–251 Thirion, J.-P., 1998 Image matching as a diffusion process: an analogy with maxwell’s demons Med Image Anal 2, 243–260 Tofts, P., Buckley, G B D., Evelhoch, J., Henderson, E., Knopp, M., Larsson, H., Lee, T., Mayr, N., Parker, G., Port, R., Taylor, J., Weisskoff, R., 146 BIBLIOGRAPHY Sep 1999 Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: Standardized quantities and symbols J Magn Reson Imaging 10 (3), 223–232 Valsasina, P., Rocca, M., Agosta, F., Benedetti, B., Horsfield, M., Gallo, A., Rovaris, M., Comi, G., Filippi, M., JUL 2005 Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients NeuroImage 26 (3), 822–828 Vercauteren, T., Pennec, X., Perchant, A., Ayache, N., MAR 2009 Diffeomorphic demons: Efficient non-parametric image registration Vol 45 pp S61–S72, Workshop on Mathematics in Brain Imaging, Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA, JUL 14-25, 2008 Viola, P., Jones, M., 2001 Rapid object detection using a boosted cascade of simple features In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit pp 511–518 Wang, H., Dong, L., O’Daniel, J., Mohan, R., Garden, A S., Ang, K K., Kuban, D A., Bonnen, M., Chang, J Y., Cheung, R., Jun 2005 Validation of an accelerated ’demons’ algorithm for deformable image registration in radiation therapy Phys Med Biol 50 (12), 2887–2905 Warach, S., Chien, D., Li, W., Ronthal, M., Edelman, R., SEP 1992 Fast Magnetic-Resonance Diffusion-Weighted Imaging of Acute Human Stroke Neurology 42 (9), 1717–1723 Wilde, E A., Chu, Z., Bigler, E D., Hunter, J V., Fearing, M A., Hanten, G., Newsome, M R., Scheibel, R S., Li, X., Levin, H S., 2006 Diffusion BIBLIOGRAPHY 147 Tensor Imaging in the Corpus Callosum in Children after Moderate to Severe Traumatic Brain Injury J Neurotrauma 23 (10), 1412–1426 Wollny, G., Ledesma-Carbayo, M J., Kellman, P., Santos, A., Sep 2008 Nonrigid motion compensation in free-breathing myocardial perfusion magnetic resonance imaging In: Comput Cardiol pp 465–468 Xiaogang, W., Grimson, W E L., Westin, C.-F., 2011 Tractography segmentation using a hierarchical dirichlet processes mixture model NeuroImage 54 (1), 290 – 302 Xu, C., Prince, J L., March 1998 Snakes, shapes, and gradient vector flow IEEE Trans Image Process (3), 359–369 Xue, Z., Li, H., Guo, L., Wong, S T C., AUG 2010 A local fast marchingbased diffusion tensor image registration algorithm by simultaneously considering spatial deformation and tensor orientation NeuroImage 52 (1), 119–130 Yang, G., Burger, P., Panting, J., Gatehouse, P D., Rueckert, D., Pennell, D J., Firmin, D N., Sep 1998 Motion and deformation tracking for shortaxis echo-planar myocardial perfusion imaging Med Image Anal (3), 285–302 Yap, P.-T., Wu, G., Zhu, H., Lin, W., Shen, D., AUG 15 2009 TIMER: Tensor Image Morphing for Elastic Registration NeuroImage 47 (2), 549– 563 Yap, P.-T., Wu, G., Zhu, H., Lin, W., Shen, D., MAY 2010 F-TIMER: Fast 148 BIBLIOGRAPHY Tensor Image Morphing for Elastic Registration IEEE Trans Med Imaging 29 (5), 1192–1203 Zheng, Y., Yu, J., Kambhamettu, C., Englander, S., Schnall, M., Shen, D., 2007 De-enhancing the dynamic contrast-enhanced breast MRI for robust registration In: Med Image Comput Comput Assist Interv pp 933–941 Zitova, B., Flusser, J., OCT 2003 Image registration methods: a survey Image Vis Comput 21 (11), 977–1000 Ziyan, U., Sabuncu, M R., O’Donnell, K J., Westin, C., 2007 Nonlinear registration of diffusion mr images based on fiber bundles In: Med Image Comput Comput Assist Interv pp 351–358 List of Publications Journal Chao Li, Ying Sun, and Ping Chai, ”Pseudo Ground Truth Based Nonrigid Registration of Myocardial Perfusion MRI” Medical Image Analysis, Volume 15, Issue 4, August 2011, Pages 449-59 Chao Li, Xiaotian He, Vincent Mok, Winnie Chu, Jing Yuan, Ying Sun, and Xiaogang Wang, “Analysis of Group Diffusion Studies Using Fiber-to-DTI Registration” Submitted to NeuroImage Conference Chao Li, Xiaotian He, Vincent Mok, Winnie Chu, Jing Yuan, Ying Sun, and Xiaogang Wang,“Free-Form Fibers: a Whole Brain Fiber-to-DTI Registration Method” In: Medical Image 149 150 LIST OF PUBLICATIONS Computing and Computer Assisted Intervention workshop on Computational Diffusion MRI (CDMRI 2011) Xiao Jia, Chao Li, Ying Sun, Ashraf A Kassim, Yijen L Wu, T Kevin Hitchens, and Chien Ho, “Segmentation of Cardiac MRI in A Heart Transplant Study Using Rodent Models,” Special Session on Medical Image Processing, APSIPA ASC, Singapore, Dec 2010 Chao Li and Ying Sun, “Active Image: A Shape and Topology Preserving Segmentation Method Using B-spline Free Form Deformations,” In: International Conference on Image Processing (ICIP 2010), Pages 2221 - 2224 Chao Li and Ying Sun, “Nonrigid registration of myocardial perfusion MRI using pseudo ground truth,” In: the 12th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2009), Pages 165-72 Chao Li, Xiao Jia and Ying Sun, “Improved semi-automated segmentation of cardiac CT and MR images,” In: the 6th IEEE International Symposium on Biomedical Imaging (ISBI 2009), Pages 25 - 28 Xiao Jia, Chao Li, Ying Sun, Ashraf A Kassim, Yijen L Wu, 151 T Kevin Hitchens, and Chien Ho, “A data-driven approach to prior extraction for segmentation of left ventricle in cardiac MR images,” In: the 6th IEEE International Symposium on Biomedical Imaging (ISBI 2009), Pages 831 - 834 Chao Li and Ying Sun, “Automatic quantitative analysis of myocardial perfusion MRI,” In: the 13th International Conference on Biomedical Engineering (ICBME 2008), Pages 381-385 ... Pages 22 21 - 22 24 Chao Li and Ying Sun, ? ?Nonrigid registration of myocardial perfusion MRI using pseudo ground truth,” In: the 12th International Conference on Medical Image Computing and Computer... thesis introduced a nonrigid registration method for perfusion MRI sequence calibration and a nonrigid fiber-to-DTI registration 127 128 CONCLUSION AND FUTURE WORK method for full brain fiber reconstruction... are 0 .25 , 0 .20 , and 0.18 respectively for no registration, affine fiber-to-DTI registration and nonrigid fiber-to-DTI registration The reduction of mean standard deviations demonstrated that our nonrigid

Ngày đăng: 09/09/2015, 18:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w