Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 209 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
209
Dung lượng
10,26 MB
Nội dung
SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING NATIONAL UNIVERSITY OF SINGAPORE 2012 SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTING ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Acknowledgements First and foremost, I would like to express my sincere gratitude to my PhD supervisors, Prof. Yeo Yee-Chia and Prof. Ganesh Samudra for their patience and support throughout my time here at National University of Singapore (NUS). Their technical guidance and insights from our countless discussions has been invaluable. They are instrumental in instilling a strong work ethic and shaping my career goals. I am also very thankful for their time and efforts in guiding this dissertation. I would like to thank GLOBALFOUNDRIES Singapore and Economic Board of Singapore for funding my graduate studies through a graduate scholarship award. I am grateful to Dr. Lap Chan from Singapore University of Technology and Design and Dr. Ng Chee Mang from GLOBALFOUNDRIES Singapore for their discussions and trust in me. Their personal and professional advice has been invaluable. I have benefited greatly from their vast experience in the field of semiconductor technologies. I would also like to thank Prof. Chor Eng Fong and Prof. Hong Minghui for serving on my qualifying examination committee, both of whom have provided valuable feedback. I would like to acknowledge the technical staffs in Silicon Nano Device Laboratory (SNDL) specifically Mr Yong Yu Fu, Mr O Yan, Patrick and Boon Teck in providing technical and administrative support and keeping the cleanroom and lab running smoothly. Besides SNDL, a huge portion of my research and experiments were also conducted over at Institute of Microelectronics (IME), Institute of Materials Research and Engineering (IMRE) and Singapore Institute of Manufacturing Technology (SIMTech). I appreciate the support extended by the staffs at IME, IMRE and SIMTech. I would particularly like to thank Dr. Wang Xincai from SIMTech for all his support and assistance in laser annealing. Thanks also go out to Doreen and Poh Chong from IMRE for their help in SIMS and XRD characterization, respectively. Additionally, I would like to extend my appreciation to Dr. Thirumal Thanigaivelan, Dr. Todd Henry, Dr. Yuri Erokhin, Dr. Zhao Zhiyong and Dr. Chua i Lye-Hing from Varian Semiconductor for their timely discussions and ion implantation support, without which some of the work entailed in this thesis would not have been possible. I am grateful for the guidance and discussions from the many outstanding graduate students from SNDL. I would like to specially thank Jason for mentoring me in the initial phase of my research. Special thanks also go out to Zhou Qian, Eugene, Yang Yue, Cheng Ran, Yinjie, Liu Bin, Gong Xiao, Tong Yi and Guo Cheng for their discussions and support in experiments and measurements during the critical submission deadlines. I would also like to extend an enormous thanks to Rinus, Kian Ming, Andy, Hoong Shing, Kah Wee, Hock Chun, Lina, Alvin, Fangyue, Litao, Zhang Lu, Edwin, Shen Chen, Zhu Ming, Manu, Ivana, Phyllis, Sujith, Ashvini and many more for their friendship, support and lively and simulating discussions over a wide range of topics. They have made my time at NUS truly enjoyable. I would also like to express my deepest gratitude to my mum who has always been supportive and encouraging ever since I embarked on my graduate studies. I hope that I have made her proud. To my brother, Yida, thank you for the support and patience over these years. Lastly, but certainly not least, I want to thank my lovely girlfriend, Shu Rong for her encouragement and support throughout this journey. I am eternally grateful for her love and devotion all this while. Thank you. ii Table of Contents Table of Contents i Abstract v List of Tables viii List of Figures ix List of Symbols xxiv Chapter 1: Transistor Scaling and Need for Reduced Parasitic Resistance 1.1 Introduction 1.2 Challenges in CMOS Scaling 1.3 S/D Parasitic Resistance 1.3.1 Motivation for S/D Parasitic Resistance Reduction 1.3.2 Major Resistance Components of REXT and their Contributions to REXT 1.3.3 Contact Resistance Reduction: Concepts and Techniques 1.4 Objective of Dissertation 11 1.5 Thesis Organization 11 Chapter 2: Silicon-Carbon Source and Drain Stressors for Enhanced N-Channel MOSFET Performance 14 14 2.1 Introduction 2.2 Materials Characterization and Process Optimization of Silicon-Carbon 16 Source/Drain Stressors 2.2.1 Substrate and Test Structures Fabrication 16 2.2.2 Dopants Diffusion during Silicon-Carbon Formation 18 2.2.3 Conductivity of Silicon-Carbon Films 20 2.2.4 Impact of Annealing Temperature and Duration on Csub 21 2.2.5 Impact of Post-Annealing Treatment on Csub 24 2.3 Strained N-Channel FETs with Silicon-Carbon Source/Drain Stressors and Channel Proximate Stressors for Enhanced Performance 27 2.3.1 Channel Proximate Stressors for Enhanced Strain Effect in Channel Region 28 2.3.2 Process Integration and Device Fabrication 30 i 2.3.3 Impact of Process Thermal Budget on Si:C 32 2.3.4 Device Characterization and Analysis 34 2.4 40 Summary Chapter 3: Contact Engineering for Strained n-FinFETs with Silicon:Carbon Source/Drain Stressors featuring Sulfur Implantation and Segregation 41 41 3.1 Introduction 3.2 Material Characterization and Schottky-Barrier Analysis of S-Segregated 43 NiSi:C Films 3.2.1 Fabrication of Substrate and Test Structures 43 3.2.2 Thermal Stability of NiSi:C films with Pre-Silicided S+ Implantation 44 3.2.3 Phase Analysis of NiSi:C films with Pre-Silicided S+ Implantation 45 3.2.4 SIMS Analysis of NiSi:C films with Pre-Silicided S+ Implantation 47 3.2.5 Impact of Sulfur Segregation on Electron Schottky Barrier Height 47 3.3 Mechanisms for SBH Modulation in S-Segregated NiSi:C Films 49 3.4 Fabrication of Si:C S/D n-FinFETs 53 3.5 Device Characterization and Analysis 58 3.6 Summary 66 Chapter 4: Contact Engineering for Complementary FinFETs featuring Tellurium Segregated Platinum-Based Silicide Contacts 67 67 4.1 Introduction 4.2 Material Characterization and Schottky-Barrier Analysis of Te-Segregated 69 PtSi:C Films 4.2.1 Contact Test Structure Fabrication 69 4.2.2 Impact of Te Implantation Dose on Electron Schottky Barrier Height 70 4.2.3 SIMS Analysis of PtSi:C films with Pre-Silicided Te+ Implantation 72 4.2.4 Impact of Te Implantation Dose on Sheet Resistance of PtSi:C films 73 4.2.5 Impact of Te Segregation on PtSi:C Phase Formation 74 4.2.6 Impact of Te Segregation on PtSi:C/Si:C Interface Morphology 76 4.2.7 Impact of Te Segregation on Strain State of Si:C 76 ii 4.3 Mechanisms for SBH Modulation in Te-Segregated PtSi:C Films 77 4.4 Fabrication of N- and P-FinFETs 80 4.5 Device Characterization and Analysis 82 4.6 Process Concept and Integration Flow 91 4.7 Summary 93 Chapter 5: Novel Contact Engineering Solution Featuring Tellurium and Source/Drain Dopant Co-Implantation 94 94 5.1 Introduction 5.2 Material Characterization and Schottky-Barrier Analysis of Te-Segregated NiSi Films 95 5.2.1 Contact Test Structure Fabrication 96 5.2.2 S and Te Depth Profile after Elevated Temperature Annealing 96 5.2.3 Impact of Elevated Temperature Annealing on Electron Schottky Barrier Height of NiSi with S or Te Implantation 5.2.4 98 SIMS Analysis of NiSi film with Pre-Silicided Te+ Implantation and after Elevated Temperature Annealing 100 5.2.5 100 Impact of Te Implantation on Phase Formation and RS of NiSi films 5.3 Fabrication of N-FinFETs with Te-Segregated Contacts 102 5.4 Device Characterization and Analysis 104 5.4.1 Impact of Te Implantation on SCEs 104 5.4.2 Impact of the RC Reduction Approach on Device Performance 108 5.5 Integration Concept and Flow 113 5.6 Summary 113 Chapter 6: Contact Resistance Reduction with Aluminum Profile Engineering 115 115 6.1 Introduction 6.2 Schottky Barrier Height Tuning of Silicides by Aluminum Implantation and 116 Pulsed Excimer Laser Anneal 6.2.1 Contact Test Structure Fabrication 6.2.2 SBH Modulation with Al implantation and Laser-Anneal for Silicide Formation 118 iii 117 6.2.3 6.3 Summary 129 Aluminum Profile Engineering in NiSi Contacts with Carbon for SBH 130 Modulation 6.3.1 Contact Test Structure Fabrication 130 6.3.2 SBH Modulation with Al and C Implantations 131 6.3.3 SIMS Analysis of NiSi films with Pre-Silicided Al, C and Ge Implantations 133 6.3.4 Phase Analysis of NiSi Films with Various Implantations 136 6.3.5 Thermal Stability of NiSi Films with Various Implantations 136 6.3.6 Interface Morphology of NiSi Films with Various Implantations 138 6.3.7 Integration of New Contact Technology in Si:C S/D nFETs 139 6.3.8 Device Characterization and Analysis 141 6.3.9 Process Concept and Integration Flow 146 6.3.10 Summary 147 Chapter 7: Summary and Future Directions 148 7.1 Summary 148 7.2 Contributions of this Thesis 149 7.2.1 Si:C S/D Stressors for Enhanced N-Channel MOSFET Performance 7.2.2 Contact Engineering for Strained n-FinFETs with Silicon-Carbon Source/Drain Stressors featuring Sulfur Implantation and Segregation 7.2.3 149 150 Contact Engineering for Complementary FinFETs featuring Tellurium Segregated Platinum-based Silicide Contacts 7.2.4 151 Novel Contact Engineering Solution featuring Tellurium and Source/Drain Dopant Co-Implantation 151 7.2.5 152 7.3 Contact Resistance Reduction with Aluminum Profile Engineering 154 Future Directions 7.3.1 Further Insights into Process Optimization Windows 154 7.3.2 Extension to New Silicide Materials and Doping Techniques 155 7.3.3 Extension to Alternative Substrates 156 Appendix A: List of Publications 157 References 161 iv Abstract Source and Drain External Resistance Reduction for Advanced Transistors by Koh Shao Ming Doctor of Philosophy – Electrical and Computer Engineering National University of Singapore Aggressive geometrical scaling to increase the performance-to-cost ratio for integrated circuit based products has met immense technological challenges. High external resistance REXT has been identified as one of the obstacles for achieving continual improvement of speed performance in the scaling of field-effect transistor (FET) technology. Multiple-gate FETS such as FinFETs would be adopted at the 22 nm generation technology and beyond. The revolutionary change in the device architecture is by no means a trivial process. The issue of high REXT may be further exacerbated with the use of narrow fins and the further scaling of fin width in sub-22 nm technology generations. In aggressively scaled FinFETs, high REXT would compromise drive current. Contact resistance (RC) at the silicide/heavily-doped S/D interface is a significant contributor to REXT. Thus, exploration of solutions to minimize RC is important. RC is an exponential function of the effective Schottky barrier height (SBH) at the silicide/heavily-doped S/D interface. Lowering the SBH will lead to the reduction in RC and hence REXT. In this thesis, new materials and process integration concepts were developed to address the escalating dominance of high REXT, and especially RC, in advanced strained Si transistors and FinFETs. Through pre-silicided ion implantation of novel impurities at the source/drain (S/D) regions of the transistors, SBH modulation of the metal contacts was demonstrated. In particular, Sulfur (S) or Tellurium (Te) implantation and segregation were v explored to reduce the effective electron SBH (ΦBn) of silicide formed on n-type siliconcarbon (Si:C) layer. Our results show that by introducing S or Te at the silicide/Si:C interface, a low ΦBn of 110 meV and 120 meV for S- and Te-segregated metal contacts were achieved, respectively. To explain the observation, we proposed that the presence of S or Te near the silicide/Si:C interface and their behavior as charged donor-like trap states enhance the electron tunneling across the contact which reduces the ΦBn. Integration of these low ΦBn metal contacts in the S/D regions of strained n-FinFETs with Si:C S/D stressors results in significant REXT reduction and drive current (IDsat) improvement. This firmly demonstrates the effectiveness of the novel ΦBn engineering concepts. Various process integration concepts coupled with Te have also been developed and extensively characterized on transistors and/or contact structures. One alternative concept exploited Te segregation to engineer the ΦBn of a high workfunction metal (i.e platinum silicide (PtSi)). Integration of this new RC reduction technology for the S/D regions of strained n-channel FinFETs (n-FinFETs) with Si:C S/D stressors leads to ~62 % REXT reduction and ~22 % IDsat enhancement with no detrimental impact on other device performance parameters such as threshold voltages and off-state leakage current. PtSi has an intrinsically low hole SBH and is a potential silicide for p-FinFETs. The ability to selectively adjust the ΦBn of PtSi with Te implantation for RC optimization for n-FinFETs opens up the possibility of having a single-metal-silicide dual-barrier-height solution for future CMOS FinFET technology. A second RC reduction approach where a shallow Te ion implantation was performed sequentially with deep S/D dopant implantation prior to S/D activation anneal was also examined. Introducing Te at the same process step as deep S/D dopant implantation for nFETs eliminates the need for an extra masking step to block Te implantation into the S/D regions of pFETs, therefore simplifying the CMOS process flow. Integration of this new RC reduction technology in n-FinFETs with Si S/D stressors leads to ~40 % REXT reduction and a slight ~6% improvement of ballistic efficiency Bsat. The improvement in Bsat and reduction in REXT leads to IDsat enhancement of ~30 %. vi implementation of embedded phosphorus-doped SiC stressors in SOI nMOSFETs,” in VLSI Symp. Tech. Dig., 2008, pp. 172–173. [30] B. Yang, R. Takalkar, Z. Ren, L. Black, A. Dube, J. W. Weijtmans, J. Li, J. B. Johnson, J. Faltermeier, A. Madan, Z. Zhu, A. Turansky, G. Xia, A. Chakravarti, R. Pal, K. Chan, A. Reznicek, T. N. Adam, B. Yang, J. P. de Souza, E. C. T Harley, B. Greene, A. Gehring, M. Cai, D. Aime, S. Sun, H. Meer, J. Holt, D. Theodore, S. Zollner, P. Grudowski, D. Sadana, D.-G. Park, D.Mocuta, D. Schepis, E. Maciejewski, S. Luning, J. Pellerin, and E. Leobandung, “High performance nMOSFET with in situ phosphorus-doped embedded Si:C (ISPD eSi:C) source-drain stressor,” International Electron Device Meeting Technical Digest, 2008, pp. 51–54. [31] P. Verheyen, V. Machkaoutsan, M. Bauer, D. Weeks, C. Kerner, F. Clemente, H. Bender, D. Shamiryan, R. Loo, T. Hoffmann, P. Absil, S. Biesemans, and S. G. Thomas, “Strained enhanced nMOS using in situ doped embedded Si1−xCx S/D stressors with up to 1.5% substitutional carbon content grown using a novel deposition process,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1206–1208, Nov. 2008. [32] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, J. Kuss, D. Shahrjerdi, L. F. Edge, A. Kimball, S. Kanakasabapathy, K. Xiu, S. Schmitz, A. Reznicek, T. Adam, H. He, N. Loubet, S. Holmes, S. Mehta, D. Yang, A. Upham, S.-C. Seo, J. L. Herman, R. Johnson, Y. Zhu, P. Jamison, B. S. Haran, Z. Zhu, L. H. Vanamurth, S. Fan, D. Horak, H. Bu, P. J. Oldiges, D. K. Sadana, P. Kozlowski, D. McHerron, J. O'Neill, and B. Doris, “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications,” International Electron Device Meeting Technical Digest, 2009, pp 49–52. [33] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, A. Du, C.-H. Tung, G. S. Samudra, W. J. Yoo, N. Balasubramanian, and Y.-C. Yeo, “Strained n-channel FinFETs with 25 nm gate length and silicon-carbon source/drain regions for performance enhancement,” in Symposium on VLSI Technology Digest of Technical Papers, 2006, pp. 68. [34] T.-Y. Liow, K.-M. Tan, H.-C. Chin, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo. “Carrier transport characteristics of sub-30 nm strained n-channel FinFETs featuring silicon–carbon source/drain regions and methods for further performance enhancement.” in International Electron Device Meeting Tech. Dig., 2006, pp. 474 - 476. [35] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo, “N-channel (110)-sidewall strained FinFETs with silicon–carbon source and drain stressors and tensile capping layer.” IEEE Electron Device Letters, vol. 28, no. 11, pp. 1014–1017, Nov. 2007. 164 [36] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo, “N-channel (110)-sidewall strained FinFETs with silicon–carbon source and drain stressors and tensile capping layer.” IEEE Electron Device Letters, vol. 28, no. 11, pp. 1014–1017, Nov. 2007. [37] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, M. Zhu, K.-M. Hoe, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo, “Spacer removal technique for boosting strain in nchannel FinFETs with silicon-carbon source and drain stressors,” IEEE Electron Device Letters, vol. 29, no. 1, pp. 80-82, 2008. [38] T.-Y. Liow, K.-M. Tan, D. Weeks, R. T. P. Lee, M. Zhu, K.-M. Hoe, C.-H. Tung, M. Bauer, J. Spear, S. G. Thomas, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo, “Strained n-channel FinFETs featuring in situ doped silicon-carbon (Si1-yCy) source and drain stressors with high carbon content.” IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2475–2483, Sep. 2008. [39] Y. Liu, O. Gluschenkov, J. Li, A. Madan, A. Ozcan, B. Kim, T. Dyer, A. Chakravarti, K. Chan, C. Lavoie, I. Popova, T. Pinto, N. Rovedo, Z. Luo, R. Loesing, W. Henson, and K. Rim, “Strained Si channel MOSFETs with embedded silicon carbon formed by solid phase epitaxy,” Symposium on VLSI Technology Digest of Technical Papers, 2007, pp. 44. [40] M. Nishikawa, K. Okabe, K. Ikeda, N. Tamura, H. Maekawa, M. Umeyama, H. Kurata, M. Kase, K. Hashimoto, “Successful integration scheme of cost effective dual embedded stressor featuring carbon implant and solid phase epitaxy for high performance CMOS,” in Proc. International Symposium on VLSI Technology, Systems, and Applications 2009, pp. 26 – 27. [41] E. R. Hsieh and S. S. Chung, “The proximity of strain induced effect to improve the electron mobility in a silicon-carbon source-drain structrue of n-channel metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, vol. 96, no. 9, 093501, Mar. 2010. [42] S.-M. Koh, H.-S. Wong, X. Gong, C.-M. Ng, N. Variam, T. Henry, Y. Erokhin, G. S. Samudra, and Y.-C. Yeo, “Strained n-channel field-effect transistors with channel proximate silicon-carbon source/drain stressors for performance enhancement,” J. Electrochemical Society, vol. 157, no. 12, pp. H1088 - H1094, Dec. 2010. [43] A. M. Noori, M. Balseanu, P. Boelen, A. Cockburn, S. Demuynck, S. Felch, S. Gandikota, A. J. Gelatos, A. Khandelwal, J. A. Kittl, A. Lauwers, W.-C. Lee, J. Lei, T. Mandrekar, R. Schreutelkamp, K. Shah, S. E. Thompson, P. Verheyen, C.-Y. Wang, L.Q. Xia, and R. Arghavani, “Manufacturable processes for ≤ 32-nm-node CMOS enhancement by synchronous optimization of strain-engineered channel and external 165 parasitic resistances,” IEEE Trans. Electron Devices, vol. 55, no. 5, pp. 1259 – 1264, May 2008. [44] R. Courtland, “Intel transistors enter the third dimension.” [Online]. Available: http://spectrum.ieee.org/tech-talk/semiconductors/design/intels-new-transistors-enter-thethird-dimension/ [45] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.J. King, J. Bokor, and C. Hu, “FinFET – A self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Dec. 2000. [46] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub50 nm p-channel FinFET,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 880–885, May. 2001. [47] Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Sub-20 nm CMOS FinFET technologies,” International Electron Device Meeting Technical Digest, 2001, pp. 421–424. [48] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R. Lin, and D. Kyser, “FinFET scaling to 10 nm gate length,” International Electron Device Meeting Technical Digest, 2002, pp. 251–254. [49] J. Kedzierski, E. Nowak, T. Kararsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Sanders, K. Wong, D. Canaperi, M. Krishnan, K.-L. Lee, B. A. Rainey, D. Fried, P. Cottrell, H.-S. P. Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation.” International Electron Device Meeting Technical Digest, 2002, pp. 247–250. [50] G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E. C.-C. Kan, “FinFET design considerations based on 3-D simulation and analytical modeling.” IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1411–1419, Aug. 2002. [51] F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D. Liu, C.-C. Huang, T.-X. Chung, H.-W. Chen, C.-C. Huang, Y.-H. Liu, C.-C.Wu, C.-C. Chen, S.-C. Chen, Y.-T. Chen, Y.H. Chen, C.-J. Chen, B.-W. Chan, P.-F. Hsu, J.-H. Shieh, H.-J. Tao, Y.-C. Yeo, Y. Li, J.W. Lee, P. Chen, M.-S. Liang, and C. Hu, “5 nm-gate nanowire FinFETs,” in VLSI Symp. Tech. Dig. 2004, pp. 196–197. [52] J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, U. Shah, N. Zelick, and R. Chau, “Tri-gate transistor 166 architecture with high-k gate dielectrics, metal gates and strain engineering,” in VLSI Symp. Tech. Dig. 2006, pp. 50–51. [53] J. Kedzierski, M. Ieong, E. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and H. S. P. Wong, “Extension and source/drain design for high performance FinFET devices.” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952– 958, Apr. 2003. [54] A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. De Meyer, “Analysis of the parasitic S/D resistance in multiple-gate FETs.” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1132–1140, Jun. 2005. [55] S. D. Kim, C. M. Park, and J. C. S. Woo, “Advanced model and analysis of series resistance for CMOS scaling into nanometer regime—Part II: Quantitative analysis.” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 467–72, Mar. 2002. [56] F. A. Trumbore, “Solid solubilities of impurity elements in germanium and silicon,” Bell Syst. Tech. J., vol. 39, pp. 205, (1960). [57] S. M. Sze, Physics of semiconductor devices, 2nd Edition, John Wiley & Sons, Inc., 1981. [58] C. M. Ransom, T. N. Jackson, J. F. DeGelormo, C. Zeller, D. E. Kotecki, C. Graimann, D. K. Sadana, J. Benedict, “Shallow n+ Junctions in Silicon by Arsenic Gas-Phase Doping,” J. Electrochem. Soc., vol. 141, no. 5, pp. 1378-1381, May 1994. [59] J. C. Ho, R. Yerushalmi, Z. A. Jacobson, Z. Fan, R. L. Alley, A. Javey, “Controlled nanoscale doping of semiconductors via molecular monolayers,” Nature Materials, vol. 7, pp. 62-67, Jan. 2008. [60] K. Kobayashi, K. Okuyama, H. Sunami, “Plasma doping induced damages associated with source/drain formation in three-dimensional beam-channel MOS transistor,” Microelectronic Engineering, vol. 84, pp. 1631-1634, 2007. [61] B. Mizuno, Y.Sasaki, “Aiming for The Best Matching between Ultra-Shallow Doping and Milli- to Femto-Second Activation,” IEEE Advanced Thermal Processing of Semiconductors, pp. 1-10, 2007. [62] Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, L. H. Chua, “Annealing of ultrashallow p+/n junction by 248 nm excimer laser and rapid thermal processing with different preamorphization depths,” Appl. Phys. Lett., vol. 76, no. 22, pp. 3197-3199, May 2000. [63] C. Park, S.-D. Kim, Y. Wang, S. Talwar, and J. C. S. Woo, “50nm SOI CMOS transistors with ultra shallow junction using laser annealing and pre-amorphization implantation,” VLSI Symp. Tech. Dig., 2001, pp. 69-70. 167 [64] J.-N. Gillet, J.-Y. Degorce, and M. Meunier, “General model and segregation coefficient measurement for ultrashallow doping by excimer laser annealing,” Appl. Phys. Lett., vol. 86, 222104, 2003. [65] K. Osada, T. Fukunaga, and K. Shibahara, “Ge shallow junction formation by As implantation and flash lamp annealing,” Proc. Int. Symp. VLSI Technol., Syst., Appl., pp. 15-16, 2009. [66] A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida and J. Koga, “Solution for high performance Schottky-srouce/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique,” VLSI Symp. Tech. Dig., 2005, pp. 158. [67] Z. Zhang, Z. Qiu, R. Liu, M. Östling, and S.-L. Zhang, “Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 565–568, Jul. 2007. [68] Z. Qiu, Z. Zhang, M. Östling and S.-L. Zhang, “A comparative study of two different schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 395–403, Jan. 2008. [69] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, T. J. King, and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime,” International Electron Device Meeting Technical Digest, 2000, pp. 57–60. [70] M. Fritze, C. L. Chen, S. Calawa, D. Yost, B. Wheeler, P. Wyatt, C. L. Keast, J. Snyder, and J. Larson, “High-speed Schottky-barrier pMOSFET with fT = 280 GHz,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 220–222, Apr. 2004. [71] R. T. P. Lee, A. E.-J. Lim, K.-M. Tan, T.-Y. Liow, G.-Q. Lo, G. S. Samudra, D. Z. Chi, and Y.-C. Yeo, “N-channel FinFETs with 25-nm gate length and Schottky-barrier source and drain featuring ytterbium silicide,” IEEE Electron Device Letters, vol. 28, no. 2, pp. 164–167, Feb. 2007. [72] R. T. P. Lee, A. T.-Y. Koh, F.-Y. Liu, W.-W. Fang, T.-Y. Liow, K.-M. Tan, P.-C. Lim, A. E.-J. Lim, M. Zhu, K.-M. Hoe, C.-H. Tung, G.-Q. Lo, X. Wang, D. K.-Y. Low, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Route to low parasitic resistance in MuGFETs with silicon–carbon source/drain: Integration of novel low barrier Ni(M)Si:C metal silicides and pulsed laser annealing.” International Electron Device Meeting Technical Digest, 2007, Washington, DC, pp. 685–688. [73] R. T.-P. Lee, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, A. T.-Y. Koh, M. Zhu, G.-Q. Lo, G. S. Samudra, D. Z. Chi, and Y.-C. Yeo, “Achieving conduction band-edge Schottky barrier height for arsenic-segregated nickel aluminide disilicide and implementation in 168 FinFETs with ultra-narrow fin widths,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 382–385, Apr. 2008. [74] R. T. P. Lee, A. T.-Y. Koh, W.-W. Fang, K.-M. Tan, A. E.-J. Lim, T.-Y. Liow, S.Y. Chow, A. M. Yong, H. S. Wong, G.-Q. Lo, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel and cost-effective single metallic silicide integration solution with dual Schottkybarrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced performance.” in VLSI Tech. Dig., 2008, pp. 28–29. [75] M. Sinha, R. T. P. Lee, S. N. Devi, G,-Q. Lo, E. F. Chor, and Y.-C. Yeo, “Single silicide comprising nickel-dysprosium alloy for integration in p- and n-FinFETs with independent control of contact resistance by aluminum implant,” in VLSI Tech. Dig., 2009, pp. 106– 107. [76] R. T. P. Lee, A. T.-Y. Koh, K.-M. Tan, T.-Y. Liow, D.-Z. Chi, and Y.-C. Yeo, “The role of carbon and dysprosium in Ni[Dy]Si:C contacts for Schottky-barrier height reduction and application in n-channel MOSFETs with Si:C source/drain stressors.” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2770–2777, Nov. 2009. [77] E. Alptekin, M. C. Ozturk, and V. Misra, “Schottky barrier height of erbium silicide on Si1-xCx,” IEEE Trans. Electron Devices, vol. 30, no. 9, pp. 949–951, Sept. 2009. [78] G. Davies and R. C. Newman, in Handbook of Semiconductors, edited by T. S. Moss (Elsevier, Amsterdam, 1994), Vol. 3. [79] Z. Ye, Y. Kim, A. Zojaji, E. Sanchez, Y. Cho, M. Castle, and M. A. Foad, “A study of low energy phosphorus implantation and annealing in Si:C epitaxial films,” Semiconductor Science and Technology, vol. 22, pp. 171, 2007. [80] G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri, L. Washington, R. Degraeve, B. Kaczer, V. Moroz, A. De Keersgieter, R. Schreutelkamp, M. Kawaguchi, Y. Kim, A. Samoilov, L. Smith, P. P. Absil, K. De Meyer, M. Jurczak, and S. Biesemans, “Layout impact on the performance of a locally strained PMOSFET,” in Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 22–23. [81] A. Oishi, O. Fujii, T. Yokoyama, K. Ota, T. Sanuki, H. Inokuma, K. Eda, T. Idaka, H. Miyajima, S. Iwasa, H. Yamasaki, K. Oouchi, K. Matsuo, H. Nagano, T. Komoda, Y. Okayama, T. Matsumoto, K. Fukasaku, T. Shimizu, K. Miyano, T. Suzuki, K. Yahashi, A. Horiuchi, Y. Takegawa, K. Saki, S. Mori, K. Ohno, I. Mizushima, M. Saito, M. Iwai, S. Yamada, N. Nagashima, and F. Matsuoka, “High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique,” in IEEE International Electron Device Meeting, 2005, pp. 229–232. 169 [82] J. W. Sleight, I. Lauer, O. Dokumaci, D. M. Fried, D. Guo, B. Haran, S. Narasimha, C. Sheraw, D. Singh, M. Steigerwalt, X.Wang, P. Oldiges, D. Sadana, C. Y. Sung, W. Haensch, and M. Khare, “Challenges and opportunities for high performance 32 nm CMOS technology,” in IEEE International Electron Device Meeting, 2006, pp. 697–700. [83] A. T.-Y. Koh, R. T.-P. Lee, F.-Y. Liu, T.-Y. Liow, K.-M. Tan, X. Wang, G. S. Samudra, N. Balasubramanian, D.-Z. Chi, and Y.-C. Yeo, “Pulsed laser annealing of silicon-carbon source/drain in MuGFETs for enhanced dopant activation and high substitutional carbon concentration,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 464-467, 2008. [84] A. Li-Fatou, A. Jain, W. Krull, M. Ameen, M. Harris, and D. Jacobson, “Increase of carbon substitutionality and silicon strain by molecular ion implantation,” 212th Electrochemical Society Meeting, Session E7, paper 1305, Washington DC, 7-12 Oct. 2007. [85] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era. Volume 1: Process Technology, 2nd Edition, (Lattice Press, 2000), pp. 336. [86] M. Uematsu, “Simulation of boron, phosphorus, and arsenic diffusion in silicon, based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism,” J. Appl. Phys., vol. 82, pp. 2228, 1997. [87] R. Scholz, U. Gosele, J.-Y. Huh, Anam-Dong, and T. Y. Tan, “Carbon-induced undersaturation of silicon self-interstitials,” Appl. Phys. Lett., vol. 72, pp. 200-202, 1998. [88] H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert, and H. J. Osten, “Suppressed diffusion of boron and carbon in carbon-rich silicon,” Appl. Phys. Lett., vol. 73, no. 12, pp. 1682 - 1684, Sep. 1998. [89] D. K. Schroder, Semiconductor material and device characterization, 3nd ed. (IEEE Press, 2006). [90] D. Christoph Mueller and Wolfgang Fichtner, “Codoping as a measure against donor deactivation in Si: Ab initio calculations,” Physical Review B, Vol. 73, 035210, Jun. 2006. [91] H. Maynard, C. Hatem, H.-J. Gossmann, Y. Erokhin, N. Variam, S. Chen, and Y. Wang, “Enhancing tensile stress and source/drain activation with Si:C with innovations in ion implant and millisecond laser spike annealing,” in 16th IEEE Int. Conf. on Adv. Thermal Pro. of Semicond., Sep. 2008, pp. 147-155. [92] M. Berti, D. De Salvador, A. V. Drigo, and F. Romanto, J. Stangl, S. Zerlauth, F. Schaffler, and G. Bauer, “Lattice parameter in Si1-yCy epilayers: Deviation from Vegard’s rule,” Appl. Phys. Lett., vol. 72, no. 13, pp. 1602, 1998. [93] P. C. Kelires, “Short-range order, bulk moduli, and physical trends in c-Si1-xCx alloys,” Phys. Rev. B, vol. 55, no. 14, pp. 8784-8787, 1997. 170 [94] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys., vol. 79, no. 2, pp. 637-646, Jan. 1996. [95] Y.-T. Chuang, S.-H. Wang, and W.-Y. Woon, “Effect of impurities on thermal stability of pseudomorphically strained Si:C layer,” Appl. Phys. Lett., vol. 98, 141918, 2011. [96] I. Ban, M. C. Ozturk, K. Christensen, and D. M. Maher, “Effects of carbon implantation on generation lifetime in silicon,” Appl. Phys. Lett., 68, pp. 499, 1996. [97] C. F. Tan, E. F. Chor, H. Lee, E. Quek, and L. Chan, “Enhancing leakage suppression in carbon-rich silicon junctions,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 442-444, 2006. [98] M. Sinha, E. F. Chor, C. F. Tan, “Schottky barrier height tuning of silicide on Si1-xCx,” Appl. Phys. Lett., vol. 91, 242108, 2007. [99] S. Y. Chou and D. A. Antoniadis, “Relationship between measured and intrinsic transconductances of FETs,” IEEE Transactions on Electron Devices, ED-34, pp. 448, 1987. [100] M. Yang, M. Ieong, L. Shi, K. Chan, V. Chan, A. Chou, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Surpris, D. Heenan, J. Ott, K. Guarini, C. D’Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J. Benedict, R. Mo, and H. Ng, “High performance CMOS fabricated on hybrid substrate with different crystal orientations,” in IEEE International Electron Device Meeting, 2003, pp. 453–456. [101] Y. Kanda, “Piezoresistance effect of silicon,” Sensors and Actuators A, vol. 29, 1991, pp. 83-91. [102] R. A. Vega and T.-J. King-Liu, “Three-dimensional FinFET source/drain and contact design optimization study,” IEEE Trans. Electron Devices, vol. 56, no. 7, pp. 1483 – 1492, Apr. 2009. [103] V. Gudmundsson, P. Pierpaolo, P.-E Hellström, L. Selmi, and M. Östling, “Simulation of low Schottky barrier MOSFETs using an improved Multi-subband Monte Carlo model,” Solid-State Electronics, Article in Press, 2012. [104] J. Guo and M. S. Lundstrom, “A computational study of thin-body, double gate Schottky barrier MOSFETs,” IEEE Transactions on Electron Devices, v. 49, no. 11, pp. 1897 – 1902, Nov. 2002. [105] S.-M. Koh, W.-J. Zhou, R. T.-P. Lee, M. Sinha, C.-M. Ng, Z. Zhao, H. Maynard, N. Variam, Y. Erokhin, G. S. Samudra, Y.-C. Yeo, “Silicon:carbon source/drain stressors: Integration of a novel nickel aluminide-silicide and post-solid-phase-epitaxy anneal for 171 reduced Schottky-barrier and leakage,” Electrochemical Society Trans., vol. 25, no. 7, pp. 211, 2009. [106] Q. T. Zhao, U. Breuer, E. Rije, S. Lenk, and S. Mantl, “Tuning of NiSi/Si Schottky barrier heights by sulfur segregation during Ni silicidation,” Appl. Phys. Lett., vol. 86, no. 6, pp. 062108-1–062108-3, Feb. 2005. [107] Q. T. Zhao, U. Breuer, St. Lenk, and S. Mantl, “Segregation of ion implanted sulfur in Si(100) after annealing and nickel silicidation,” J. Applied Physics, vol. 102, 023522, 2007. [108] E. Alptekin and M. C. Ozturk, “NixPt1-xSi/n-Si contacts with sub-0.1 eV effective Schottky barrier heights obtained by sulfur segregation,” Microelectronic Engineering, vol. 87, no. 11, pp. 2358 – 2360, Nov. 2010. [109] R. T. P. Lee, A. E.-J. Lim, K.-M. Tan, T.-Y. Liow, D.-Z. Chi, and Y.-C. Yeo, “Sulfur induced PtSi:C/Si:C Schottky barrier height lowering for realizing n-channel FinFETs with reduced external resistance.” IEEE Electron Device Letters, vol. 30, no. 5, pp. 472474, May 2009. [110] H.-S. Wong, F.Y. Liu, K.-W. Ang, S.-M. Koh, A. T.-Y. Koh, T.-Y. Liow, R. T. P. Lee, A. E.-J. Lim, W.-W. Fang, M. Zhu, L. Chan, N. Balasubramanian, G. Samudra, and Y.-C. Yeo, “Selenium co-implantation and segregation as a new contact resistance for nanoscale SOI n-FETs featuring NiSi:C formed on silicon-carbon (Si:C) source/drain stressors,” in VLSI Tech. Dig., 2008, pp. 168–169. [111] H.-S. Wong, F.Y. Liu, K.-W. Ang, G. Samudra, and Y.-C. Yeo, “Novel nickel silicide contact technology using selenium segregation for SOI n-FETs with silicon-carbon source/drain stressors,” IEEE Electron Device Letters, vol. 29, no. 8, pp. 841-844, Aug. 2008. [112] J.-H. Yoo, H. Sohn, D.-H. Ko, and M.-H. Cho, “Enhancement of thermal stability in Ni silicides on epi-Si1-xCx by Pt addition,” J. Electrochemical Soc., vol. 157, no. 8, pp. H837H841, 2010. [113] C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral, Jr., “Towards implementation of a nickel silicide process for CMOS technologies,” Microelectronics Eng., vol. 70, issues 2-4, pp. 144-157, Nov. 2003. [114] T. P. Norlan, R. Sinclair, and R. Beyers, “Modeling of agglomeration in polycrystalline thin films: Application to TiSi2 on a silicon substrate,” J. Appl. Phys., vol. 71, no. 2, pp. 720, 1992. [115] R. T. P. Lee, L.-T. Yang, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, K.-W. Ang, D. M. Y. Lai, K. M. Hoe, G.-Q. Lo, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Nickel-Silicide:Carbon 172 contact technology for n-channel MOSFETs with Silicon-Carbon source/drain.” IEEE Electron Device Letters, vol. 29, no. 1, pp. 89–92, Jan. 2008. [116] E. Alptekin, M. C. Ozturk and V. Misra, “Tuning of platinum silicide Schottky barrier height on n-type silicon by sulfur segregation,” IEEE Electron Dev. Lett., vol. 30, no. 4, pp. 331 – 333, Apr. 2009. [117] R. Y. Koyama, W. E. Phillips, D. R. Myers, and Y. M. Liu, “The energy levels and the defect signature of sulfur-implanted silicon by thermally stimulated measurements.” Solid-State Electronics vol. 21, pp. 953-955, 1978. [118] L. L. Rosier, and C. T. Sah, “Thermal emission and capture of electrons at sulfur centers in silicon.” Solid-State Electronics, vol. 14, pp. 41-54, 1971. [119] J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metalsilicide Schottky diodes.” Solid-State Electronics, vol. 13, pp. 1011–1023, 1970. [120] Medici Version A-2007.12, Dec 2007. [121] E. Bucher, S. Schulz, M. Ch. Lux-Steiner, P. Munz, U. Gubler, and F. Greuter, “Work function and barrier heights of transition metal silicides,” Appl. Phys. A: Materials Science and Processing, vol. 40, no. 2, pp. 71–77, 1986. [122] G. Niu, J. Cressler, S. Mathew, and S. Subbanna, “A total resistance slope based effective channel mobility extraction method for deep submicrometer CMOS technology.” IEEE Trans. Electron Devices, vol. 46, no. 9, pp. 1912–1914, Sep. 1999. [123] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology,” in International Electron Device Meeting Tech. Dig., 2002, pp. 23–26. [124] V. Gudmundsson, P.-E. Hellström, J. Luo, J. Lu, S.L. Zhang, M. Östling, “Fully depleted UTB and trigate n-channel MOSFETs featuring low-temperature PtSi Schottky-barrier contacts with dopant segregation,” IEEE Electron Device Letters, vol. 30, no. 5, pp. 541– 543, May 2009. [125] M. Sinha, R. T.-P. Lee, E. F. Chor, and Y. C. Yeo, “Schottky barrier height modulation of nickel-dysprosium-alloy germanosilicide contacts for strained p-FinFETs,” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1278–1280, Dec 2009. [126] S. Zollner, P. Grudowski, A. Thean, D. Jawarani, G. Karve, T. White, S. Bolton, H. Desjardins, M. Chowdhury, K. Chang, M. Jahanbani, R. Noble, L. Lovejoy, M. Rossow, D. Denning, D. Goedeke, S. Filipiak, R. Garcia, M. Raymond, V. Dhandapani, D. Zhang, L. Kang, P. Crabtree, X. Zhu, M. L. Kottke, R. Gregory, P. Fejes, X. D. Wang, D. Theodore, W. J. Taylor, and B. Y. Nguyen, “Dual silicide SOI CMOS integration with low-resistance PtSi PMOS contacts,” in Proc. Int. SOI Conf., 2007, pp. 65–66. 173 [127] G. Larrieu, E. Dubois, R. Valentin, N. Breil, F. Danneville, G. Dambrine, J. P. Raskin, and J. C. Pesant, “Low temperature implementation of dopant-segregated band-edge metallic S/D junctions in thin-body SOI p-MOSFETs,” in International Electron Device Meeting Tech. Dig , 2007, pp. 147–150. [128] T. F. Lee, R. D. Pashley, T. C. McGill and J. W. Mayer, “Investigation of telluriumimplanted silicon,” J. Appl. Phys., vol. 46, no. 1, pp. 381 - 388, Aug. 1975. [129] S.-M. Koh, E. Y.-J. Kong, B. Liu, C.-M. Ng, G. S. Samudra, Y.-C. Yeo, “Contactresistance reduction for strained n-FinFETs with silicon-carbon source/drain and platinum-based silicide contacts featuring tellurium implantation and segregation,” IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 3852–3862, Nov. 2011. [130] S.-M. Koh, G. S. Samudra and Y.-C. Yeo, “Contact technology for strained n-FinFETs with silicon:carbon source/drain stressors featuring sulfur implant and segregation,” IEEE Trans. Electron Devices, vol. 59, no. 4, Apr. 2012. [131] David R. Lide, CRC Handbook of Chemistry and Physics, 84th Edition, (CRC, Boca Raton, FL, 2003). [132] E. Janzén, H. G. Grimmeiss, A. Lodding, and Ch. Deline, “Diffusion of Te in Silicon,” J. Applied Physics, vol. 53, no. 11, pp. 7367 – 7371, Nov. 1982. [133] R. G. Wilson, “Depth distribution of sulfur implanted into silicon as a function of ion energy, ion fluence, and anneal temperature,” J. Applied Physics, vol. 55, no. 10, pp. 3490 – 3494, May. 1984. [134] R. A. Herring and H. M. Clearfield, “Sulfur segregation in ion-implanted and RTA’d silicon,” Mat. Res. Soc. Symp. Proc., v. 74, pp. 711 – 716. [135] M.-J. Chen, H.-T. Huang, K.-C. Huang, P.-N. Chen, C.-S. Chang, and C.-H. Diaz, “Temperature dependent channel backscattering coefficients in nanoscaled MOSFETs,” in International Electron Device Meeting Tech. Dig., 2002, pp. 39-42. [136] A. Rahman and M. S. Lundstrom, “A compact scattering model for the nanoscale doublegate MOSFET,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 481–489, Mar. 2002. [137] K.-W. Ang, H.-C. Chin, K.-J. Chui, M.-F. Li, G. S. Samudra, and Y.-C. Yeo, “Carrier backscattering characteristics of strained silicon-on-insulator n-MOSFETs featuring silicon-carbon source/drain regions” Solid-State Electronics, v. 51, pp. 1444-1449, 2004. [138] M. Lundstrom and Z. Ren, “Essential physics of carrier transport in nanoscaled MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133–141, Jan. 2002. [139] M. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, July 2007. 174 [140] M. Sinha, E. F. Chor, and Y. -C. Yeo, “Tuning the Schottky barrier height of nickel silicide on p-silicon by aluminum segregation,” Appl. Phys. Lett., vol. 92, no. 22, 222114, Jun. 2008. [141] M. Sinha, R. T. P. Lee, K.-M. Tan, G.-Q Lo, E.-F. Chor and Y.-C. Yeo, “Novel aluminum segregation at NiSi/p+Si source/drain contact for drive current enhancement in p-channel FinFETs,” IEEE Electron Device Lett., v.30, no.1, pp. 85-87, Jan. 2009. [142] M. Sinha, R. T.-P. Lee, E. F. Chor, and Y. C. Yeo, “Contact resistance reduction technology using aluminum implant and segregation for strained p-FinFETs with silicongermanium source/drain,” IEEE Trans. Electron Devices, vol. 57, no. 6, pp. 1279 - 1286, Jun. 2010. [143] I. Ok, C. D. Young, W. Y. Loh, T. Ngai, S. Lian, J. Oh, M. P. Rodgers, S. Bennett, H. O. Stamper, D. L. Franca, S. Lin, K. Akarvardar, C. Smith, C. Hobbs, P. Kirsch, and R. Jammy, “Enhanced performance in SOI FinFETs with low series resistance by aluminum implant as a solution beyond 22 nm node,” Symposium on VLSI Technology Digest of Technical Papers, 2010, pp. 17 – 18. [144] H. Fukutome, K. Okabe, K. Okubo, H. Minakata, Y. Morisaki, K. Ikeda, T. Yamamoto, K. Hosaka, Y. Momiyama, M. Kasa, and S. Satoh, “(110) NMOSFETs Competitive to (001) NMOSFETs: Si Migration to Create (331) Facet and Ultra-Shallow Al Implantation after NiSi Formation,” in International Electron Device Meeting Tech. Dig.,2008, pp. 1-4. [145] A. T. Y. Koh, R. T. P. Lee, A. E.-J. Lim, D. M. Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian, G. S. Samudra, and Y. C. Yeo, “Nickel-aluminum alloy silicides with high aluminum content for contact resistance reduction and integration in n-channel fieldeffect transistors,” J. Electrochemical Society, vol. 155, no. 3, pp. H151-H155, Mar. 2008. [146] H.-S. Wong, L. Chan, G. Samudra, and Y. Yeo, “Low Schottky barrier height for silicides on n-type Si (100) by interfacial selenium segregation during silicidation,” Appl. Phys. Lett., vol. 93, no. 7, pp. 072103-1–072103-3, Aug. 2008. [147] H.-S. Wong, L. Chan, G. Samudra, and Y.-C. Yeo, “Effective Schottky barrier height reduction using sulfur and selenium at the NiSi/n-Si (100) interface for low resistance contacts,” IEEE Electron Device Letters, vol. 28, no. 12, pp. 1102-1104, Dec. 2007. [148] C. Ortolland, E. Rosseel, N. Horiguchi, C. Kerner, S. Mertens, J. Kittl, E. Verleysen, H. Bender, W. Vandervost, A. Lauwers, P.P. Absil, S. Biesemans, S. Muthukrishnan, S. Srinivasan, A.J. Mayur, R. Schreutelkamp, and T. Hoffmann, “Silicide yield improvement with NiPtSi formation by laser anneal for advanced low power platform CMOS technology,” in International Electron Device Meeting Tech. Dig.,2009, pp. 23. 175 [149] A. Steegen, R. Mo, R. Mann, M.-C. Sun, M. Eller, G. Leake, D. Vietzke, A. Tilke, F. Guarin, A. Fischer, T. Pompl, G. Massey, A. Vayshenker, W.L. Tan, A. Ebert, W. Lin, W. Gao, J. Lian, J.-P. Kim, P. Wrschka, J.-H. Yang, A. Ajmera, R. Knoefler, Y.-W. The, F. Jamin, J.E. Park, K. Hooper, C. Griffin, P. Nguyen, V. Klee, V. Ku, C. Baiocco, G. Johnson, L. Tai, J. Benedict, S. Scheer, H. Zhuang, , V. Ramanchandran, G. Matusiewicz, Y.-H. Lin, Y.K. Siew, F. Zhang, L.S. Leong; S.L. Liew, K.C. Park, K.-W. Lee, D.H. Hong; S.-M. Choi, E. Kaltalioglu, S.O. Kim, M. Naujok, M. Sherony, A. Cowley, A. Thomas, J. Sudijohno, T. Schiml, J.-H. Ku, and I. Yang, “65 nm CNOS technology for low power applications,” in International Electron Device Meeting Tech. Dig., 2005, pp. 64. [150] M. Tsuchiaki, K. Ohuchi, and C. Hongo, “Junction leakage generation by NiSi thermal instability characterized using damage-free n+/p silicon diode,” J. J. Appl. Phys., v. 43, n 8A, pp. 5166, 2004. [151] D. Z. Chi, D. Mangelinck, J. Y. Dai, S. K. Lahiri, K. L. Pey, and C. S. Ho, “Nickelplatnium alloy monosilicidation-induced defects in n-type silicon,” Appl. Phys. Lett., v. 76, no.23, pp. 3385, 2000. [152] T. Yamaguchi, K. Kashihara, T. Okudaira, T. Tsutsumi, K. Maekawa, N. Murata, J. Tsuchimoto, K. Asai, and M. Yoneda, “Anomalous gate-edge leakage current in nMOSFETs caused by encroached growth of nickel silicide and its suppression by confinement of silicidation region using advanced ion-implantation technique,” IEEE Trans. Electron Devices, v. 56, no. 2, pp. 206, 2009. [153] D. Deduytsche, C. Detavernier, R. L. V. Meirhaeghe, and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” J. Applied Physics, v. 98, n. 3, pp. 33526-1-9, 2005. [154] V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. V. Landuyt, “In situ transmission electron microscopy study of Ni silicide phase formed on (001) Si active lines,” J. Applied Physics, v. 90, n. 1, pp. 167, 2001. [155] J. Mileham, V. Le, S. Shetty, J. Hebb, Y. Wang, D. Owen, R. Binder, R. Giedigkeit, S. Waidmann, I. Richter, K. Dittmar, H. Prinz, and M. Weisheit, “Impact of dual beam laser spike annealing parameters on nickel silicide formation characteristics,” 18th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2010, pp. 155. [156] Y.-W. Chen, N.-T Ho, J. Lai, T. C. Tsai, C. C. Huang, J. Y. Wu, B. Ng, A. J. Mayur, A. Tang S. Muthukrishnan, J. Zelenko, H. Yang, “Advances on 32 nm NiPt silicide process,” 17th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2009, pp. 4. 176 [157] B. Adams, D. Jennings, K. Ma, A. J. Mayur, S. Moffatt, S. G. Nagy, and V. Parihar, “Characterization of nickel silicides produced by millisecond anneals,” 15th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2007. [158] Y. Setiawan, P. S. Lee, K. L. Pey, X. C. Wang, G. C. Lim and B. L. Tan, “Laser-induced Ni(Pt) germanosilicide formation through a self-limiting melting phenomenon on Si1xGex/Si heterostructure,” [159] Appl. Phys. Lett., v. 90, 073108, 2007. Y. Setiawan, P. S. Lee, K. L. Pey, X. C. Wang, and G. C. Lim, “Laser-induced Ni(Ti) silicide formation,” Appl. Phys. Lett., v. 88, 113108, 2006. [160] J.-S. Luo, W.-T. Lin, C. Y. Chang, and W. C. Tsai, “Interfacial reactions of Ni on Si0.76Ge0.24 and Si by pulsed laser annealing,” Mat. Chem. and Phys., v. 54, pp. 160, 1998. [161] B. Weber, K. Gärtner, A. Witzmann, C. Kaschner, “Non-equilibrium epitaxial silicides – a special effect of silicide formation by ns-laser irraditation,” Appl. Surf. Sci., v. 54, pp. 381, 1992. [162] P. Baeri, M. G. Grimaldi, F. Priolo, A. G. Cullis, N. G. Chew, “Epitaxial NiSi layers on -oriented Si obtained by pulsed laser irradiation,” J. Applied Physics, v. 66, no. 2, pp. 861, 1989. [163] M. A. Harith, J. P. Zhang, P. Baeri, E. Rimini, G. Celotti, “Epitaxial silicide formation by multi-shot irradiation of Ni thin films on Si with Nd laser,” J. Applied Physics, v. 57, no. 10, pp. 4560, 1985. [164] G.G. Bentini, M. Servidori, C. Cohen, R. Nipoti and A. V. Drigo, “Titanium and nickel silicide formation after Q-switched laser and multiscanning electron beam irradiation,” J. Applied Physics, v. 53, n. 3, pp. 1525, 1982. [165] J. F. Ziegler and J. P. Bierack, Stopping and Range of Ions in Matter, [Online]. Available http://www.srim.org. [166] F. Neppl, F. Fischer and U. Schwabe, “TaSix barrier for low resistivity and high reliability of contacts to shallow diffusion regions in silicon,” Thin Solid Films, v. 120, n. 4, p257266, Oct 1984. [167] O. Krause, H. Ryssel and P. Pichler, “Determination of aluminum diffusion parameters in silicon,” J. Applied Physics, v. 91, n. 9, pp. 5645, 2002. [168] S.-D. Kim, C.-M Park and J. C. S. Woo, “Formation and control of box-shaped ultrashallow junction using laser annealing and pre-amorphization implantation,” Solid-State Electronics, v. 49, pp. 131, 2005. [169] M. F. V. Allmen and S. S. Lau, in Laser Annealing of Semiconductors, edited by J. M. Poate and J. W. Mayer (Academic, New York, 1982), p. 450. 177 [170] C. Lavoie, F. M. d’Heurle, C. Detavernier and C. Cabral, Jr., “Towards implementation of a nickel silicide process for CMOS technologies,” Microelectron. Eng., v. 70, n 2-4, pp. 144, 2003. [171] T. P. Norlan, R. Sinclair and R. Beyers, “Modeling of agglomeration in polycrystalline thin films: application to TiSi2 on a silicon substrate,” J. Applied Physics, v. 71, n. 2, pp. 720, 1992. [172] T. Yamauchi, Y. Nishi, Y. Tsuchiya, A. Kinoshita, J. Koga, and K. Kato, “Interfacial segregation of metal at NiSi/Si junction for novel dual silicide technology,” in International Electron Device Meeting Tech. Dig., 2007, pp. 963. [173] J. F. Gibbons and T. W. Sigmon, in Laser Annealing of Semiconductors, edited by J. M. Poate and J. W. Mayer (Academic, New York, 1982), p. 369. [174] S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett., v. 37, n. 8, pp. 719, 1980. [175] C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron Devices, ED31, n. 10, pp. 1502, 1984. [176] R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence of defect passivation by hydrogen on the Schottky barrier height of GaAs and InP contacts,” J. Applied Physics, v. 76, n. 1, pp. 403, 1994. [177] P. Hadizad, A. S. Yapsir, T.-M. Lu, and J. C. Corelli, “Pt Si/n-type Si Schottky barrier height change by H+ ion implantation near the interface region,” Nuclear Instru.and Methods in Phys. Res., B19/20, pt. 1, pp. 431, 1987. [178] I. Ok, W. Y. Loh, K-W. Ang, C. D. Young, P. Y. Hung, T. Ngai, K. Akarvardar, C. Hobbs and R. Jammy, “Parasitic resistance reduction technology,” Ext. Abs the 11th International Workshop on Junction Technology, 2011, pp. 50 – 54. [179] P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Parks, OH, 1995), Vol. 6, pp. 7237 [180] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si contact properties with C-implantation,” Microelectron. Eng., vol. 82, no. 3/4, pp. 479–484, Dec. 2005. [181] J. Hallstedt, M. Blomqvist, P. O. A. Persoon, L. Hultman, and H. H. Radamson, “The effect of carbon and germanium on phase transformation of nickel on Si1−x−y GexCy epitaxial layers,” J. Applied Physics, vol. 92, no. 5, pp. 2397–2402, Mar. 2004. 178 [182] S. Zaima, O. Nakatsuka, A. Sakai, J. Murota, and Y. Yasuda, “Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe(C) contacts,” Appl. Surf. Sci., vol. 224, no. 1–4, pp. 215–221, Mar. 2004. [183] J. H. Yoo, H.J. Chang, B.G. Min, D.H. Ko, M. H. Cho, H. Sohn, T.W. Lee, “Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx,” Materials Science and Engineering B, vol 154 -155, pp. 183 – 186, 2008. [184] V. Machkaoutsan, S. Mertens, M. Bauer, A, Lauwers, K. Verhyeden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S.G. Thomas, E.H.A, Granneman, “Improved thermal stability of Ni-silicides on Si:C epitaxial layers,” Microelectronic Engineering, vol 84, no 11, pp. 2542 - 2546, 2007. 179 [...]... with smaller WFin and LG 61 Fig 3.17 Plot of total resistance as a function of LG for control devices at different WFin Devices with a narrower WFin tend to have a higher electron mobility and higher REXT 62 Fig 3.18 Plot of total resistance RTotal between the source and drain as a function of LG for devices with and without S+ implantation The whiskers indicate the standard deviation... - rsat Channel backscattering coefficient - Rac Accumulation resistance Ω.cm RCH Channel resistance Ω.cm RC Silicide contact resistance Ω.cm REXT External series resistance Ω.cm ROV SDE-to-gate overlap resistance Ω.µm RS Sheet resistance RSD Deep S/D resistance Ω.cm RSDE SDE resistance Ω.cm Rsp Spreading resistance Ω.cm RTotal Total series resistance Ω.cm T Temperature K TSi Thickness of Si consumed... of this new RC reduction technology with strained nFETs with Si:C S/D stressors leads to ~53 % REXT reduction and ~18 % IDsat enhancement Enhanced device performance shown here, coupled with reported contact resistance reduction for pFETs with Al, opens new avenues to realize a novel single metal silicide integration solution with dual band edge barrier heights for selective contact resistance optimization... [(e) and (f)] 138 Fig 6.21 Key process steps for contact resistance reduction with Al ion implantation for strained nFETs with Si:C S/D stressors The Ge PAI and Al implantation steps were skipped for the control nFETs 139 Fig 6.22 Cross-sectional transmission electron microscopy (XTEM) images of the silicided S/D region of nFET with Si:C S/D stressors Uniform NiSi are formed... transistor with lattice-mismatched Si:C source/ drain stressors The lattice interaction of the Si:C S/D stressor with Si lattice at the heterojunction are plotted in the insets 4 1.3 S/D Parasitic Resistance 1.3.1 Motivation for S/D Parasitic Resistance Reduction One of the goals of CMOS scaling is to increase the IDsat to meet the demand for better switching efficiency, speed, and functionality in electronics... magnitude of the transistor drive current is determined by the total resistance (RTotal) between the source and drain The RTotal is contributed by both the S/D parasitic resistance REXT as well as the channel resistance RCH [Fig 1.3(a)] With the aggressively scaling of LG, RCH is reduced due to shorter distance between the source and drain regions The strain effect due to the S/D stressors also increases... cause phase transformation in NiSi 136 Fig 6.19 NiSi sheet resistance (Rs) as a function of silicidation temperature Presence of C and Al improves the thermal stability of NiSi Thermal stability is maintained even at silicidation temperature of 700 °C for sample with C and/ or Al implantations Delay xxi in formation of low resistivity NiSi is observed for samples with C and/ or Al implantations... 6 Fig 1.6 The major resistance components of REXT The REXT is equivalent to the series and parallel combination of ROV, RSDE, RSD, and RC 7 Fig 1.7 Relative contributions of different resistance components to REXT for (a) nFETs and (b) pFETs The RC is a major contributor to the REXT for devices with small gate length [55] 8 Fig 1.8 Energy band diagrams across the silicide/semiconductor... % EA Activation energy for diffusion eV EC Conduction band eV Ef Fermi-level eV EV Valence band eV ξ Maximum electric field V/cm GD Drain conductance S Gm,ext Extrinsic linear transconductance S Gm,int Intrinsic linear transconductance S h Planck’s constant J.s HFin Fin height nm IDlin Linear drain current µA/µm IDS Drain current A/µm IDsat Saturation drain current µA/µm If Forward diode current A... control PtSi:C film without Te+ implantation and (b) PtSi:C film with 2 × 1014 cm-2 dose of Te+ implantation Te+ implantation formed an amorphized region, which was consumed by the silicidation process performed at 550 oC for 30 s A ~15 nm thick PtSi:C was formed The interface morphology for PtSi:C with and without Te+ implant is similar, indicating that Te+ implant and segregation does not affect the PtSi:C/Si:C . 2012 SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING A THESIS SUBMITTED FOR THE DEGREE. SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING . Silicon-Carbon Source and Drain Stressors for Enhanced N-Channel MOSFET Performance 14 2.1 Introduction 14 2.2 Materials Characterization and Process Optimization of Silicon-Carbon Source/ Drain Stressors