1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS

209 681 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 209
Dung lượng 10,26 MB

Nội dung

SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING NATIONAL UNIVERSITY OF SINGAPORE 2012 SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTING ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Acknowledgements First and foremost, I would like to express my sincere gratitude to my PhD supervisors, Prof. Yeo Yee-Chia and Prof. Ganesh Samudra for their patience and support throughout my time here at National University of Singapore (NUS). Their technical guidance and insights from our countless discussions has been invaluable. They are instrumental in instilling a strong work ethic and shaping my career goals. I am also very thankful for their time and efforts in guiding this dissertation. I would like to thank GLOBALFOUNDRIES Singapore and Economic Board of Singapore for funding my graduate studies through a graduate scholarship award. I am grateful to Dr. Lap Chan from Singapore University of Technology and Design and Dr. Ng Chee Mang from GLOBALFOUNDRIES Singapore for their discussions and trust in me. Their personal and professional advice has been invaluable. I have benefited greatly from their vast experience in the field of semiconductor technologies. I would also like to thank Prof. Chor Eng Fong and Prof. Hong Minghui for serving on my qualifying examination committee, both of whom have provided valuable feedback. I would like to acknowledge the technical staffs in Silicon Nano Device Laboratory (SNDL) specifically Mr Yong Yu Fu, Mr O Yan, Patrick and Boon Teck in providing technical and administrative support and keeping the cleanroom and lab running smoothly. Besides SNDL, a huge portion of my research and experiments were also conducted over at Institute of Microelectronics (IME), Institute of Materials Research and Engineering (IMRE) and Singapore Institute of Manufacturing Technology (SIMTech). I appreciate the support extended by the staffs at IME, IMRE and SIMTech. I would particularly like to thank Dr. Wang Xincai from SIMTech for all his support and assistance in laser annealing. Thanks also go out to Doreen and Poh Chong from IMRE for their help in SIMS and XRD characterization, respectively. Additionally, I would like to extend my appreciation to Dr. Thirumal Thanigaivelan, Dr. Todd Henry, Dr. Yuri Erokhin, Dr. Zhao Zhiyong and Dr. Chua i Lye-Hing from Varian Semiconductor for their timely discussions and ion implantation support, without which some of the work entailed in this thesis would not have been possible. I am grateful for the guidance and discussions from the many outstanding graduate students from SNDL. I would like to specially thank Jason for mentoring me in the initial phase of my research. Special thanks also go out to Zhou Qian, Eugene, Yang Yue, Cheng Ran, Yinjie, Liu Bin, Gong Xiao, Tong Yi and Guo Cheng for their discussions and support in experiments and measurements during the critical submission deadlines. I would also like to extend an enormous thanks to Rinus, Kian Ming, Andy, Hoong Shing, Kah Wee, Hock Chun, Lina, Alvin, Fangyue, Litao, Zhang Lu, Edwin, Shen Chen, Zhu Ming, Manu, Ivana, Phyllis, Sujith, Ashvini and many more for their friendship, support and lively and simulating discussions over a wide range of topics. They have made my time at NUS truly enjoyable. I would also like to express my deepest gratitude to my mum who has always been supportive and encouraging ever since I embarked on my graduate studies. I hope that I have made her proud. To my brother, Yida, thank you for the support and patience over these years. Lastly, but certainly not least, I want to thank my lovely girlfriend, Shu Rong for her encouragement and support throughout this journey. I am eternally grateful for her love and devotion all this while. Thank you. ii Table of Contents Table of Contents i Abstract v List of Tables viii List of Figures ix List of Symbols xxiv Chapter 1: Transistor Scaling and Need for Reduced Parasitic Resistance 1.1 Introduction 1.2 Challenges in CMOS Scaling 1.3 S/D Parasitic Resistance 1.3.1 Motivation for S/D Parasitic Resistance Reduction 1.3.2 Major Resistance Components of REXT and their Contributions to REXT 1.3.3 Contact Resistance Reduction: Concepts and Techniques 1.4 Objective of Dissertation 11 1.5 Thesis Organization 11 Chapter 2: Silicon-Carbon Source and Drain Stressors for Enhanced N-Channel MOSFET Performance 14 14 2.1 Introduction 2.2 Materials Characterization and Process Optimization of Silicon-Carbon 16 Source/Drain Stressors 2.2.1 Substrate and Test Structures Fabrication 16 2.2.2 Dopants Diffusion during Silicon-Carbon Formation 18 2.2.3 Conductivity of Silicon-Carbon Films 20 2.2.4 Impact of Annealing Temperature and Duration on Csub 21 2.2.5 Impact of Post-Annealing Treatment on Csub 24 2.3 Strained N-Channel FETs with Silicon-Carbon Source/Drain Stressors and Channel Proximate Stressors for Enhanced Performance 27 2.3.1 Channel Proximate Stressors for Enhanced Strain Effect in Channel Region 28 2.3.2 Process Integration and Device Fabrication 30 i 2.3.3 Impact of Process Thermal Budget on Si:C 32 2.3.4 Device Characterization and Analysis 34 2.4 40 Summary Chapter 3: Contact Engineering for Strained n-FinFETs with Silicon:Carbon Source/Drain Stressors featuring Sulfur Implantation and Segregation 41 41 3.1 Introduction 3.2 Material Characterization and Schottky-Barrier Analysis of S-Segregated 43 NiSi:C Films 3.2.1 Fabrication of Substrate and Test Structures 43 3.2.2 Thermal Stability of NiSi:C films with Pre-Silicided S+ Implantation 44 3.2.3 Phase Analysis of NiSi:C films with Pre-Silicided S+ Implantation 45 3.2.4 SIMS Analysis of NiSi:C films with Pre-Silicided S+ Implantation 47 3.2.5 Impact of Sulfur Segregation on Electron Schottky Barrier Height 47 3.3 Mechanisms for SBH Modulation in S-Segregated NiSi:C Films 49 3.4 Fabrication of Si:C S/D n-FinFETs 53 3.5 Device Characterization and Analysis 58 3.6 Summary 66 Chapter 4: Contact Engineering for Complementary FinFETs featuring Tellurium Segregated Platinum-Based Silicide Contacts 67 67 4.1 Introduction 4.2 Material Characterization and Schottky-Barrier Analysis of Te-Segregated 69 PtSi:C Films 4.2.1 Contact Test Structure Fabrication 69 4.2.2 Impact of Te Implantation Dose on Electron Schottky Barrier Height 70 4.2.3 SIMS Analysis of PtSi:C films with Pre-Silicided Te+ Implantation 72 4.2.4 Impact of Te Implantation Dose on Sheet Resistance of PtSi:C films 73 4.2.5 Impact of Te Segregation on PtSi:C Phase Formation 74 4.2.6 Impact of Te Segregation on PtSi:C/Si:C Interface Morphology 76 4.2.7 Impact of Te Segregation on Strain State of Si:C 76 ii 4.3 Mechanisms for SBH Modulation in Te-Segregated PtSi:C Films 77 4.4 Fabrication of N- and P-FinFETs 80 4.5 Device Characterization and Analysis 82 4.6 Process Concept and Integration Flow 91 4.7 Summary 93 Chapter 5: Novel Contact Engineering Solution Featuring Tellurium and Source/Drain Dopant Co-Implantation 94 94 5.1 Introduction 5.2 Material Characterization and Schottky-Barrier Analysis of Te-Segregated NiSi Films 95 5.2.1 Contact Test Structure Fabrication 96 5.2.2 S and Te Depth Profile after Elevated Temperature Annealing 96 5.2.3 Impact of Elevated Temperature Annealing on Electron Schottky Barrier Height of NiSi with S or Te Implantation 5.2.4 98 SIMS Analysis of NiSi film with Pre-Silicided Te+ Implantation and after Elevated Temperature Annealing 100 5.2.5 100 Impact of Te Implantation on Phase Formation and RS of NiSi films 5.3 Fabrication of N-FinFETs with Te-Segregated Contacts 102 5.4 Device Characterization and Analysis 104 5.4.1 Impact of Te Implantation on SCEs 104 5.4.2 Impact of the RC Reduction Approach on Device Performance 108 5.5 Integration Concept and Flow 113 5.6 Summary 113 Chapter 6: Contact Resistance Reduction with Aluminum Profile Engineering 115 115 6.1 Introduction 6.2 Schottky Barrier Height Tuning of Silicides by Aluminum Implantation and 116 Pulsed Excimer Laser Anneal 6.2.1 Contact Test Structure Fabrication 6.2.2 SBH Modulation with Al implantation and Laser-Anneal for Silicide Formation 118 iii 117 6.2.3 6.3 Summary 129 Aluminum Profile Engineering in NiSi Contacts with Carbon for SBH 130 Modulation 6.3.1 Contact Test Structure Fabrication 130 6.3.2 SBH Modulation with Al and C Implantations 131 6.3.3 SIMS Analysis of NiSi films with Pre-Silicided Al, C and Ge Implantations 133 6.3.4 Phase Analysis of NiSi Films with Various Implantations 136 6.3.5 Thermal Stability of NiSi Films with Various Implantations 136 6.3.6 Interface Morphology of NiSi Films with Various Implantations 138 6.3.7 Integration of New Contact Technology in Si:C S/D nFETs 139 6.3.8 Device Characterization and Analysis 141 6.3.9 Process Concept and Integration Flow 146 6.3.10 Summary 147 Chapter 7: Summary and Future Directions 148 7.1 Summary 148 7.2 Contributions of this Thesis 149 7.2.1 Si:C S/D Stressors for Enhanced N-Channel MOSFET Performance 7.2.2 Contact Engineering for Strained n-FinFETs with Silicon-Carbon Source/Drain Stressors featuring Sulfur Implantation and Segregation 7.2.3 149 150 Contact Engineering for Complementary FinFETs featuring Tellurium Segregated Platinum-based Silicide Contacts 7.2.4 151 Novel Contact Engineering Solution featuring Tellurium and Source/Drain Dopant Co-Implantation 151 7.2.5 152 7.3 Contact Resistance Reduction with Aluminum Profile Engineering 154 Future Directions 7.3.1 Further Insights into Process Optimization Windows 154 7.3.2 Extension to New Silicide Materials and Doping Techniques 155 7.3.3 Extension to Alternative Substrates 156 Appendix A: List of Publications 157 References 161 iv Abstract Source and Drain External Resistance Reduction for Advanced Transistors by Koh Shao Ming Doctor of Philosophy – Electrical and Computer Engineering National University of Singapore Aggressive geometrical scaling to increase the performance-to-cost ratio for integrated circuit based products has met immense technological challenges. High external resistance REXT has been identified as one of the obstacles for achieving continual improvement of speed performance in the scaling of field-effect transistor (FET) technology. Multiple-gate FETS such as FinFETs would be adopted at the 22 nm generation technology and beyond. The revolutionary change in the device architecture is by no means a trivial process. The issue of high REXT may be further exacerbated with the use of narrow fins and the further scaling of fin width in sub-22 nm technology generations. In aggressively scaled FinFETs, high REXT would compromise drive current. Contact resistance (RC) at the silicide/heavily-doped S/D interface is a significant contributor to REXT. Thus, exploration of solutions to minimize RC is important. RC is an exponential function of the effective Schottky barrier height (SBH) at the silicide/heavily-doped S/D interface. Lowering the SBH will lead to the reduction in RC and hence REXT. In this thesis, new materials and process integration concepts were developed to address the escalating dominance of high REXT, and especially RC, in advanced strained Si transistors and FinFETs. Through pre-silicided ion implantation of novel impurities at the source/drain (S/D) regions of the transistors, SBH modulation of the metal contacts was demonstrated. In particular, Sulfur (S) or Tellurium (Te) implantation and segregation were v explored to reduce the effective electron SBH (ΦBn) of silicide formed on n-type siliconcarbon (Si:C) layer. Our results show that by introducing S or Te at the silicide/Si:C interface, a low ΦBn of 110 meV and 120 meV for S- and Te-segregated metal contacts were achieved, respectively. To explain the observation, we proposed that the presence of S or Te near the silicide/Si:C interface and their behavior as charged donor-like trap states enhance the electron tunneling across the contact which reduces the ΦBn. Integration of these low ΦBn metal contacts in the S/D regions of strained n-FinFETs with Si:C S/D stressors results in significant REXT reduction and drive current (IDsat) improvement. This firmly demonstrates the effectiveness of the novel ΦBn engineering concepts. Various process integration concepts coupled with Te have also been developed and extensively characterized on transistors and/or contact structures. One alternative concept exploited Te segregation to engineer the ΦBn of a high workfunction metal (i.e platinum silicide (PtSi)). Integration of this new RC reduction technology for the S/D regions of strained n-channel FinFETs (n-FinFETs) with Si:C S/D stressors leads to ~62 % REXT reduction and ~22 % IDsat enhancement with no detrimental impact on other device performance parameters such as threshold voltages and off-state leakage current. PtSi has an intrinsically low hole SBH and is a potential silicide for p-FinFETs. The ability to selectively adjust the  ΦBn of PtSi with Te implantation for RC optimization for n-FinFETs opens up the possibility of having a single-metal-silicide dual-barrier-height solution for future CMOS FinFET technology. A second RC reduction approach where a shallow Te ion implantation was performed sequentially with deep S/D dopant implantation prior to S/D activation anneal was also examined. Introducing Te at the same process step as deep S/D dopant implantation for nFETs eliminates the need for an extra masking step to block Te implantation into the S/D regions of pFETs, therefore simplifying the CMOS process flow. Integration of this new RC reduction technology in n-FinFETs with Si S/D stressors leads to ~40 % REXT reduction and a slight ~6% improvement of ballistic efficiency Bsat. The improvement in Bsat and reduction in REXT leads to IDsat enhancement of ~30 %. vi implementation of embedded phosphorus-doped   SiC   stressors   in   SOI   nMOSFETs,”   in   VLSI Symp. Tech. Dig., 2008, pp. 172–173. [30] B. Yang, R. Takalkar, Z. Ren, L. Black, A. Dube, J. W. Weijtmans, J. Li, J. B. Johnson, J. Faltermeier, A. Madan, Z. Zhu, A. Turansky, G. Xia, A. Chakravarti, R. Pal, K. Chan, A. Reznicek, T. N. Adam, B. Yang, J. P. de Souza, E. C. T Harley, B. Greene, A. Gehring, M. Cai, D. Aime, S. Sun, H. Meer, J. Holt, D. Theodore, S. Zollner, P. Grudowski, D. Sadana, D.-G. Park, D.Mocuta, D. Schepis, E. Maciejewski, S. Luning, J. Pellerin, and E. Leobandung,   “High   performance   nMOSFET   with   in situ phosphorus-doped embedded Si:C (ISPD eSi:C) source-drain   stressor,”   International Electron Device Meeting Technical Digest, 2008, pp. 51–54. [31] P. Verheyen, V. Machkaoutsan, M. Bauer, D. Weeks, C. Kerner, F. Clemente, H. Bender, D.  Shamiryan,  R.  Loo,  T.  Hoffmann,  P.  Absil,  S.  Biesemans,  and  S.  G.  Thomas,  “Strained   enhanced nMOS using in situ doped embedded Si1−xCx S/D stressors with up to 1.5% substitutional   carbon   content   grown   using   a   novel   deposition   process,”   IEEE Electron Device Lett., vol. 29, no. 11, pp. 1206–1208, Nov. 2008. [32] K. Cheng, A. Khakifirooz, P. Kulkarni, S. Ponoth, J. Kuss, D. Shahrjerdi, L. F. Edge, A. Kimball, S. Kanakasabapathy, K. Xiu, S. Schmitz, A. Reznicek, T. Adam, H. He, N. Loubet, S. Holmes, S. Mehta, D. Yang, A. Upham, S.-C. Seo, J. L. Herman, R. Johnson, Y. Zhu, P. Jamison, B. S. Haran, Z. Zhu, L. H. Vanamurth, S. Fan, D. Horak, H. Bu, P. J. Oldiges,  D.  K.  Sadana,  P.  Kozlowski,  D.  McHerron,  J.  O'Neill,  and  B.  Doris,  “Extremely   Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications,”  International Electron Device Meeting Technical Digest, 2009, pp 49–52. [33] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, A. Du, C.-H. Tung, G. S. Samudra, W. J. Yoo, N. Balasubramanian, and Y.-C.   Yeo,  “Strained  n-channel FinFETs with 25 nm gate length and silicon-carbon  source/drain  regions  for  performance  enhancement,”  in  Symposium on VLSI Technology Digest of Technical Papers, 2006, pp. 68. [34] T.-Y. Liow, K.-M. Tan, H.-C. Chin, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C.  Yeo.  “Carrier  transport characteristics of sub-30 nm strained n-channel FinFETs featuring silicon–carbon source/drain regions and methods for further performance enhancement.”  in  International Electron Device Meeting Tech. Dig., 2006, pp. 474 - 476. [35] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo,   “N-channel (110)-sidewall strained FinFETs with silicon–carbon source and drain stressors and tensile capping layer.”  IEEE Electron Device Letters, vol. 28, no. 11, pp. 1014–1017, Nov. 2007. 164 [36] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, C.-H. Tung, G. S. Samudra, N. Balasubramanian, and Y.-C.   Yeo,   “N-channel (110)-sidewall strained FinFETs with silicon–carbon source and drain stressors and tensile capping layer.”  IEEE Electron Device Letters, vol. 28, no. 11, pp. 1014–1017, Nov. 2007. [37] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, M. Zhu, K.-M. Hoe, G. S. Samudra, N. Balasubramanian, and Y.-C.   Yeo,   “Spacer   removal   technique   for   boosting   strain   in   nchannel FinFETs with silicon-carbon  source  and  drain  stressors,”  IEEE Electron Device Letters, vol. 29, no. 1, pp. 80-82, 2008. [38] T.-Y. Liow, K.-M. Tan, D. Weeks, R. T. P. Lee, M. Zhu, K.-M. Hoe, C.-H. Tung, M. Bauer, J. Spear, S. G. Thomas, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo, “Strained  n-channel FinFETs featuring in situ doped silicon-carbon (Si1-yCy) source and drain   stressors  with   high   carbon   content.”   IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2475–2483, Sep. 2008. [39] Y. Liu, O. Gluschenkov, J. Li, A. Madan, A. Ozcan, B. Kim, T. Dyer, A. Chakravarti, K. Chan, C. Lavoie, I. Popova, T. Pinto, N. Rovedo, Z. Luo, R. Loesing, W. Henson, and K. Rim,   “Strained   Si   channel   MOSFETs   with   embedded   silicon   carbon   formed   by   solid   phase   epitaxy,”   Symposium on VLSI Technology Digest of Technical Papers, 2007, pp. 44. [40] M. Nishikawa, K. Okabe, K. Ikeda, N. Tamura, H. Maekawa, M. Umeyama, H. Kurata, M.  Kase,  K.  Hashimoto,  “Successful  integration  scheme  of  cost  effective  dual  embedded   stressor  featuring  carbon  implant  and  solid  phase  epitaxy  for  high  performance  CMOS,”   in Proc. International Symposium on VLSI Technology, Systems, and Applications 2009, pp. 26 – 27. [41] E.   R.   Hsieh   and   S.   S.   Chung,   “The   proximity   of   strain   induced   effect   to   improve   the   electron mobility in a silicon-carbon source-drain structrue of n-channel metal-oxide semiconductor field-effect   transistors,”   Applied Physics Letters, vol. 96, no. 9, 093501, Mar. 2010. [42] S.-M. Koh, H.-S. Wong, X. Gong, C.-M. Ng, N. Variam, T. Henry, Y. Erokhin, G. S. Samudra, and Y.-C.   Yeo,   “Strained   n-channel field-effect transistors with channel proximate silicon-carbon source/drain   stressors   for   performance   enhancement,”   J. Electrochemical Society, vol. 157, no. 12, pp. H1088 - H1094, Dec. 2010. [43] A. M. Noori, M. Balseanu, P. Boelen, A. Cockburn, S. Demuynck, S. Felch, S. Gandikota, A. J. Gelatos, A. Khandelwal, J. A. Kittl, A. Lauwers, W.-C. Lee, J. Lei, T. Mandrekar, R. Schreutelkamp, K. Shah, S. E. Thompson, P. Verheyen, C.-Y. Wang, L.Q.   Xia,   and   R.   Arghavani,   “Manufacturable   processes   for   ≤   32-nm-node CMOS enhancement by synchronous optimization of strain-engineered channel and external 165 parasitic  resistances,”  IEEE Trans. Electron Devices, vol. 55, no. 5, pp. 1259 – 1264, May 2008. [44] R.   Courtland,   “Intel   transistors   enter   the   third   dimension.”   [Online].     Available:   http://spectrum.ieee.org/tech-talk/semiconductors/design/intels-new-transistors-enter-thethird-dimension/ [45] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.J. King, J. Bokor, and C. Hu,  “FinFET  – A self-aligned double-gate MOSFET scalable to 20  nm,”  IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Dec. 2000. [46] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu, “Sub50 nm p-channel   FinFET,”   IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 880–885, May. 2001. [47] Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, and C.  Hu,  “Sub-20  nm  CMOS  FinFET  technologies,”  International Electron Device Meeting Technical Digest, 2001, pp. 421–424. [48] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, C. Hu, M.-R.   Lin,   and   D.   Kyser,   “FinFET   scaling   to   10   nm   gate   length,”  International Electron Device Meeting Technical Digest, 2002, pp. 251–254. [49] J. Kedzierski, E. Nowak, T. Kararsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Sanders, K. Wong, D. Canaperi, M. Krishnan, K.-L. Lee, B. A. Rainey, D. Fried, P. Cottrell, H.-S. P. Wong, M. Ieong, and W. Haensch,  “Metal-gate FinFET and fully-depleted SOI devices using total gate   silicidation.”   International Electron Device Meeting Technical Digest, 2002, pp. 247–250. [50] G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, and E. C.-C.   Kan,   “FinFET   design   considerations based on 3-D  simulation  and  analytical  modeling.”  IEEE Trans. Electron Devices, vol. 49, no. 8, pp. 1411–1419, Aug. 2002. [51] F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D. Liu, C.-C. Huang, T.-X. Chung, H.-W. Chen, C.-C. Huang, Y.-H. Liu, C.-C.Wu, C.-C. Chen, S.-C. Chen, Y.-T. Chen, Y.H. Chen, C.-J. Chen, B.-W. Chan, P.-F. Hsu, J.-H. Shieh, H.-J. Tao, Y.-C. Yeo, Y. Li, J.W. Lee, P. Chen, M.-S.  Liang,  and  C.  Hu,  “5  nm-gate  nanowire  FinFETs,”  in  VLSI Symp. Tech. Dig. 2004, pp. 196–197. [52] J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W.   Rachmady,   M.  Radosavljevic,  U.   Shah,  N.   Zelick,  and   R.  Chau,   “Tri-gate transistor 166 architecture with high-k   gate   dielectrics,   metal   gates   and   strain   engineering,”   in   VLSI Symp. Tech. Dig. 2006, pp. 50–51. [53] J. Kedzierski, M. Ieong, E. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and   H.   S.   P.   Wong,   “Extension   and   source/drain   design   for   high   performance   FinFET   devices.”  IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952– 958, Apr. 2003. [54] A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. De Meyer, “Analysis   of   the   parasitic   S/D   resistance   in   multiple-gate FETs.”   IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1132–1140, Jun. 2005. [55] S. D. Kim, C. M. Park,   and   J.   C.   S.   Woo,   “Advanced   model   and   analysis of series resistance for CMOS scaling into nanometer regime—Part II: Quantitative   analysis.”   IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 467–72, Mar. 2002. [56] F.  A.  Trumbore,  “Solid  solubilities  of  impurity  elements  in  germanium  and  silicon,”  Bell Syst. Tech. J., vol. 39, pp. 205, (1960). [57] S. M. Sze, Physics of semiconductor devices, 2nd Edition, John Wiley & Sons, Inc., 1981. [58] C. M. Ransom, T. N. Jackson, J. F. DeGelormo, C. Zeller, D. E. Kotecki, C. Graimann, D. K. Sadana, J. Benedict,   “Shallow   n+   Junctions   in   Silicon   by   Arsenic   Gas-Phase Doping,”  J. Electrochem. Soc., vol. 141, no. 5, pp. 1378-1381, May 1994. [59] J.   C.   Ho,   R.   Yerushalmi,   Z.   A.   Jacobson,   Z.   Fan,   R.   L.   Alley,   A.   Javey,   “Controlled   nanoscale doping of semiconductors  via  molecular  monolayers,”  Nature Materials, vol. 7, pp. 62-67, Jan. 2008. [60] K.   Kobayashi,   K.   Okuyama,   H.   Sunami,   “Plasma   doping   induced   damages   associated   with source/drain formation in three-dimensional beam-channel MOS transistor,”   Microelectronic Engineering, vol. 84, pp. 1631-1634, 2007. [61] B.  Mizuno,  Y.Sasaki,  “Aiming  for  The  Best  Matching  between  Ultra-Shallow Doping and Milli- to Femto-Second   Activation,”   IEEE Advanced Thermal Processing of Semiconductors, pp. 1-10, 2007. [62] Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song, L. H. Chua,   “Annealing   of ultrashallow p+/n junction by 248 nm excimer laser and rapid thermal processing with different preamorphization depths,”  Appl. Phys. Lett., vol. 76, no. 22, pp. 3197-3199, May 2000. [63] C. Park, S.-D.  Kim,  Y.  Wang,  S.  Talwar,  and  J.  C.  S.  Woo,  “50nm  SOI  CMOS transistors with ultra shallow junction using laser annealing and pre-amorphization implantation,”   VLSI Symp. Tech. Dig., 2001, pp. 69-70. 167 [64] J.-N. Gillet, J.-Y.  Degorce,  and  M.  Meunier,  “General  model  and  segregation coefficient measurement  for  ultrashallow  doping  by  excimer  laser  annealing,”  Appl. Phys. Lett., vol. 86, 222104, 2003. [65] K.   Osada,   T.   Fukunaga,   and   K.   Shibahara,   “Ge   shallow   junction   formation   by   As implantation  and  flash  lamp  annealing,”  Proc. Int. Symp. VLSI Technol., Syst., Appl., pp. 15-16, 2009. [66] A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida and J. Koga, “Solution   for   high   performance Schottky-srouce/drain MOSFETs: Schottky barrier height engineering with dopant  segregation  technique,”  VLSI Symp. Tech. Dig., 2005, pp. 158. [67] Z. Zhang, Z. Qiu, R. Liu, M. Östling, and S.-L.  Zhang,  “Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal,”   IEEE Electron Device Letters, vol. 28, no. 7, pp. 565–568, Jul. 2007. [68] Z. Qiu, Z. Zhang, M. Östling and S.-L.   Zhang,   “A   comparative   study   of   two   different   schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering,”  IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 395–403, Jan. 2008. [69] J.  Kedzierski,  P.  Xuan,  E.  H.  Anderson,  J.  Bokor,  T.  J.  King,  and  C.  Hu,  “Complementary   silicide source/drain thin-body MOSFETs for the 20   nm   gate   length   regime,”   International Electron Device Meeting Technical Digest, 2000, pp. 57–60. [70] M. Fritze, C. L. Chen, S. Calawa, D. Yost, B. Wheeler, P. Wyatt, C. L. Keast, J. Snyder, and   J.   Larson,   “High-speed Schottky-barrier pMOSFET with fT =   280   GHz,”   IEEE Electron Device Lett., vol. 25, no. 4, pp. 220–222, Apr. 2004. [71] R. T. P. Lee, A. E.-J. Lim, K.-M. Tan, T.-Y. Liow, G.-Q. Lo, G. S. Samudra, D. Z. Chi, and Y.-C. Yeo, “N-channel FinFETs with 25-nm gate length and Schottky-barrier source and  drain  featuring  ytterbium  silicide,”  IEEE Electron Device Letters, vol. 28, no. 2, pp. 164–167, Feb. 2007. [72] R. T. P. Lee, A. T.-Y. Koh, F.-Y. Liu, W.-W. Fang, T.-Y. Liow, K.-M. Tan, P.-C. Lim, A. E.-J. Lim, M. Zhu, K.-M. Hoe, C.-H. Tung, G.-Q. Lo, X. Wang, D. K.-Y. Low, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo,  “Route to low parasitic resistance in MuGFETs with silicon–carbon source/drain: Integration of novel low barrier Ni(M)Si:C metal silicides and pulsed laser annealing.”   International Electron Device Meeting Technical Digest, 2007, Washington, DC, pp. 685–688. [73] R. T.-P. Lee, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, A. T.-Y. Koh, M. Zhu, G.-Q. Lo, G. S. Samudra, D. Z. Chi, and Y.-C.   Yeo,   “Achieving   conduction   band-edge Schottky barrier height for arsenic-segregated nickel aluminide disilicide and implementation in 168 FinFETs with ultra-narrow   fin   widths,”   IEEE Electron Device Lett., vol. 29, no. 4, pp. 382–385, Apr. 2008. [74] R. T. P. Lee, A. T.-Y. Koh, W.-W. Fang, K.-M. Tan, A. E.-J. Lim, T.-Y. Liow, S.Y. Chow, A. M. Yong, H. S. Wong, G.-Q. Lo, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel  and  cost-effective single metallic silicide integration solution with dual Schottkybarrier achieved by aluminum inter-diffusion for FinFET CMOS technology with enhanced  performance.”  in  VLSI Tech. Dig., 2008, pp. 28–29. [75] M. Sinha, R. T. P. Lee, S. N. Devi, G,-Q. Lo, E. F. Chor, and Y.-C.  Yeo,  “Single  silicide   comprising nickel-dysprosium alloy for integration in p- and n-FinFETs with independent control  of  contact  resistance  by  aluminum  implant,”  in   VLSI Tech. Dig., 2009, pp. 106– 107. [76] R. T. P. Lee, A. T.-Y. Koh, K.-M. Tan, T.-Y. Liow, D.-Z. Chi, and Y.-C.  Yeo,  “The  role   of carbon and dysprosium in Ni[Dy]Si:C contacts for Schottky-barrier height reduction and application in n-channel   MOSFETs   with   Si:C   source/drain   stressors.”   IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2770–2777, Nov. 2009. [77] E.  Alptekin,  M.  C.  Ozturk,  and  V.  Misra,  “Schottky  barrier  height  of  erbium  silicide  on   Si1-xCx,”  IEEE Trans. Electron Devices, vol. 30, no. 9, pp. 949–951, Sept. 2009. [78] G. Davies and R. C. Newman, in Handbook of Semiconductors, edited by T. S. Moss (Elsevier, Amsterdam, 1994), Vol. 3. [79] Z.  Ye,  Y.  Kim,  A.  Zojaji,  E.  Sanchez,  Y.  Cho,  M.  Castle,  and  M.  A.  Foad,  “A  study  of   low energy phosphorus implantation and annealing in Si:C epitaxial films,”   Semiconductor Science and Technology, vol. 22, pp. 171, 2007. [80] G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri, L. Washington, R. Degraeve, B. Kaczer, V. Moroz, A. De Keersgieter, R. Schreutelkamp, M. Kawaguchi, Y. Kim, A. Samoilov, L. Smith, P. P. Absil, K. De Meyer, M.  Jurczak,  and  S.   Biesemans,   “Layout   impact on the performance of a locally   strained   PMOSFET,”   in   Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 22–23. [81] A. Oishi, O. Fujii, T. Yokoyama, K. Ota, T. Sanuki, H. Inokuma, K. Eda, T. Idaka, H. Miyajima, S. Iwasa, H. Yamasaki, K. Oouchi, K. Matsuo, H. Nagano, T. Komoda, Y. Okayama, T. Matsumoto, K. Fukasaku, T. Shimizu, K. Miyano, T. Suzuki, K. Yahashi, A. Horiuchi, Y. Takegawa, K. Saki, S. Mori, K. Ohno, I. Mizushima, M. Saito, M. Iwai, S.  Yamada,  N.  Nagashima,  and  F.  Matsuoka,  “High  performance  CMOSFET  technology   for 45 nm generation and scalability of stress-induced  mobility  enhancement  technique,”   in IEEE International Electron Device Meeting, 2005, pp. 229–232. 169 [82] J. W. Sleight, I. Lauer, O. Dokumaci, D. M. Fried, D. Guo, B. Haran, S. Narasimha, C. Sheraw, D. Singh, M. Steigerwalt, X.Wang, P. Oldiges, D. Sadana, C. Y. Sung, W. Haensch,   and   M.   Khare,   “Challenges   and   opportunities   for   high   performance   32   nm   CMOS  technology,”  in  IEEE International Electron Device Meeting, 2006, pp. 697–700. [83] A. T.-Y. Koh, R. T.-P. Lee, F.-Y. Liu, T.-Y. Liow, K.-M. Tan, X. Wang, G. S. Samudra, N. Balasubramanian, D.-Z. Chi, and Y.-C.  Yeo,  “Pulsed  laser  annealing  of  silicon-carbon source/drain in MuGFETs for enhanced dopant activation and high substitutional carbon concentration,”  IEEE Electron Device Lett., vol. 29, no. 5, pp. 464-467, 2008. [84] A. Li-Fatou,   A.   Jain,   W.   Krull,   M.   Ameen,   M.   Harris,   and   D.   Jacobson,   “Increase   of   carbon substitutionality and silicon   strain   by   molecular   ion   implantation,”   212th Electrochemical Society Meeting, Session E7, paper 1305, Washington DC, 7-12 Oct. 2007. [85] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era. Volume 1: Process Technology, 2nd Edition, (Lattice Press, 2000), pp. 336. [86] M.  Uematsu,  “Simulation  of  boron,  phosphorus,  and  arsenic  diffusion  in  silicon,  based  on   an   integrated   diffusion   model,   and   the   anomalous   phosphorus   diffusion   mechanism,”   J. Appl. Phys., vol. 82, pp. 2228, 1997. [87] R. Scholz, U. Gosele, J.-Y. Huh, Anam-Dong,   and   T.   Y.   Tan,   “Carbon-induced undersaturation of silicon self-interstitials,”  Appl. Phys. Lett., vol. 72, pp. 200-202, 1998. [88] H. Rücker, B. Heinemann, W. Röpke, R. Kurps, D. Krüger, G. Lippert, and H. J. Osten, “Suppressed  diffusion of boron and carbon in carbon-rich  silicon,”  Appl. Phys. Lett., vol. 73, no. 12, pp. 1682 - 1684, Sep. 1998. [89] D. K. Schroder, Semiconductor material and device characterization, 3nd ed. (IEEE Press, 2006). [90] D.   Christoph   Mueller   and   Wolfgang   Fichtner,   “Codoping as a measure against donor deactivation in Si: Ab initio calculations,”  Physical Review B, Vol. 73, 035210, Jun. 2006. [91] H. Maynard, C. Hatem, H.-J. Gossmann, Y. Erokhin, N. Variam, S. Chen, and Y. Wang, “Enhancing   tensile   stress   and   source/drain   activation with Si:C with innovations in ion implant  and  millisecond  laser  spike  annealing,”  in  16th IEEE Int. Conf. on Adv. Thermal Pro. of Semicond., Sep. 2008, pp. 147-155. [92] M. Berti, D. De Salvador, A. V. Drigo, and F. Romanto, J. Stangl, S. Zerlauth, F. Schaffler,  and  G.  Bauer,  “Lattice  parameter  in  Si1-yCy epilayers:  Deviation  from  Vegard’s   rule,”  Appl. Phys. Lett., vol. 72, no. 13, pp. 1602, 1998. [93] P.  C.   Kelires,   “Short-range order, bulk moduli, and physical trends in c-Si1-xCx alloys,”   Phys. Rev. B, vol. 55, no. 14, pp. 8784-8787, 1997. 170 [94] J.  W.  Strane,  S.  R.  Lee,  H.  J.  Stein,  S.  T.  Picraux,  J.  K.  Watanabe,  J.  W.  Mayer,  “Carbon   incorporation  into  Si  at  high  concentrations  by  ion  implantation  and  solid  phase  epitaxy,”   J. Appl. Phys., vol. 79, no. 2, pp. 637-646, Jan. 1996. [95] Y.-T. Chuang, S.-H. Wang, and W.-Y.  Woon,  “Effect  of  impurities  on  thermal  stability  of   pseudomorphically  strained  Si:C  layer,”  Appl. Phys. Lett., vol. 98, 141918, 2011. [96] I. Ban, M. C. Ozturk, K. Christensen, and D. M. Maher, “Effects  of  carbon implantation on  generation  lifetime  in  silicon,”  Appl. Phys. Lett., 68, pp. 499, 1996. [97] C.  F.  Tan,  E.  F.  Chor,  H.  Lee,  E.  Quek,  and  L.  Chan,  “Enhancing  leakage  suppression  in   carbon-rich   silicon   junctions,”   IEEE Electron Device Lett., vol. 27, no. 6, pp. 442-444, 2006. [98] M.  Sinha,  E.  F.  Chor,  C.  F.  Tan,  “Schottky  barrier  height  tuning  of  silicide  on  Si1-xCx,”   Appl. Phys. Lett., vol. 91, 242108, 2007. [99] S. Y. Chou and D. A. Antoniadis, “Relationship   between   measured and intrinsic transconductances of FETs,” IEEE Transactions on Electron Devices, ED-34, pp. 448, 1987. [100] M. Yang, M. Ieong, L. Shi, K. Chan, V. Chan, A. Chou, E. Gusev, K. Jenkins, D. Boyd, Y.   Ninomiya,   D.   Pendleton,   Y.   Surpris,   D.   Heenan,   J.   Ott,   K.   Guarini,   C.   D’Emic,   M.   Cobb, P. Mooney, B. To, N.  Rovedo,  J.  Benedict,  R.  Mo,  and  H.  Ng,  “High  performance   CMOS   fabricated   on   hybrid   substrate   with   different   crystal   orientations,”   in   IEEE International Electron Device Meeting, 2003, pp. 453–456. [101] Y.  Kanda,  “Piezoresistance  effect  of  silicon,”  Sensors and Actuators A, vol. 29, 1991, pp. 83-91. [102] R. A. Vega and T.-J. King-Liu,   “Three-dimensional FinFET source/drain and contact design   optimization   study,”   IEEE Trans. Electron Devices, vol. 56, no. 7, pp. 1483 – 1492, Apr. 2009. [103] V. Gudmundsson, P. Pierpaolo, P.-E  Hellström,  L.  Selmi,  and  M.  Östling,  “Simulation  of   low Schottky barrier MOSFETs using an improved Multi-subband  Monte  Carlo  model,”   Solid-State Electronics, Article in Press, 2012. [104] J.  Guo  and  M.  S.  Lundstrom,  “A  computational  study  of  thin-body, double gate Schottky barrier   MOSFETs,”   IEEE Transactions on Electron Devices, v. 49, no. 11, pp. 1897 – 1902, Nov. 2002. [105] S.-M. Koh, W.-J. Zhou, R. T.-P. Lee, M. Sinha, C.-M. Ng, Z. Zhao, H. Maynard, N. Variam, Y. Erokhin, G. S. Samudra, Y.-C.   Yeo,   “Silicon:carbon source/drain stressors: Integration of a novel nickel aluminide-silicide and post-solid-phase-epitaxy anneal for 171 reduced Schottky-barrier  and  leakage,”  Electrochemical Society Trans., vol. 25, no. 7, pp. 211, 2009. [106] Q. T. Zhao, U. Breuer, E. Rije, S. Lenk,   and   S.   Mantl,   “Tuning   of   NiSi/Si Schottky barrier  heights  by  sulfur  segregation  during  Ni  silicidation,” Appl. Phys. Lett., vol. 86, no. 6, pp. 062108-1–062108-3, Feb. 2005. [107] Q.   T.   Zhao,   U.  Breuer,   St.  Lenk,  and  S.   Mantl,   “Segregation   of   ion   implanted sulfur in Si(100)   after   annealing   and   nickel   silicidation,”   J. Applied Physics, vol. 102, 023522, 2007. [108] E.   Alptekin   and   M.   C.   Ozturk,   “NixPt1-xSi/n-Si contacts with sub-0.1 eV effective Schottky   barrier   heights   obtained   by   sulfur   segregation,”   Microelectronic Engineering, vol. 87, no. 11, pp. 2358 – 2360, Nov. 2010. [109] R. T. P. Lee, A. E.-J. Lim, K.-M. Tan, T.-Y. Liow, D.-Z. Chi, and Y.-C.   Yeo,   “Sulfur   induced PtSi:C/Si:C Schottky barrier height lowering for realizing n-channel FinFETs with reduced external resistance.”  IEEE Electron Device Letters, vol. 30, no. 5, pp. 472474, May 2009. [110] H.-S. Wong, F.Y. Liu, K.-W. Ang, S.-M. Koh, A. T.-Y. Koh, T.-Y. Liow, R. T. P. Lee, A. E.-J. Lim, W.-W. Fang, M. Zhu, L. Chan, N. Balasubramanian, G. Samudra, and Y.-C. Yeo,   “Selenium co-implantation and segregation as a new contact resistance for nanoscale SOI n-FETs featuring NiSi:C formed on silicon-carbon (Si:C) source/drain stressors,”  in  VLSI Tech. Dig., 2008, pp. 168–169. [111] H.-S. Wong, F.Y. Liu, K.-W. Ang, G. Samudra, and Y.-C.   Yeo,   “Novel   nickel   silicide   contact technology using selenium segregation for SOI n-FETs with silicon-carbon source/drain  stressors,”  IEEE Electron Device Letters, vol. 29, no. 8, pp. 841-844, Aug. 2008. [112] J.-H. Yoo, H. Sohn, D.-H. Ko, and M.-H.  Cho,  “Enhancement of thermal stability in Ni silicides on epi-Si1-xCx by  Pt  addition,”  J. Electrochemical Soc., vol. 157, no. 8, pp. H837H841, 2010. [113] C.  Lavoie,  F.  M.  d’Heurle,  C.  Detavernier,  and  C.  Cabral,  Jr.,  “Towards  implementation   of a nickel silicide process   for   CMOS   technologies,”   Microelectronics Eng., vol. 70, issues 2-4, pp. 144-157, Nov. 2003. [114] T.  P.  Norlan,  R.  Sinclair,  and  R.  Beyers,  “Modeling  of  agglomeration  in  polycrystalline   thin films: Application to TiSi2 on  a  silicon  substrate,” J. Appl. Phys., vol. 71, no. 2, pp. 720, 1992. [115] R. T. P. Lee, L.-T. Yang, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, K.-W. Ang, D. M. Y. Lai, K. M. Hoe, G.-Q. Lo, G. S. Samudra, D.-Z. Chi, and Y.-C.  Yeo,  “Nickel-Silicide:Carbon 172 contact technology for n-channel MOSFETs with Silicon-Carbon   source/drain.”   IEEE Electron Device Letters, vol. 29, no. 1, pp. 89–92, Jan. 2008. [116] E.   Alptekin,   M.   C.   Ozturk   and   V.   Misra,   “Tuning   of   platinum   silicide   Schottky   barrier   height on n-type  silicon  by  sulfur  segregation,”  IEEE Electron Dev. Lett., vol. 30, no. 4, pp. 331 – 333, Apr. 2009. [117] R.  Y.  Koyama,  W.  E.  Phillips,  D.  R.  Myers,  and  Y.  M.  Liu,  “The  energy  levels  and  the   defect signature of sulfur-implanted   silicon   by   thermally   stimulated   measurements.”   Solid-State Electronics vol. 21, pp. 953-955, 1978. [118] L.  L.  Rosier,  and  C.  T.  Sah,  “Thermal  emission  and  capture  of  electrons  at  sulfur  centers   in  silicon.”  Solid-State Electronics, vol. 14, pp. 41-54, 1971. [119] J.   M.   Andrews   and   M.   P.   Lepselter,   “Reverse   current-voltage characteristics of metalsilicide Schottky  diodes.”  Solid-State Electronics, vol. 13, pp. 1011–1023, 1970. [120] Medici Version A-2007.12, Dec 2007. [121] E. Bucher, S. Schulz, M. Ch. Lux-Steiner, P. Munz, U. Gubler, and F. Greuter, “Work   function   and   barrier   heights   of   transition   metal   silicides,”   Appl. Phys. A: Materials Science and Processing, vol. 40, no. 2, pp. 71–77, 1986. [122] G.  Niu,  J.  Cressler,  S.  Mathew,  and  S.  Subbanna,  “A  total  resistance  slope  based effective channel mobility extraction method for deep submicrometer CMOS   technology.”   IEEE Trans. Electron Devices, vol. 46, no. 9, pp. 1912–1914, Sep. 1999. [123] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A.  Antoniadis,  “Strained  silicon  MOSFET  technology,”  in  International Electron Device Meeting Tech. Dig., 2002, pp. 23–26. [124] V. Gudmundsson, P.-E.  Hellström,  J.  Luo,  J.  Lu,  S.L.  Zhang,  M.  Östling,  “Fully  depleted   UTB and trigate n-channel MOSFETs featuring low-temperature PtSi Schottky-barrier contacts  with  dopant  segregation,”  IEEE Electron Device Letters, vol. 30, no. 5, pp. 541– 543, May 2009. [125] M. Sinha, R. T.-P.  Lee,  E.  F.  Chor,  and  Y.  C.  Yeo,  “Schottky  barrier  height  modulation  of   nickel-dysprosium-alloy germanosilicide contacts for strained p-FinFETs,”   IEEE Electron Device Letters, vol. 30, no. 12, pp. 1278–1280, Dec 2009. [126] S. Zollner, P. Grudowski, A. Thean, D. Jawarani, G. Karve, T. White, S. Bolton, H. Desjardins, M. Chowdhury, K. Chang, M. Jahanbani, R. Noble, L. Lovejoy, M. Rossow, D. Denning, D. Goedeke, S. Filipiak, R. Garcia, M. Raymond, V. Dhandapani, D. Zhang, L. Kang, P. Crabtree, X. Zhu, M. L. Kottke, R. Gregory, P. Fejes, X. D. Wang, D. Theodore, W.   J.   Taylor,   and   B.   Y.   Nguyen,   “Dual   silicide   SOI   CMOS   integration with low-resistance  PtSi  PMOS  contacts,”  in  Proc. Int. SOI Conf., 2007, pp. 65–66. 173 [127] G. Larrieu, E. Dubois, R. Valentin, N. Breil, F. Danneville, G. Dambrine, J. P. Raskin, and   J.   C.   Pesant,   “Low   temperature   implementation   of dopant-segregated band-edge metallic S/D junctions in thin-body SOI p-MOSFETs,”  in  International Electron Device Meeting Tech. Dig , 2007, pp. 147–150. [128] T.   F.   Lee,   R.   D.   Pashley,   T.   C.   McGill   and   J.   W.   Mayer,   “Investigation   of   telluriumimplanted  silicon,”  J. Appl. Phys., vol. 46, no. 1, pp. 381 - 388, Aug. 1975. [129] S.-M. Koh, E. Y.-J. Kong, B. Liu, C.-M. Ng, G. S. Samudra, Y.-C.   Yeo,   “Contactresistance reduction for strained n-FinFETs with silicon-carbon source/drain and platinum-based  silicide  contacts  featuring  tellurium  implantation  and  segregation,”  IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 3852–3862, Nov. 2011. [130] S.-M. Koh, G. S. Samudra and Y.-C.   Yeo,   “Contact technology for strained n-FinFETs with silicon:carbon  source/drain  stressors  featuring  sulfur  implant  and  segregation,” IEEE Trans. Electron Devices, vol. 59, no. 4, Apr. 2012. [131] David R. Lide, CRC Handbook of Chemistry and Physics, 84th Edition, (CRC, Boca Raton, FL, 2003). [132] E. Janzén, H. G. Grimmeiss, A. Lodding, and Ch. Deline,  “Diffusion  of  Te  in  Silicon,”  J. Applied Physics, vol. 53, no. 11, pp. 7367 – 7371, Nov. 1982. [133] R.   G.   Wilson,   “Depth   distribution of sulfur implanted into silicon as a function of ion energy,  ion  fluence,  and  anneal  temperature,”  J. Applied Physics, vol. 55, no. 10, pp. 3490 – 3494, May. 1984. [134] R.   A.   Herring   and   H.   M.   Clearfield,   “Sulfur   segregation   in   ion-implanted   and   RTA’d   silicon,”  Mat. Res. Soc. Symp. Proc., v. 74, pp. 711 – 716. [135] M.-J. Chen, H.-T. Huang, K.-C. Huang, P.-N. Chen, C.-S. Chang, and C.-H. Diaz, “Temperature   dependent   channel   backscattering   coefficients   in   nanoscaled   MOSFETs,”   in International Electron Device Meeting Tech. Dig., 2002, pp. 39-42. [136] A.  Rahman  and  M.  S.  Lundstrom,  “A  compact  scattering  model  for  the  nanoscale  doublegate  MOSFET,”  IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 481–489, Mar. 2002. [137] K.-W. Ang, H.-C. Chin, K.-J. Chui, M.-F. Li, G. S. Samudra, and Y.-C.   Yeo,   “Carrier   backscattering characteristics of strained silicon-on-insulator n-MOSFETs featuring silicon-carbon  source/drain  regions”  Solid-State Electronics, v. 51, pp. 1444-1449, 2004. [138] M.   Lundstrom   and   Z.   Ren,   “Essential   physics   of carrier transport in nanoscaled MOSFETs,”  IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133–141, Jan. 2002. [139] M.  Lundstrom,  “Elementary  scattering  theory  of  the  Si  MOSFET,”  IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, July 2007. 174 [140] M. Sinha, E. F. Chor, and Y. -C.   Yeo,   “Tuning   the   Schottky   barrier   height   of   nickel   silicide on p-silicon  by  aluminum  segregation,”  Appl. Phys. Lett., vol. 92, no. 22, 222114, Jun. 2008. [141] M. Sinha, R. T. P. Lee, K.-M. Tan, G.-Q Lo, E.-F. Chor and Y.-C.   Yeo,   “Novel aluminum segregation at NiSi/p+Si source/drain contact for drive current enhancement in p-channel  FinFETs,”  IEEE Electron Device Lett., v.30, no.1, pp. 85-87, Jan. 2009. [142] M. Sinha, R. T.-P.   Lee,   E.   F.   Chor,   and   Y.   C.   Yeo,   “Contact   resistance   reduction   technology using aluminum implant and segregation for strained p-FinFETs with silicongermanium  source/drain,”  IEEE Trans. Electron Devices, vol. 57, no. 6, pp. 1279 - 1286, Jun. 2010. [143] I. Ok, C. D. Young, W. Y. Loh, T. Ngai, S. Lian, J. Oh, M. P. Rodgers, S. Bennett, H. O. Stamper, D. L. Franca, S. Lin, K. Akarvardar, C. Smith, C. Hobbs, P. Kirsch, and R. Jammy,  “Enhanced  performance  in  SOI  FinFETs  with  low  series  resistance  by  aluminum   implant   as   a   solution   beyond   22   nm   node,”   Symposium on VLSI Technology Digest of Technical Papers, 2010, pp. 17 – 18. [144] H. Fukutome, K. Okabe, K. Okubo, H. Minakata, Y. Morisaki, K. Ikeda, T. Yamamoto, K.   Hosaka,   Y.   Momiyama,   M.   Kasa,   and   S.   Satoh,   “(110)   NMOSFETs   Competitive   to   (001) NMOSFETs: Si Migration to Create (331) Facet and Ultra-Shallow Al Implantation after  NiSi  Formation,”  in International Electron Device Meeting Tech. Dig.,2008, pp. 1-4. [145] A. T. Y. Koh, R. T. P. Lee, A. E.-J. Lim, D. M. Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian,  G.  S.  Samudra,  and  Y.  C.  Yeo,  “Nickel-aluminum alloy silicides with high aluminum content for contact resistance reduction and integration in n-channel fieldeffect   transistors,”   J. Electrochemical Society, vol. 155, no. 3, pp. H151-H155, Mar. 2008. [146] H.-S. Wong, L. Chan, G. Samudra, and Y. Yeo,  “Low  Schottky  barrier  height for silicides on n-type Si (100) by interfacial selenium segregation during silicidation,”   Appl. Phys. Lett., vol. 93, no. 7, pp. 072103-1–072103-3, Aug. 2008. [147] H.-S. Wong, L. Chan, G. Samudra, and Y.-C.   Yeo,   “Effective   Schottky barrier height reduction using sulfur and selenium at the NiSi/n-Si (100) interface for low resistance contacts,”  IEEE Electron Device Letters, vol. 28, no. 12, pp. 1102-1104, Dec. 2007. [148] C. Ortolland, E. Rosseel, N. Horiguchi, C. Kerner, S. Mertens, J. Kittl, E. Verleysen, H. Bender, W. Vandervost, A. Lauwers, P.P. Absil, S. Biesemans, S. Muthukrishnan, S. Srinivasan, A.J. Mayur, R. Schreutelkamp, and T. Hoffmann, “Silicide   yield   improvement with NiPtSi formation by laser anneal for advanced low power platform CMOS  technology,” in International Electron Device Meeting Tech. Dig.,2009, pp. 23. 175 [149] A. Steegen, R. Mo, R. Mann, M.-C. Sun, M. Eller, G. Leake, D. Vietzke, A. Tilke, F. Guarin, A. Fischer, T. Pompl, G. Massey, A. Vayshenker, W.L. Tan, A. Ebert, W. Lin, W. Gao, J. Lian, J.-P. Kim, P. Wrschka, J.-H. Yang, A. Ajmera, R. Knoefler, Y.-W. The, F. Jamin, J.E. Park, K. Hooper, C. Griffin, P. Nguyen, V. Klee, V. Ku, C. Baiocco, G. Johnson, L. Tai, J. Benedict, S. Scheer, H. Zhuang, , V. Ramanchandran, G. Matusiewicz, Y.-H. Lin, Y.K. Siew, F. Zhang, L.S. Leong; S.L. Liew, K.C. Park, K.-W. Lee, D.H. Hong; S.-M. Choi, E. Kaltalioglu, S.O. Kim, M. Naujok, M. Sherony, A. Cowley, A. Thomas, J. Sudijohno, T. Schiml, J.-H. Ku, and I. Yang, “65  nm  CNOS  technology  for   low  power  applications,” in International Electron Device Meeting Tech. Dig., 2005, pp. 64. [150] M. Tsuchiaki, K. Ohuchi, and C. Hongo, “Junction   leakage   generation   by   NiSi   thermal   instability characterized using damage-free n+/p  silicon  diode,”  J. J. Appl. Phys., v. 43, n 8A, pp. 5166, 2004. [151] D. Z. Chi, D. Mangelinck, J. Y. Dai, S. K. Lahiri, K. L. Pey, and C. S. Ho, “Nickelplatnium alloy monosilicidation-induced defects in n-type   silicon,” Appl. Phys. Lett., v. 76, no.23, pp. 3385, 2000. [152] T. Yamaguchi, K. Kashihara, T. Okudaira, T. Tsutsumi, K. Maekawa, N. Murata, J. Tsuchimoto, K. Asai, and M. Yoneda, “Anomalous   gate-edge leakage current in nMOSFETs caused by encroached growth of nickel silicide and its suppression by confinement of silicidation region using advanced ion-implantation   technique,” IEEE Trans. Electron Devices, v. 56, no. 2, pp. 206, 2009. [153] D. Deduytsche, C. Detavernier, R. L. V. Meirhaeghe, and C. Lavoie, “High-temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,”  J. Applied Physics, v. 98, n. 3, pp. 33526-1-9, 2005. [154] V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. V. Landuyt, “In  situ  transmission  electron  microscopy  study  of  Ni  silicide  phase  formed  on   (001)  Si  active  lines,”  J. Applied Physics, v. 90, n. 1, pp. 167, 2001. [155] J. Mileham, V. Le, S. Shetty, J. Hebb, Y. Wang, D. Owen, R. Binder, R. Giedigkeit, S. Waidmann, I. Richter, K. Dittmar, H. Prinz, and M. Weisheit, “Impact  of  dual  beam  laser   spike annealing parameters on nickel silicide formation   characteristics,” 18th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2010, pp. 155. [156] Y.-W. Chen, N.-T Ho, J. Lai, T. C. Tsai, C. C. Huang, J. Y. Wu, B. Ng, A. J. Mayur, A. Tang S. Muthukrishnan, J. Zelenko, H. Yang, “Advances  on  32  nm  NiPt  silicide  process,”   17th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2009, pp. 4. 176 [157] B. Adams, D. Jennings, K. Ma, A. J. Mayur, S. Moffatt, S. G. Nagy, and V. Parihar, “Characterization   of   nickel   silicides   produced   by   millisecond   anneals,” 15th IEEE Int. Conf. on Advanced Thermal Processing of Semiconductors, 2007. [158] Y. Setiawan, P. S. Lee, K. L. Pey, X. C. Wang, G. C. Lim and B. L. Tan, “Laser-induced Ni(Pt) germanosilicide formation through a self-limiting melting phenomenon on Si1xGex/Si  heterostructure,” [159] Appl. Phys. Lett., v. 90, 073108, 2007. Y. Setiawan, P. S. Lee, K. L. Pey, X. C. Wang, and G. C. Lim, “Laser-induced Ni(Ti) silicide  formation,” Appl. Phys. Lett., v. 88, 113108, 2006. [160] J.-S. Luo, W.-T. Lin, C. Y. Chang, and W. C. Tsai, “Interfacial   reactions   of   Ni   on   Si0.76Ge0.24 and  Si  by  pulsed  laser  annealing,” Mat. Chem. and Phys., v. 54, pp. 160, 1998. [161] B. Weber, K. Gärtner, A. Witzmann, C. Kaschner, “Non-equilibrium epitaxial silicides – a special effect of silicide formation by ns-laser  irraditation,” Appl. Surf. Sci., v. 54, pp. 381, 1992. [162] P. Baeri, M. G. Grimaldi, F. Priolo, A. G. Cullis, N. G. Chew, “Epitaxial  NiSi  layers  on   -oriented  Si  obtained  by  pulsed  laser  irradiation,” J. Applied Physics, v. 66, no. 2, pp. 861, 1989. [163] M. A. Harith, J. P. Zhang, P. Baeri, E. Rimini, G. Celotti, “Epitaxial  silicide  formation  by   multi-shot  irradiation  of  Ni  thin  films  on  Si  with  Nd  laser,” J. Applied Physics, v. 57, no. 10, pp. 4560, 1985. [164] G.G. Bentini, M. Servidori, C. Cohen, R. Nipoti and A. V. Drigo, “Titanium  and  nickel   silicide formation after Q-switched  laser  and  multiscanning  electron  beam  irradiation,” J. Applied Physics, v. 53, n. 3, pp. 1525, 1982. [165] J. F. Ziegler and J. P. Bierack, Stopping and Range of Ions in Matter, [Online]. Available http://www.srim.org. [166] F.  Neppl,  F.  Fischer  and  U.  Schwabe,  “TaSix barrier for low resistivity and high reliability of contacts to shallow diffusion regions in silicon,”  Thin Solid Films, v. 120, n. 4, p257266, Oct 1984. [167] O. Krause, H. Ryssel and P. Pichler, “Determination  of  aluminum  diffusion  parameters  in   silicon,” J. Applied Physics, v. 91, n. 9, pp. 5645, 2002. [168] S.-D. Kim, C.-M Park and J. C. S. Woo, “Formation   and control of box-shaped ultrashallow junction using laser annealing and pre-amorphization   implantation,”   Solid-State Electronics, v. 49, pp. 131, 2005. [169] M. F. V. Allmen and S. S. Lau, in Laser Annealing of Semiconductors, edited by J. M. Poate and J. W. Mayer (Academic, New York, 1982), p. 450. 177 [170] C.  Lavoie,  F.  M.  d’Heurle,  C.  Detavernier  and  C.  Cabral,  Jr., “Towards  implementation  of   a  nickel  silicide  process  for  CMOS  technologies,” Microelectron. Eng., v. 70, n 2-4, pp. 144, 2003. [171] T. P. Norlan, R. Sinclair and R. Beyers, “Modeling   of   agglomeration   in   polycrystalline   thin films: application to TiSi2 on  a  silicon  substrate,”  J. Applied Physics, v. 71, n. 2, pp. 720, 1992. [172] T. Yamauchi, Y. Nishi, Y. Tsuchiya, A. Kinoshita, J. Koga, and K. Kato, “Interfacial   segregation   of   metal   at   NiSi/Si   junction   for   novel   dual   silicide   technology,” in International Electron Device Meeting Tech. Dig., 2007, pp. 963. [173] J. F. Gibbons and T. W. Sigmon, in Laser Annealing of Semiconductors, edited by J. M. Poate and J. W. Mayer (Academic, New York, 1982), p. 369. [174] S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi and E. Rimini, “Solute  trapping  by   moving interface in ion-implanted  silicon,”  Appl. Phys. Lett., v. 37, n. 8, pp. 719, 1980. [175] C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal  Schottky  diodes  with  high  series  resistance,” IEEE Trans. Electron Devices, ED31, n. 10, pp. 1502, 1984. [176] R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “Influence  of  defect  passivation  by   hydrogen on the Schottky  barrier  height  of  GaAs  and  InP  contacts,”  J. Applied Physics, v. 76, n. 1, pp. 403, 1994. [177] P. Hadizad, A. S. Yapsir, T.-M. Lu, and J. C. Corelli, “Pt   Si/n-type Si Schottky barrier height change by H+ ion   implantation   near   the   interface   region,”   Nuclear Instru.and Methods in Phys. Res., B19/20, pt. 1, pp. 431, 1987. [178] I. Ok, W. Y. Loh, K-W. Ang, C. D. Young, P. Y. Hung, T. Ngai, K. Akarvardar, C. Hobbs   and   R.   Jammy,   “Parasitic   resistance   reduction   technology,”   Ext. Abs the 11th International Workshop on Junction Technology, 2011, pp. 50 – 54. [179] P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Parks, OH, 1995), Vol. 6, pp. 7237 [180] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement   in NiSi/Si contact properties with C-implantation,”  Microelectron. Eng., vol. 82, no. 3/4, pp. 479–484, Dec. 2005. [181] J. Hallstedt, M. Blomqvist, P. O. A. Persoon, L. Hultman, and H.   H.   Radamson,   “The   effect of carbon and germanium on phase transformation of nickel on Si1−x−y GexCy epitaxial  layers,”  J. Applied Physics, vol. 92, no. 5, pp. 2397–2402, Mar. 2004. 178 [182] S.   Zaima,   O.   Nakatsuka,   A.   Sakai,   J.   Murota,   and   Y.   Yasuda,   “Interfacial reaction and electrical  properties  in  Ni/Si  and  Ni/SiGe(C)  contacts,”  Appl. Surf. Sci., vol. 224, no. 1–4, pp. 215–221, Mar. 2004. [183] J. H. Yoo, H.J. Chang, B.G. Min, D.H. Ko, M. H. Cho, H. Sohn, T.W. Lee, “Thermal   stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx,” Materials Science and Engineering B, vol 154 -155, pp. 183 – 186, 2008. [184] V. Machkaoutsan, S. Mertens, M. Bauer, A, Lauwers, K. Verhyeden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S.G. Thomas, E.H.A, Granneman, “Improved  thermal  stability  of  Ni-silicides  on  Si:C  epitaxial  layers,” Microelectronic Engineering, vol 84, no 11, pp. 2542 - 2546, 2007. 179 [...]... with smaller WFin and LG 61 Fig 3.17 Plot of total resistance as a function of LG for control devices at different WFin Devices with a narrower WFin tend to have a higher electron mobility and higher REXT 62 Fig 3.18 Plot of total resistance RTotal between the source and drain as a function of LG for devices with and without S+ implantation The whiskers indicate the standard deviation... - rsat Channel backscattering coefficient - Rac Accumulation resistance Ω.cm RCH Channel resistance Ω.cm RC Silicide contact resistance Ω.cm REXT External series resistance Ω.cm ROV SDE-to-gate overlap resistance Ω.µm RS Sheet resistance RSD Deep S/D resistance Ω.cm RSDE SDE resistance Ω.cm Rsp Spreading resistance Ω.cm RTotal Total series resistance Ω.cm T Temperature K TSi Thickness of Si consumed... of this new RC reduction technology with strained nFETs with Si:C S/D stressors leads to ~53 % REXT reduction and ~18 % IDsat enhancement Enhanced device performance shown here, coupled with reported contact resistance reduction for pFETs with Al, opens new avenues to realize a novel single metal silicide integration solution with dual band edge barrier heights for selective contact resistance optimization... [(e) and (f)] 138 Fig 6.21 Key process steps for contact resistance reduction with Al ion implantation for strained nFETs with Si:C S/D stressors The Ge PAI and Al implantation steps were skipped for the control nFETs 139 Fig 6.22 Cross-sectional transmission electron microscopy (XTEM) images of the silicided S/D region of nFET with Si:C S/D stressors Uniform NiSi are formed... transistor with lattice-mismatched Si:C source/ drain stressors The lattice interaction of the Si:C S/D stressor with Si lattice at the heterojunction are plotted in the insets 4 1.3 S/D Parasitic Resistance 1.3.1 Motivation for S/D Parasitic Resistance Reduction One of the goals of CMOS scaling is to increase the IDsat to meet the demand for better switching efficiency, speed, and functionality in electronics... magnitude of the transistor drive current is determined by the total resistance (RTotal) between the source and drain The RTotal is contributed by both the S/D parasitic resistance REXT as well as the channel resistance RCH [Fig 1.3(a)] With the aggressively scaling of LG, RCH is reduced due to shorter distance between the source and drain regions The strain effect due to the S/D stressors also increases... cause phase transformation in NiSi 136 Fig 6.19 NiSi sheet resistance (Rs) as a function of silicidation temperature Presence of C and Al improves the thermal stability of NiSi Thermal stability is maintained even at silicidation temperature of 700 °C for sample with C and/ or Al implantations Delay xxi in formation of low resistivity NiSi is observed for samples with C and/ or Al implantations... 6 Fig 1.6 The major resistance components of REXT The REXT is equivalent to the series and parallel combination of ROV, RSDE, RSD, and RC 7 Fig 1.7 Relative contributions of different resistance components to REXT for (a) nFETs and (b) pFETs The RC is a major contributor to the REXT for devices with small gate length [55] 8 Fig 1.8 Energy band diagrams across the silicide/semiconductor... % EA Activation energy for diffusion eV EC Conduction band eV Ef Fermi-level eV EV Valence band eV ξ Maximum electric field V/cm GD Drain conductance S Gm,ext Extrinsic linear transconductance S Gm,int Intrinsic linear transconductance S h Planck’s  constant J.s HFin Fin height nm IDlin Linear drain current µA/µm IDS Drain current A/µm IDsat Saturation drain current µA/µm If Forward diode current A... control PtSi:C film without Te+ implantation and (b) PtSi:C film with 2 × 1014 cm-2 dose of Te+ implantation Te+ implantation formed an amorphized region, which was consumed by the silicidation process performed at 550 oC for 30 s A ~15 nm thick PtSi:C was formed The interface morphology for PtSi:C with and without Te+ implant is similar, indicating that Te+ implant and segregation does not affect the PtSi:C/Si:C . 2012 SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING A THESIS SUBMITTED FOR THE DEGREE. SOURCE AND DRAIN EXTERNAL RESISTANCE REDUCTION FOR ADVANCED TRANSISTORS KOH SHAO MING . Silicon-Carbon Source and Drain Stressors for Enhanced N-Channel MOSFET Performance 14 2.1 Introduction 14 2.2 Materials Characterization and Process Optimization of Silicon-Carbon Source/ Drain Stressors

Ngày đăng: 09/09/2015, 17:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN