Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 220 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
220
Dung lượng
2,45 MB
Nội dung
REGULATION OF INTERLEUKIN-12 AND INTERLEUKIN-23 PRODUCTION BY TRISTETRAPROLIN (TTP) LOW PEY YNG BSc (Honours), NUS A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2012 ACKNOWLEDGEMENTS All these would not have been possible without the help from my supervisor, Prof David M Kemeny, my dear lab mates for the past years as well as my family and friends. First, I would like to thank Prof Kemeny for his advice and support for the past years. Thank you for always being supportive and believing in my work even during the most difficult period. I have learnt a lot over the four years of research and also through the overseas conference opportunities that you have given us. I would also like to thank our collaborators, Dr Perry J Blackshear (Research Triangle Park, NC, US) for providing us with the TTP-/- mice and their invaluable advice. The years of PhD study would not have been so ‘bearable’ without the nice companions of DMK lab. Thank you all for not only the fun and laughter but also for the encouragements whenever the experiments fail to work. To the Yafang and Shuzhen, it has been great knowing you girls and I will never forget the time we had during our overseas trip. To Nayana, Zhou Qian, Isaac, Adrian, Kenneth and Kok loon, thank you all for the advice and help in one way or another. Hope we will always stay in contact and all the best for your future endeavours. To Christopher Yang, thank you for all the help with the experimental techniques. To Benson Chua, thank you for helping us take good care of the mice and also with their genotyping. Our experiments would not have been progressing so smoothly without your help. I would also like to thank members of the flow cytometry facility, Paul Hutchinson, Fei Chuin and Guo Hui for helping with the cell sorting and advice regarding flow cytometry. Of course I would also like to thank my most beloved family for their unwavering support and faith in me for the past years. Especially my parents, aunt and grandma who have been taking good care of me all these years. In addition, I would like to thank my husband for being very encouraging and understanding for the past few years. Thank you for helping me with the housework whenever I am busy with my thesis or lab work and thank you for being accommodating to my schedule especially during this period of time. ABSTRACT IL-12 and IL-23 form a crucial link to adaptive immunity through their ability to influence the development of TH1 and TH17 cells respectively. Despite the importance of the TH1/IL-12 and TH17/IL-23 axis in protective immunity, excessive production of IL-12 and IL-23 can be a nuisance as it leads to immunopathology. This highlights the importance of regulating IL-12 and IL-23 production and we sought to investigate the ability of the mRNA-destabilizing protein, Tristetraprolin (TTP) in regulating IL-12 and IL-23 production by bone-marrow derived dendritic cells (BMDCs). TTP involvement in the regulation of IL-12 and IL-23 production was suggested by the rapid kinetics of IL-23p19 mRNA induction and the sensitivity of IL-12p40, IL-12p35 and IL-23p19 mRNA stability to p38 MAPK inhibitor (SB202190). Using TTP-/- BMDCs, there was enhanced production of IL-23 as compared to WT BMDCs. This enhancement was due to enhanced mRNA stability of IL-23p19 as the half-life of IL-23p19 mRNA was increased. The role of TTP in regulation of IL-23p19 was further confirmed with the overexpression of TTP in HEK293/Tet-off cells as a reduction of IL-23p19 mRNA half-life was observed. Besides IL-23, TTP also negatively regulates the production of IL-12p70 and IL-6. Coculture of naïve CD4 T cells with WT and TTP-/- BMDCs revealed a role of TTP in negatively regulating TH1 responses as the proportion of IFN- producing cells was enhanced in cocultures with TTP-/- BMDCs. This enhancement of TH1 responses results from increased IL-12p70 production by TTP-/- BMDCs. Hence, our study has revealed the importance of TTP as a negative regulator of inflammatory dendritic cell function through the suppression of excessive IL-12, IL-23, TNF- and IL-6 production and the inhibition of their TH1 polarizing potential. Table of contents Chapter 1: Introduction . 17 1.1 Recognition of pathogen by innate immunity . 17 1.1.1 Toll-like receptors (TLRs) . 17 1.1.2 Nod-like receptors (NLR) 19 1.1.3 Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) 19 1.1.4 C-type lectin receptors (CLRs) 20 1.2 Subsets of dendritic cells and function . 21 1.2.1 Migratory dendritic cells and their origin 22 1.2.2 Lymphoid tissue resident dendritic cells and their function 24 1.2.3 Inflammatory dendritic cells, the protector and the destroyer . 28 1.3 Interleukin-12 and interleukin-23: Linking innate and adaptive immunity 30 1.3.1 Interleukin-12 and interleukin-23 and their receptors 31 1.3.2 Interleukin-12 and the TH1 lineage . 33 1.3.3 Role of interleukin-23 in the TH17 lineage 35 1.3.4 IL-12 and IL-23 in resistance to infection 39 1.3.5 IL-12 and IL-23 in autoimmunity inflammation 41 1.3.6 Roles of IL-12 and IL-23 in innate immunity 44 1.4 Transcriptional regulation of IL-12 and IL-23 production . 48 1.4.1 Regulation of IL-12p40 promoter 48 1.4.2 Regulation of IL-12p35 promoter 50 1.4.3 Regulation of IL-23p19 promoter 50 1.5 Post-transcriptional control of cytokine production . 52 1.5.1 Post-transcriptional control of cytokines via the AU-rich elements 52 1.5.2 ARE-binding proteins 53 1.5.3 The central role of ARE-binding proteins in ARE-mRNA degradation 54 1.5.4 Tristetraprolin and its regulation through covalent modifications . 57 1.6 Aims of this thesis . 59 1.7 Specific aims . 60 1.8 Hypothesis 60 Chapter 2: Material and Methods 61 2.1 Preparation of buffers and culture media 61 2.1.1 Phosphate-buffered saline (PBS) . 61 2.1.2 MACS/FACS buffer . 61 2.1.3 Complete medium for cell culture 62 2.1.4 Optiprep density centrifugation media for splenic DC isolation . 62 2.1.5 Digestion buffer for splenic dendritic cells isolation . 63 2.1.6 Buffers for ELISA 63 2.1.7 Buffers for SDS-PAGE and Western Blot . 63 2.2 Cell isolation . 63 2.2.1 Generation of GM-CSF-derived bone marrow dendritic cell (BMDCs) . 63 2.2.2 Isolation of splenic dendritic cells 64 2.2.3 Isolation of splenic CD4 or CD8 T cells 66 2.2.4 Stimulation of dendritic cells with microbial components and cytokines . 67 2.2.5 Coculture of dendritic cells and T cells 68 2.3 Fluorescent activated cells sorting (FACS) analysis 68 2.3.1 Surface staining of cells . 68 2.3.2 Intracellular cytokine staining of cells . 69 2.3.3 Preparation of cells for sorting . 71 2.3.4 List of antibodies used for FACS analysis and cell sorting . 71 2.4 ELISA for detection of cytokines . 72 2.5 SDS-PAGE and Western Blot Analysis . 73 2.5.1 Reagents . 73 2.5.2 SDS-PAGE and Western Blot 74 2.6 Qualitative and quantitative analysis of nucleic acid 74 2.6.1 Quantification of mRNA and DNA levels . 74 2.6.2 Extraction of mRNA from cells . 74 2.6.3 Reverse Transcription 75 2.6.4 Real-time PCR . 76 2.6.5 Isolation of genomic DNA from mouse tail . 77 2.6.6 Polymerase chain reaction (PCR) for the genotyping of TTP-/- mice 78 2.7 Molecular cloning and transfection in human embryonic kidney cells (HEK293) 79 2.7.1 Reagents . 79 2.7.2 Preparation of LB broth and LB agar . 79 2.7.3 Purification of DNA from gel 80 2.7.4 Plasmid DNA purification using the QIAprep Spin Miniprep Kit (Qiagen)81 2.7.5 Plasmid DNA purification using Qiagen HiSpeed Plasmid Maxi Kit . 81 2.7.6 Polyfect of HEK293 cell line . 83 2.7.7 Creation of a stable Tet-off Advanced HEK293 cell line 84 2.7.8 pcDNA 3.1/V5-His TOPO® TA Expression of V5-His-Tristetraprolin . 84 2.7.9 Topo TA cloning of IL-23p19, IL-23p19Δ763, IL-23p19Δ1219 & IL23p19Δ1284 86 2.7.10 Ligation of IL-23p19, IL-23p19Δ763, IL-23p19Δ1219 and IL23p19Δ1284 DNA fragment into pTre-tight vector. . 87 2.8 Statistics 89 Chapter 3: Interleukin-23 production by murine GM-CSF-derived bone marrow dendritic cells upon microbial stimuli 90 3.1 Introduction . 90 3.2 Results . 92 3.2.1 Generation of GM-CSF-derived BMDCs 92 3.2.2 Purification of splenic dendritic cells . 92 3.2.3 Differential ability of microbial stimuli to induce IL-12 and IL-23 production . 96 3.2.4 Production of IL-12 and IL-23 are enhanced by CD4 T cells and are dependent on CD40-CD40L interaction . 101 3.2.5 Differential ability of BMDCs and splenic DC to produce IL-12 and IL-23 . 105 3.3 Discussion . 107 Chapter 4: IL-23 production is dependent on Tristetraprolin (TTP) mediated mRNA decay . 112 4.1 Introduction . 112 4.2 Results . 114 4.2.1 IL-23p19 production follows a rapid kinetics of mRNA accumulation 114 4.2.2 mRNA degradation of IL-23p19, IL-12p40, IL-12p35 and TNF- are dependent on p38 MAPK 117 4.2.3 LPS induces the mRNA and protein expression of Tristetraprolin (TTP) . 119 4.2.4 Genotyping of TTP deficient mice . 121 4.2.5 Characterization of TTP-/- bone marrow derived dendritic cells 123 4.2.6 Tristetraprolin negatively regulates the expression of IL-23 by enhancing mRNA degradation of IL-23p19 . 125 4.3 Discussion . 130 Chapter 5: Overexpression of Tristetraprolin in HEK293 cell line enhances the breakdown of IL-23p19 mRNA . 134 5.1 Introduction . 134 5.2 Results . 136 5.2.1 Creating a HEK293 cell line stably expressing tetR-VP-16 fusion protein (HEK293/Tet off) and cloning of IL-23p19, IL-23p19∆1219, IL-23p19∆1284 into pTRETIGHT vector 136 5.2.2 Cloning of V5/His-tagged Tristetraprolin 143 5.2.3 Transfection of pTRE-IL-23p19 into HEK293 stably expressing Tet-off Advanced . 146 5.3 Discussion . 151 Chapter 6: Tristetraprolin negatively regulates production of IL-12p70 by BMDCs and suppresses TH1 development 153 6.1 Introduction . 153 6.2 Results . 156 6.2.1 Tristetraprolin negatively regulates the expression of IL-12p70 through enhancing mRNA degradation of IL-12p35 . 156 6.2.2 Tristetraprolin negatively regulates both TH1 and TH17 promoting cytokines . 159 6.2.3 Tristetraprolin KO BMDCs demonstrated enhanced polarization of naïve CD4 T cells to IFN- producing TH1 cells while inhibiting TH17 polarization 160 6.2.4 Enhanced production of IL-12p70 from Tristetraprolin deficient BMDCs resulted in enhanced TH1 polarization . 165 6.3 Discussion . 170 Chapter 7: Final Discussion 173 7.1 Summary of findings 173 7.2 Limitations of current studies . 175 7.2.1 GM-CSF-derived BMDCs as an in vitro equivalent of inflammatory dendritic cells and their role in the polarization of naïve CD4 T cells . 175 7.2.2 Usage of HEK293 cell line 176 7.3 Targeting IL-12 and IL-23 in chronic diseases . 177 7.3.1 Targeting IL-12 and IL-23 in inflammatory and autoimmune diseases 177 7.3.2 Targeting IL-12 and IL-23 in asthma? . 178 7.4 Tristetraprolin as a possible target for immunotherapy 179 7.4.1 Tristetraprolin as a global regulator of cytokine production 179 7.4.2 Tristetraprolin as a negative regulator of TH1 development . 180 7.4.3 Targeting tristetraprolin for immunotherapy . 181 7.5 Future studies 182 7.5.1 Effect of TTP deficiency on asthma . 182 7.5.2 Effect of TTP deficiency on protection against influenza . 182 REFERENCES . 184 List of Figures and Tables Figure 1.1 Model of divergent differentiation of TH1 and TH17 lineages and role of Treg cells. . 38 Figure 1.2 Mechanism of Tristetraprolin mediated ARE-mRNA decay. . 56 Figure 3.1. Generation of bone marrow-derived dendritic cells. . 93 Table 3.1. Percentages of CD11c+ expressing cells before and after CD11c positive selection of bone-marrow cells cultured with GM-CSF for days 94 Figure 3.2. Isolation of splenic dendritic cells. 95 Figure 3.3. Determining the dose of TLR agonists and zymosan required for the production of IL-23 by BMDCs. 97 Figure 3.4 Determining the dose of TLR agonists and zymosan required for the production of IL-12p70 by BMDCs. 98 Figure 3.5. Differential requirements for the production of IL-12p70 and IL-23. . 99 Figure 3.6. Production of IL-12p40, IL-10 and TNF- by different TLR agonists. 100 Figure 3.7. Effect of CD4 and CD8 T cells coculture on IL-23 and IL-12p70 production. 102 Figure 3.8. CD4 T cells enhances IL-23 production via a CD40-CD40L dependent and IFN- independent mechanism. 103 Figure 3.9. Effect of agonistic anti-CD40 and MegaCD40L on IL-23 production. . 104 Fig 3.10. Production of IL-23, TNF-, IL-10 and IL-12p70 by splenic dendritic cells and BMDCs. . 106 Figure 4.1. Kinetics of IL-12p40, IL-12p35 and IL-23p19 mRNA upon LPS/IFN- stimulation. . 115 Figure 4.2. Kinetics of IL-12p40, IL-12p70 and IL-23 cytokine production upon LPS or LPS/IFN- stimulation. 116 Figure 4.3. Degradation of IL-23p19, TNF-, IL-12p40 and IL-12p35 mRNAs are dependent on a p38 MAPK dependent mechanism. . 118 Figure 4.4. Kinetics of TTP mRNA and protein expression post-LPS stimulation. 120 Figure 4.5. Genotyping of tristetraprolin deficient mice. . 122 Figure 4.6. CD11c, MHC-II (IA/IE) and CD86 expression on WT and TTP-/- BMDCs. 124 10 Ogilvie, R.L., M. Abelson, H.H. Hau, I. Vlasova, P.J. Blackshear, and P.R. Bohjanen. 2005. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J Immunol 174:953-961. Ogilvie, R.L., J.R. Sternjohn, B. Rattenbacher, I.A. Vlasova, D.A. Williams, H.H. Hau, P.J. Blackshear, and P.R. Bohjanen. 2009. Tristetraprolin mediates interferon-gamma mRNA decay. J Biol Chem 284:11216-11223. Oppmann, B., R. Lesley, B. Blom, J.C. Timans, Y. Xu, B. Hunte, F. Vega, N. Yu, J. Wang, K. Singh, F. Zonin, E. Vaisberg, T. Churakova, M. Liu, D. Gorman, J. Wagner, S. Zurawski, Y. Liu, J.S. Abrams, K.W. Moore, D. Rennick, R. de Waal-Malefyt, C. Hannum, J.F. Bazan, and R.A. Kastelein. 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715-725. Orange, J.S., and C.A. Biron. 1996. An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138-1142. Panitch, H.S., R.L. Hirsch, A.S. Haley, and K.P. Johnson. 1987. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1:893-895. Parham, C., M. Chirica, J. Timans, E. Vaisberg, M. Travis, J. Cheung, S. Pflanz, R. Zhang, K.P. Singh, F. Vega, W. To, J. Wagner, A.M. O'Farrell, T. McClanahan, S. Zurawski, C. Hannum, D. Gorman, D.M. Rennick, R.A. Kastelein, R. de Waal Malefyt, and K.W. Moore. 2002. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699-5708. Park, A.Y., B.D. Hondowicz, and P. Scott. 2000. IL-12 is required to maintain a Th1 response during Leishmania major infection. J Immunol 165:896-902. Park, H., Z. Li, X.O. Yang, S.H. Chang, R. Nurieva, Y.H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, and C. Dong. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133-1141. Parker, R., and H. Song. 2004. The enzymes and control of eukaryotic mRNA turnover. Nature structural & molecular biology 11:121-127. Pasparakis, M., L. Alexopoulou, V. Episkopou, and G. Kollias. 1996. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for 205 TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397-1411. Peng, J., X.O. Yang, S.H. Chang, J. Yang, and C. Dong. 2010. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell research 20:62-71. Peng, S.S., C.Y. Chen, N. Xu, and A.B. Shyu. 1998. RNA stabilization by the AUrich element binding protein, HuR, an ELAV protein. EMBO J 17:3461-3470. Perussia, B., S.H. Chan, A. D'Andrea, K. Tsuji, D. Santoli, M. Pospisil, D. Young, S.F. Wolf, and G. Trinchieri. 1992. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCRgamma delta+ T lymphocytes, and NK cells. J Immunol 149:3495-3502. Petermann, F., V. Rothhammer, M.C. Claussen, J.D. Haas, L.R. Blanco, S. Heink, I. Prinz, B. Hemmer, V.K. Kuchroo, M. Oukka, and T. Korn. 2010. gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33:351-363. Peters, W., J.G. Cyster, M. Mack, D. Schlondorff, A.J. Wolf, J.D. Ernst, and I.F. Charo. 2004. CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis. J Immunol 172:7647-7653. Peters, W., M. Dupuis, and I.F. Charo. 2000. A mechanism for the impaired IFNgamma production in C-C chemokine receptor (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 165:7072-7077. Peters, W., H.M. Scott, H.F. Chambers, J.L. Flynn, I.F. Charo, and J.D. Ernst. 2001. Chemokine receptor serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 98:7958-7963. Pflanz, S., J.C. Timans, J. Cheung, R. Rosales, H. Kanzler, J. Gilbert, L. Hibbert, T. Churakova, M. Travis, E. Vaisberg, W.M. Blumenschein, J.D. Mattson, J.L. Wagner, W. To, S. Zurawski, T.K. McClanahan, D.M. Gorman, J.F. Bazan, R. de Waal Malefyt, D. Rennick, and R.A. Kastelein. 2002. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16:779-790. 206 Piecyk, M., S. Wax, A.R. Beck, N. Kedersha, M. Gupta, B. Maritim, S. Chen, C. Gueydan, V. Kruys, M. Streuli, and P. Anderson. 2000. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 19:4154-4163. Pirhonen, J., S. Matikainen, and I. Julkunen. 2002. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol 169:5673-5678. Plevy, S.E., J.H. Gemberling, S. Hsu, A.J. Dorner, and S.T. Smale. 1997. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol Cell Biol 17:4572-4588. Pooley, J.L., W.R. Heath, and K. Shortman. 2001. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but crosspresented to CD8 T cells by CD8+ dendritic cells. J Immunol 166:5327-5330. Presky, D.H., L.J. Minetti, S. Gillessen, U. Gubler, R. Chizzonite, A.S. Stern, and M.K. Gately. 1996. Evidence for multiple sites of interaction between IL-12 and its receptor. Annals of the New York Academy of Sciences 795:390-393. Pulendran, B., J.L. Smith, G. Caspary, K. Brasel, D. Pettit, E. Maraskovsky, and C.R. Maliszewski. 1999. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 96:1036-1041. Qian, X., H. Ning, J. Zhang, D.F. Hoft, D.J. Stumpo, P.J. Blackshear, and J. Liu. 2011. Posttranscriptional regulation of IL-23 expression by IFN-gamma through tristetraprolin. J Immunol 186:6454-6464. Qu, C., E.W. Edwards, F. Tacke, V. Angeli, J. Llodra, G. Sanchez-Schmitz, A. Garin, N.S. Haque, W. Peters, N. van Rooijen, C. Sanchez-Torres, J. Bromberg, I.F. Charo, S. Jung, S.A. Lira, and G.J. Randolph. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200:1231-1241. Rampersad, R.R., T.K. Tarrant, C.T. Vallanat, T. Quintero-Matthews, M.F. Weeks, D.A. Esserman, J. Clark, F. Di Padova, D.D. Patel, A.M. Fong, and P. Liu. 2011. Enhanced Th17-cell responses render CCR2-deficient mice more susceptible for autoimmune arthritis. PloS one 6:e25833. Randolph, G.J., S. Beaulieu, S. Lebecque, R.M. Steinman, and W.A. Muller. 1998. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480-483. 207 Randolph, G.J., G. Sanchez-Schmitz, R.M. Liebman, and K. Schakel. 2002. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 196:517-527. Reis e Sousa, C., S. Hieny, T. Scharton-Kersten, D. Jankovic, H. Charest, R.N. Germain, and A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186:1819-1829. Renno, T., V. Taupin, L. Bourbonniere, G. Verge, E. Tran, R. De Simone, M. Krakowski, M. Rodriguez, A. Peterson, and T. Owens. 1998. Interferongamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci 12:376-389. Rigby, W.F., K. Roy, J. Collins, S. Rigby, J.E. Connolly, D.B. Bloch, and S.A. Brooks. 2005. Structure/function analysis of tristetraprolin (TTP): p38 stressactivated protein kinase and lipopolysaccharide stimulation not alter TTP function. J Immunol 174:7883-7893. Robinson, D., K. Shibuya, A. Mui, F. Zonin, E. Murphy, T. Sana, S.B. Hartley, S. Menon, R. Kastelein, F. Bazan, and A. O'Garra. 1997. IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 7:571-581. Rogers, N.C., E.C. Slack, A.D. Edwards, M.A. Nolte, O. Schulz, E. Schweighoffer, D.L. Williams, S. Gordon, V.L. Tybulewicz, G.D. Brown, and C. Reis e Sousa. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507-517. Rogge, L., and F. Sinigaglia. 1997. Early events controlling T-helper cell differentiation: the role of the IL-12 receptor. Chemical immunology 68:38-53. Romani, N., S. Holzmann, C.H. Tripp, F. Koch, and P. Stoitzner. 2003. Langerhans cells - dendritic cells of the epidermis. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 111:725-740. Saccani, S., S. Pantano, and G. Natoli. 2003. Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 11:1563-1574. Saijo, S., S. Ikeda, K. Yamabe, S. Kakuta, H. Ishigame, A. Akitsu, N. Fujikado, T. Kusaka, S. Kubo, S.H. Chung, R. Komatsu, N. Miura, Y. Adachi, N. Ohno, K. Shibuya, N. Yamamoto, K. Kawakami, S. Yamasaki, T. Saito, S. Akira, and Y. 208 Iwakura. 2010. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681-691. Salkowski, C.A., K. Kopydlowski, J. Blanco, M.J. Cody, R. McNally, and S.N. Vogel. 1999. IL-12 is dysregulated in macrophages from IRF-1 and IRF-2 knockout mice. J Immunol 163:1529-1536. Sancho, D., D. Mourao-Sa, O.P. Joffre, O. Schulz, N.C. Rogers, D.J. Pennington, J.R. Carlyle, and C. Reis e Sousa. 2008. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 118:2098-2110. Sancho, D., and C. Reis e Sousa. 2012. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491-529. Sanjabi, S., A. Hoffmann, H.C. Liou, D. Baltimore, and S.T. Smale. 2000. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc Natl Acad Sci U S A 97:12705-12710. Sarkar, B., Q. Xi, C. He, and R.J. Schneider. 2003. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol Cell Biol 23:66856693. Sato, K., X.L. Yang, T. Yudate, J.S. Chung, J. Wu, K. Luby-Phelps, R.P. Kimberly, D. Underhill, P.D. Cruz, Jr., and K. Ariizumi. 2006. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854-38866. Schaerli, P., K. Willimann, L.M. Ebert, A. Walz, and B. Moser. 2005. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23:331-342. Schaljo, B., F. Kratochvill, N. Gratz, I. Sadzak, I. Sauer, M. Hammer, C. Vogl, B. Strobl, M. Muller, P.J. Blackshear, V. Poli, R. Lang, P.J. Murray, and P. Kovarik. 2009. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J Immunol 183:1197-1206. Scharton-Kersten, T., L.C. Afonso, M. Wysocka, G. Trinchieri, and P. Scott. 1995. IL12 is required for natural killer cell activation and subsequent T helper cell development in experimental leishmaniasis. J Immunol 154:5320-5330. Schett, G., J. Zwerina, and G. Firestein. 2008. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Annals of the rheumatic diseases 67:909-916. 209 Schiavoni, G., F. Mattei, P. Sestili, P. Borghi, M. Venditti, H.C. Morse, 3rd, F. Belardelli, and L. Gabriele. 2002. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196:1415-1425. Schmidt, C., T. Giese, B. Ludwig, I. Mueller-Molaian, T. Marth, S. Zeuzem, S.C. Meuer, and A. Stallmach. 2005. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflammatory bowel diseases 11:16-23. Schnare, M., A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2000. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current biology : CB 10:1139-1142. Schnorrer, P., G.M. Behrens, N.S. Wilson, J.L. Pooley, C.M. Smith, D. El-Sukkari, G. Davey, F. Kupresanin, M. Li, E. Maraskovsky, G.T. Belz, F.R. Carbone, K. Shortman, W.R. Heath, and J.A. Villadangos. 2006. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci U S A 103:10729-10734. Schreiber, S., B. Feagan, G. D'Haens, J.F. Colombel, K. Geboes, M. Yurcov, V. Isakov, O. Golovenko, C.N. Bernstein, D. Ludwig, T. Winter, U. Meier, C. Yong, J. Steffgen, and B.S. Group. 2006. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 4:325-334. Schuler, G., and R.M. Steinman. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526546. Schulz, O., and C. Reis e Sousa. 2002. Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107:183-189. Schulz, S.M., G. Kohler, N. Schutze, J. Knauer, R.K. Straubinger, A.A. Chackerian, E. Witte, K. Wolk, R. Sabat, Y. Iwakura, C. Holscher, U. Muller, R.A. Kastelein, and G. Alber. 2008. Protective immunity to systemic infection with attenuated Salmonella enterica serovar enteritidis in the absence of IL-12 is 210 associated with IL-23-dependent IL-22, but not IL-17. J Immunol 181:78917901. Scott, H.M., and J.L. Flynn. 2002. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun 70:5946-5954. Seder, R.A., R. Gazzinelli, A. Sher, and W.E. Paul. 1993. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin inhibition of such priming. Proc Natl Acad Sci U S A 90:10188-10192. Serbina, N.V., and E.G. Pamer. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311-317. Serbina, N.V., T.P. Salazar-Mather, C.A. Biron, W.A. Kuziel, and E.G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59-70. Seth, R.B., L. Sun, C.K. Ea, and Z.J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3. Cell 122:669-682. Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659-667. Sheikh, S.Z., T. Kobayashi, K. Matsuoka, J.C. Onyiah, and S.E. Plevy. 2011. Characterization of an interferon-stimulated response element (ISRE) in the Il23a promoter. J Biol Chem 286:1174-1180. Sheikh, S.Z., K. Matsuoka, T. Kobayashi, F. Li, T. Rubinas, and S.E. Plevy. 2010. Cutting edge: IFN-gamma is a negative regulator of IL-23 in murine macrophages and experimental colitis. J Immunol 184:4069-4073. Shortman, K., and S.H. Naik. 2007. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19-30. Shyu, A.B., J.G. Belasco, and M.E. Greenberg. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev 5:221-231. 211 Sieve, A.N., K.D. Meeks, S. Lee, and R.E. Berg. 2010. A novel immunoregulatory function for IL-23: Inhibition of IL-12-dependent IFN-gamma production. Eur J Immunol 40:2236-2247. Singh, D., B. Kane, N.A. Molfino, R. Faggioni, L. Roskos, and A. Woodcock. 2010. A phase study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma. BMC pulmonary medicine 10:3. Slack, J.L., K. Schooley, T.P. Bonnert, J.L. Mitcham, E.E. Qwarnstrom, J.E. Sims, and S.K. Dower. 2000. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to proinflammatory signaling pathways. J Biol Chem 275:4670-4678. Smits, H.H., A.J. van Beelen, C. Hessle, R. Westland, E. de Jong, E. Soeteman, A. Wold, E.A. Wierenga, and M.L. Kapsenberg. 2004. Commensal Gramnegative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol 34:1371-1380. Stoecklin, G., and P. Anderson. 2006. Posttranscriptional mechanisms regulating the inflammatory response. Adv Immunol 89:1-37. Stoecklin, G., M. Colombi, I. Raineri, S. Leuenberger, M. Mallaun, M. Schmidlin, B. Gross, M. Lu, T. Kitamura, and C. Moroni. 2002. Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J 21:4709-4718. Stoecklin, G., S. Hahn, and C. Moroni. 1994. Functional hierarchy of AUUUA motifs in mediating rapid interleukin-3 mRNA decay. J Biol Chem 269:28591-28597. Stoecklin, G., T. Stubbs, N. Kedersha, S. Wax, W.F. Rigby, T.K. Blackwell, and P. Anderson. 2004. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23:1313-1324. Stoecklin, G., S.A. Tenenbaum, T. Mayo, S.V. Chittur, A.D. George, T.E. Baroni, P.J. Blackshear, and P. Anderson. 2008. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J Biol Chem 283:1168911699. Strobl, H., E. Riedl, C. Scheinecker, C. Bello-Fernandez, W.F. Pickl, K. Rappersberger, O. Majdic, and W. Knapp. 1996. TGF-beta promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 157:1499-1507. 212 Sun, L., G. Stoecklin, S. Van Way, V. Hinkovska-Galcheva, R.F. Guo, P. Anderson, and T.P. Shanley. 2007. Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J Biol Chem 282:3766-3777. Sunderkotter, C., T. Nikolic, M.J. Dillon, N. Van Rooijen, M. Stehling, D.A. Drevets, and P.J. Leenen. 2004. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410-4417. Sur, S., J. Lam, P. Bouchard, A. Sigounas, D. Holbert, and W.J. Metzger. 1996. Immunomodulatory effects of IL-12 on allergic lung inflammation depend on timing of doses. J Immunol 157:4173-4180. Sutton, C.E., S.J. Lalor, C.M. Sweeney, C.F. Brereton, E.C. Lavelle, and K.H. Mills. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331-341. Suzuki, S., K. Honma, T. Matsuyama, K. Suzuki, K. Toriyama, I. Akitoyo, K. Yamamoto, T. Suematsu, M. Nakamura, K. Yui, and A. Kumatori. 2004. Critical roles of interferon regulatory factor in CD11bhighCD8alphadendritic cell development. Proc Natl Acad Sci U S A 101:8981-8986. Szabo, S.J., A.S. Dighe, U. Gubler, and K.M. Murphy. 1997. Regulation of the interleukin (IL)-12R beta subunit expression in developing T helper (Th1) and Th2 cells. J Exp Med 185:817-824. Szabo, S.J., S.T. Kim, G.L. Costa, X. Zhang, C.G. Fathman, and L.H. Glimcher. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655-669. Takahasi, K., M. Yoneyama, T. Nishihori, R. Hirai, H. Kumeta, R. Narita, M. Gale, Jr., F. Inagaki, and T. Fujita. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428-440. Takeda, K., T. Kaisho, and S. Akira. 2003. Toll-like receptors. Annu Rev Immunol 21:335-376. Tanabe, T., M. Chamaillard, Y. Ogura, L. Zhu, S. Qiu, J. Masumoto, P. Ghosh, A. Moran, M.M. Predergast, G. Tromp, C.J. Williams, N. Inohara, and G. Nunez. 2004. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23:1587-1597. 213 Taylor, G.A., E. Carballo, D.M. Lee, W.S. Lai, M.J. Thompson, D.D. Patel, D.I. Schenkman, G.S. Gilkeson, H.E. Broxmeyer, B.F. Haynes, and P.J. Blackshear. 1996. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:445-454. Tigno-Aranjuez, J.T., J.M. Asara, and D.W. Abbott. 2010. Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses. Genes Dev 24:2666-2677. Ting, J.P., R.C. Lovering, E.S. Alnemri, J. Bertin, J.M. Boss, B.K. Davis, R.A. Flavell, S.E. Girardin, A. Godzik, J.A. Harton, H.M. Hoffman, J.P. Hugot, N. Inohara, A. Mackenzie, L.J. Maltais, G. Nunez, Y. Ogura, L.A. Otten, D. Philpott, J.C. Reed, W. Reith, S. Schreiber, V. Steimle, and P.A. Ward. 2008. The NLR gene family: a standard nomenclature. Immunity 28:285-287. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350-4354. Town, T., F. Bai, T. Wang, A.T. Kaplan, F. Qian, R.R. Montgomery, J.F. Anderson, R.A. Flavell, and E. Fikrig. 2009. Toll-like receptor mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30:242-253. Traynor, T.R., A.C. Herring, M.E. Dorf, W.A. Kuziel, G.B. Toews, and G.B. Huffnagle. 2002. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol 168:4659-4666. Traynor, T.R., W.A. Kuziel, G.B. Toews, and G.B. Huffnagle. 2000. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 164:2021-2027. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133-146. Tripp, C.S., M.K. Gately, J. Hakimi, P. Ling, and E.R. Unanue. 1994. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma. J Immunol 152:1883-1887. 214 Tsujimura, H., T. Tamura, and K. Ozato. 2003. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor drives the development of type I IFNproducing plasmacytoid dendritic cells. J Immunol 170:1131-1135. Tudor, C., F.P. Marchese, E. Hitti, A. Aubareda, L. Rawlinson, M. Gaestel, P.J. Blackshear, A.R. Clark, J. Saklatvala, and J.L. Dean. 2009. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and proinflammatory mediator mRNAs in murine macrophages. FEBS letters 583:1933-1938. Uhlig, H.H., B.S. McKenzie, S. Hue, C. Thompson, B. Joyce-Shaikh, R. Stepankova, N. Robinson, S. Buonocore, H. Tlaskalova-Hogenova, D.J. Cua, and F. Powrie. 2006. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309-318. Valladeau, J., O. Ravel, C. Dezutter-Dambuyant, K. Moore, M. Kleijmeer, Y. Liu, V. Duvert-Frances, C. Vincent, D. Schmitt, J. Davoust, C. Caux, S. Lebecque, and S. Saeland. 2000. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71-81. van Dijk, E., N. Cougot, S. Meyer, S. Babajko, E. Wahle, and B. Seraphin. 2002. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915-6924. Varnum, B.C., Q.F. Ma, T.H. Chi, B. Fletcher, and H.R. Herschman. 1991. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 11:1754-1758. Vartanian, T., Y. Li, M. Zhao, and K. Stefansson. 1995. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1:732-743. Veldhoen, M., R.J. Hocking, C.J. Atkins, R.M. Locksley, and B. Stockinger. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179-189. Vollmer, T.L., D.R. Wynn, M.S. Alam, and J. Valdes. 2011. A phase 2, 24-week, randomized, placebo-controlled, double-blind study examining the efficacy and safety of an anti-interleukin-12 and -23 monoclonal antibody in patients 215 with relapsing-remitting or secondary progressive multiple sclerosis. Multiple sclerosis 17:181-191. Vremec, D., M. O'Keeffe, H. Hochrein, M. Fuchsberger, I. Caminschi, M. Lahoud, and K. Shortman. 2007. Production of interferons by dendritic cells, plasmacytoid cells, natural killer cells, and interferon-producing killer dendritic cells. Blood 109:1165-1173. Vremec, D., J. Pooley, H. Hochrein, L. Wu, and K. Shortman. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978-2986. Waibler, Z., U. Kalinke, J. Will, M.H. Juan, J.M. Pfeilschifter, and H.H. Radeke. 2007. TLR-ligand stimulated interleukin-23 subunit expression and assembly is regulated differentially in murine plasmacytoid and myeloid dendritic cells. Mol Immunol 44:1483-1489. Wakashin, H., K. Hirose, Y. Maezawa, S. Kagami, A. Suto, N. Watanabe, Y. Saito, M. Hatano, T. Tokuhisa, Y. Iwakura, P. Puccetti, I. Iwamoto, and H. Nakajima. 2008. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. American journal of respiratory and critical care medicine 178:1023-1032. Wang, I.M., C. Contursi, A. Masumi, X. Ma, G. Trinchieri, and K. Ozato. 2000. An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J Immunol 165:271-279. Watanabe, T., N. Asano, S. Fichtner-Feigl, P.L. Gorelick, Y. Tsuji, Y. Matsumoto, T. Chiba, I.J. Fuss, A. Kitani, and W. Strober. 2010. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest 120:1645-1662. Weinmann, A.S., D.M. Mitchell, S. Sanjabi, M.N. Bradley, A. Hoffmann, H.C. Liou, and S.T. Smale. 2001. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat Immunol 2:51-57. Wellcome Trust Case Control, C., C. Australo-Anglo-American Spondylitis, P.R. Burton, D.G. Clayton, L.R. Cardon, N. Craddock, P. Deloukas, A. Duncanson, D.P. Kwiatkowski, M.I. McCarthy, W.H. Ouwehand, N.J. Samani, J.A. Todd, P. Donnelly, J.C. Barrett, D. Davison, D. Easton, D.M. Evans, H.T. Leung, J.L. Marchini, A.P. Morris, C.C. Spencer, M.D. Tobin, A.P. Attwood, J.P. 216 Boorman, B. Cant, U. Everson, J.M. Hussey, J.D. Jolley, A.S. Knight, K. Koch, E. Meech, S. Nutland, C.V. Prowse, H.E. Stevens, N.C. Taylor, G.R. Walters, N.M. Walker, N.A. Watkins, T. Winzer, R.W. Jones, W.L. McArdle, S.M. Ring, D.P. Strachan, M. Pembrey, G. Breen, D. St Clair, S. Caesar, K. Gordon-Smith, L. Jones, C. Fraser, E.K. Green, D. Grozeva, M.L. Hamshere, P.A. Holmans, I.R. Jones, G. Kirov, V. Moskivina, I. Nikolov, M.C. O'Donovan, M.J. Owen, D.A. Collier, A. Elkin, A. Farmer, R. Williamson, P. McGuffin, A.H. Young, I.N. Ferrier, S.G. Ball, A.J. Balmforth, J.H. Barrett, T.D. Bishop, M.M. Iles, A. Maqbool, N. Yuldasheva, A.S. Hall, P.S. Braund, R.J. Dixon, M. Mangino, S. Stevens, J.R. Thompson, F. Bredin, M. Tremelling, M. Parkes, H. Drummond, C.W. Lees, E.R. Nimmo, J. Satsangi, S.A. Fisher, A. Forbes, C.M. Lewis, C.M. Onnie, N.J. Prescott, J. Sanderson, C.G. Matthew, J. Barbour, M.K. Mohiuddin, C.E. Todhunter, J.C. Mansfield, T. Ahmad, F.R. Cummings, D.P. Jewell, J. Webster, M.J. Brown, M.G. Lathrop, J. Connell, A. Dominiczak, C.A. Marcano, B. Burke, R. Dobson, J. Gungadoo, K.L. Lee, P.B. Munroe, S.J. Newhouse, A. Onipinla, C. Wallace, M. Xue, M. Caulfield, M. Farrall, A. Barton, R.A.G. Biologics in, C. Genomics Study Syndicate Steering, I.N. Bruce, H. Donovan, S. Eyre, P.D. Gilbert, S.L. Hilder, A.M. Hinks, S.L. John, C. Potter, A.J. Silman, D.P. Symmons, W. Thomson, J. Worthington, D.B. Dunger, B. Widmer, T.M. Frayling, R.M. Freathy, H. Lango, J.R. Perry, B.M. Shields, M.N. Weedon, A.T. Hattersley, G.A. Hitman, M. Walker, K.S. Elliott, C.J. Groves, C.M. Lindgren, N.W. Rayner, N.J. Timpson, E. Zeggini, M. Newport, G. Sirugo, E. Lyons, F. Vannberg, A.V. Hill, L.A. Bradbury, C. Farrar, J.J. Pointon, P. Wordsworth, M.A. Brown, J.A. Franklyn, J.M. Heward, M.J. Simmonds, S.C. Gough, S. Seal, C. Breast Cancer Susceptibility, M.R. Stratton, N. Rahman, M. Ban, A. Goris, S.J. Sawcer, A. Compston, D. Conway, M. Jallow, M. Newport, G. Sirugo, K.A. Rockett, S.J. Bumpstead, A. Chaney, K. Downes, M.J. Ghori, R. Gwilliam, S.E. Hunt, M. Inouye, A. Keniry, E. King, R. McGinnis, S. Potter, R. Ravindrarajah, P. Whittaker, C. Widden, D. Withers, N.J. Cardin, D. Davison, T. Ferreira, J. Pereira-Gale, I.B. Hallgrimsdo'ttir, B.N. Howie, Z. Su, Y.Y. Teo, D. Vukcevic, D. Bentley, M.A. Brown, A. Compston, M. Farrall, A.S. Hall, A.T. Hattersley, A.V. Hill, M. Parkes, M. Pembrey, M.R. Stratton, S.L. Mitchell, P.R. Newby, O.J. Brand, J. Carr-Smith, S.H. Pearce, R. 217 McGinnis, A. Keniry, P. Deloukas, J.D. Reveille, X. Zhou, A.M. Sims, A. Dowling, J. Taylor, T. Doan, J.C. Davis, L. Savage, M.M. Ward, T.L. Learch, M.H. Weisman, and M. Brown. 2007. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature genetics 39:1329-1337. Werner, J.L., M.A. Gessner, L.M. Lilly, M.P. Nelson, A.E. Metz, D. Horn, C.W. Dunaway, J. Deshane, D.D. Chaplin, C.T. Weaver, G.D. Brown, and C. Steele. 2011. Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23dependent manner during invasive fungal infection. Infect Immun 79:39663977. Willenborg, D.O., S. Fordham, C.C. Bernard, W.B. Cowden, and I.A. Ramshaw. 1996. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223-3227. Wilson, N.S., D. El-Sukkari, G.T. Belz, C.M. Smith, R.J. Steptoe, W.R. Heath, K. Shortman, and J.A. Villadangos. 2003. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187-2194. Winzen, R., B.K. Thakur, O. Dittrich-Breiholz, M. Shah, N. Redich, S. Dhamija, M. Kracht, and H. Holtmann. 2007. Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol Cell Biol 27:8388-8400. Worthington, M.T., J.W. Pelo, M.A. Sachedina, J.L. Applegate, K.O. Arseneau, and T.T. Pizarro. 2002. RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein. J Biol Chem 277:4855848564. Xu, L.G., Y.Y. Wang, K.J. Han, L.Y. Li, Z. Zhai, and H.B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727-740. Xu, N., C.Y. Chen, and A.B. Shyu. 1997. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17:4611-4621. Xu, Y., Y. Zhan, A.M. Lew, S.H. Naik, and M.H. Kershaw. 2007. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179:7577-7584. 218 Yang, J., T.L. Murphy, W. Ouyang, and K.M. Murphy. 1999. Induction of interferongamma production in Th1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur J Immunol 29:548-555. Yap, G., M. Pesin, and A. Sher. 2000. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol 165:628-631. Yoneyama, M., M. Kikuchi, K. Matsumoto, T. Imaizumi, M. Miyagishi, K. Taira, E. Foy, Y.M. Loo, M. Gale, Jr., S. Akira, S. Yonehara, A. Kato, and T. Fujita. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851-2858. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730-737. Zhang, G.X., S. Yu, B. Gran, J. Li, I. Siglienti, X. Chen, D. Calida, E. Ventura, M. Kamoun, and A. Rostami. 2003. Role of IL-12 receptor beta in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J Immunol 171:4485-4492. Zhao, L.L., A. Linden, M. Sjostrand, Z.H. Cui, J. Lotvall, and M. Jordana. 2000. IL12 regulates bone marrow eosinophilia and airway eotaxin levels induced by airway allergen exposure. Allergy 55:749-756. Zhao, W., M. Liu, N.J. D'Silva, and K.L. Kirkwood. 2011. Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3' untranslated region. J Interferon Cytokine Res 31:629-637. Zheng, Y., P.A. Valdez, D.M. Danilenko, Y. Hu, S.M. Sa, Q. Gong, A.R. Abbas, Z. Modrusan, N. Ghilardi, F.J. de Sauvage, and W. Ouyang. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282-289. Zhu, C., K. Gagnidze, J.H. Gemberling, and S.E. Plevy. 2001a. Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter. Demonstration of novel functional elements by a reductionist approach. J Biol Chem 276:18519-18528. Zhu, W., M.A. Brauchle, F. Di Padova, H. Gram, L. New, K. Ono, J.S. Downey, and J. Han. 2001b. Gene suppression by tristetraprolin and release by the p38 219 pathway. American journal of physiology. Lung cellular and molecular physiology 281:L499-508. Zubiaga, A.M., J.G. Belasco, and M.E. Greenberg. 1995. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15:2219-2230. 220 [...]... IL-23p19 3’UTR deletion contructs 139 Figure 5.3 Schematic diagram showing TOPO TA cloning of IL-23p19, IL23p19 121 9 and IL-23p19 128 4 140 Figure 5.4 Schematic diagram showing EcoRI restriction digest and ligation of IL23p19, IL-23p19 121 9 and IL-23p19 128 4 into pTRETIGHT vector 141 Figure 5.5 Identification of bacterial clones expressing pTRE-IL-23p19, pTRE-IL23p19 128 4, pTRE-IL23p19 121 9... enhanced production of IL-12p70 but not IL -23, IL-1 or IL-6 166 Figure 6.9 Enhanced development of IFN-producing CD4 T cells by TTP-/- BMDCs results from enhanced production of IL-12p70 but not IL -23, IL-1 or IL-6 167 Figure 6.10 Supplementation of IL -12 but not IL -23 reversed -IL-12p40 suppression of TH1 development 168 Figure 6.11 Supplementation of IL -12 but not IL -23 reversed... role of IL -23 but not IL -12 in the stimulation of memory CD4 T cells to produce IL-17A and IL-17F This was the pivotal finding that first associated IL -23 with the production of IL-17 Subsequently, IL -23 was identified as a crucial factor required for the maintenance of TH17 lineage 1.3.1 Interleukin- 12 and interleukin- 23 and their receptors Despite their divergent roles in adaptive immunity, IL -12 and. .. costimulation with CD28 and by IL -12 itself (Rogge and Sinigaglia, 1997; Szabo et al., 1997) Besides sharing the same IL-12p40 subunit, similarity between IL -12 and IL -23 is extended to their receptors as IL -23 receptor (IL-23R) comprises of the IL-23R subunit as well as the IL-12R1 subunit that is shared with IL-12R (Oppmann et al., 2000; Parham et al., 2002) Similar to IL-12R, expression of IL-23R was absent... domains The similarity of IL-6 and IL -12 extended to their receptors as IL12 receptor components (IL-12R1 and IL-12R2) and gp130 component of the IL-6 receptor both belong to the gp130 (glycoprotein 130) family of receptors On the other hand, IL-12p40 is structurally related to the soluble IL-6 receptor (IL-6R) (Hunter, 2005) IL-12R is mainly expressed by activated T cells and NK cells (Presky et... 1993; Trinchieri, 2003) The role of IL -12 in the induction of TH1 responses has been demonstrated by the addition of recombinant IL -12 in both in vitro and in vivo models Furthermore, treatment of animals with neutralizing antibodies specific for IL -12 or using animals genetically deficient for IL-12p40, IL-12p35, IL-12R1, IL-12R2 and STAT4 resulted in a suppression of TH1 responses (Trinchieri, 2003)... IL -23 secretion post-LPS stimulation 127 Figure 4.8 TTP-/- BMDCs exhibit enhanced levels of IL-23p19 and TNF- mRNA expression 128 Figure 4.9 TTP-/- BMDCs exhibit prolonged expression of IL-23p19 mRNA through enhanced mRNA stability 129 Figure 5.1 Schematic of gene regulation in Tet-Off gene expression system 137 Figure 5.2 Diagram depicting a series of. .. expression of IL-12R has also been reported on other cell types such as DCs and B-cell lines (Airoldi et al., 2002; Grohmann et al., 1998) IL-12R is undetectable on most resting T cells and is expressed at low level by resting NK cells Upon 31 activation through TCR, the transcription and expression of both chains of IL-12R is upregulated, and this upregulation is further enhanced in the presence of IFN-,... infection by the balance of IL -12 and IL-4, which favours TH1 and TH2 development respectively Indeed, IL -12 when present early during clonal expansion, primes both CD4 and CD8 T cells for the production of high levels of IFN- upon restimulation (Manetti et al., 1994; Seder et al., 1993) However, in experiments involving single cell cloning, IL -12 has minimal ability to reduce T-cell production of IL-4,... first evidence of IL -23 in the regulation of T cell effector function comes from the finding that IL -23, but not IL -12, induced the production of IL-17 by activated and memory T cells (Aggarwal et al., 2003) Subsequently, with an experimental autoimmune encephalomyelitis (EAE) model, IL -23 was unable to induce the development of IFN- producing TH1 cells but instead, promoted development of a T cell subset . protector and the destroyer 28 1.3 Interleukin-12 and interleukin-23: Linking innate and adaptive immunity 30 1.3.1 Interleukin-12 and interleukin-23 and their receptors 31 1.3.2 Interleukin-12 and. 1 REGULATION OF INTERLEUKIN-12 AND INTERLEUKIN-23 PRODUCTION BY TRISTETRAPROLIN (TTP) LOW PEY YNG BSc (Honours), NUS A THESIS SUBMITED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. 44 1.4 Transcriptional regulation of IL-12 and IL-23 production 48 1.4.1 Regulation of IL-12p40 promoter 48 1.4.2 Regulation of IL-12p35 promoter 50 1.4.3 Regulation of IL-23p19 promoter 50