Pleiotropically acting MicroRNA 10b regulates angiogenicity, invasion and growth of tumor cells resembling mesenchymal subgroup of glioblastoma multiforme

123 233 0
Pleiotropically acting MicroRNA 10b regulates angiogenicity, invasion and growth of tumor cells resembling mesenchymal subgroup of glioblastoma multiforme

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Pleiotropically-acting MicroRNA-10b Regulates Angiogenicity, Invasion and Growth of Tumor Cells Resembling Mesenchymal Subgroup of Glioblastoma Multiforme Lin Jiakai (B.Sc (Hons)), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2012 -1- Acknowledgements The work underlying this thesis was performed at the Institute of Bioengineering and Nanotechnology I would like to extend my gratitude to all who have encouraged me these years I would like to thank: My supervisor A/P Shu Wang, for his expert guidance and encouragement when times got tough Prof Jackie Ying and Ms Noreena, directors of the Institute of Bioengineering and Nanotechnology, for creating a challenging, exciting and stimulating working environment and support for my PhD studies My past and present lab mates for being fantastic people to work around with; Jerome, Jaana, Poonam, Daniel, Keryin, Yukti, Esther, Xiaoying, Seong Loong, Zhao Ying, Jieming, Chunxiao, Mohammad, Chrishan, Lam, Yovita, Timothy, Detu, Ghayathri My parents for being a strong pillar of support in my life My lovely wife, Huiling, and daughter, Rui En, for their unwavering support over the last few years I could not have achieved this without you -2- Publication Jiakai Lin, Shi Jia Teo, Jeyaseelan Kandiah, Shu Wang, MicroRNA-10b Pleiotropically Regulates Angiogenicity, Invasion and Growth of Tumor Cells Resembling Mesenchymal Subgroup of Glioblastoma Multiforme, Submitted Publication which I have contributed to whose work is not included in the thesis Chunxiao Wu*, Jiakai Lin*, Michelle Hong, Yukti Choudhury, Poonam Balani, Doreen Leung, Lam H Dang, Ying Zhao, Jieming Zeng and Shu Wang, Combinatorial Control of Suicide Gene Expression by Tissue-specific Promoter and microRNA Regulation for Cancer Therapy, Molecular Therapy 2009 December; 17(12): 2058–2066 *co-first authors -3- Table of Contents Table of Contents Summary List of Tables List of Figures List of Abbreviations 10 Chapter 1: Introduction 13 1.1 Discovery, biogenesis and mechanisms of action of microRNAs 13 1.2 MicroRNAs in glioblastoma multiforme (GBM) 15 1.3 MicroRNA loss-of-function studies 20 1.3.1 Considerations in microRNA sponge design 26 1.3.2 Advantages and limitations of microRNA sponge 34 1.3.3 Interrogating microRNA function via transient microRNA sponge expression 37 1.3.4 Interrogating microRNA function via stable microRNA sponge expression 39 1.3.5 Elucidation of microRNA function in cancer development 40 1.4 Key signaling pathways dysregulated in glioblastoma 44 multiforme 1.4.1 Genetic alterations occurring in the Receptor Tyrosine Kinase (RTK) pathways 1.4.2 Genetic alterations occurring in TP53 tumor suppressor 46 pathway 1.4.3 Genetic alterations occurring in RB1 tumor suppressor 48 pathway 44 Chapter 2: Aims and objectives 50 Chapter 3: Materials and methods 52 Chapter 4: Results 59 4.1 U87-2M1 is an invasive mesenchymal subline of U87 59 4.2 Inhibition of miR-10b decreases invasiveness of U87-2M1 68 4.3 miR-10b silencing decreases angiogenicity of U87-2M1 71 -4- 4.4 Inhibition of miR-10b increases apoptosis of U87-2M1 glioma cells and prolongs survival of U87-2M1-bearing mice 76 4.5 Pleiotropic miR-10b regulates a broad range of tumor suppressors 81 4.6 Perturbation of direct and indirect targets of miR-10b correlates with poorer patient survival 87 Chapter 5: Discussion 90 Chapter 6: Conclusion and future studies 94 Bibliography 96 -5- Summary Glioblastoma multiforme (GBM) is an extremely heterogeneous disease despite its seemingly uniform pathology Deconvolution of The Cancer Genome Atlas’s GBM gene expression data has unveiled the existence of distinct gene expression signatures underlying discrete GBM subgroups Recent conflicting findings proposed that microRNA10b exclusively regulates glioma growth or invasion but not both We showed that silencing of microRNA-10b by baculoviral decoy vectors in a glioma cell line resembling the mesenchymal subgroup of GBM reduces its growth, invasion and angiogenesis whilst promoting apoptosis in vitro In an orthotopic human glioma mouse model, inhibition of microRNA-10b diminishes the invasiveness, angiogenicity and growth of mesenchymal glioma cells in the brain and significantly prolonged survival of glioma-bearing mice We demonstrated that the pleiotropic nature of microRNA-10b was due to its suppression of multiple tumor suppressors including TP53, FOXO3, CYLD, PAX6, PTCH1 and NOTCH1 By interrogation of the REMBRANDT database, we noted that dysregulation of many direct targets of microRNA-10b was associated with significantly poorer patient survival Thus, our studies uncovered a novel role for microRNA-10b in regulating angiogenesis and suggest that microRNA-10b may be a pleiotropic regulator of gliomagenesis -6- List of Tables Table 1…………………………………………………………… 21 Table 2…………………………………………………………… 43 Table 3…………………………………………………………… 60 Table 4…………………………………………………………… 67 -7- List of Figures Figure Principle of using microRNA sponge to inhibit endogenous microRNA function……………………………… Figure Design of an expression cassette harboring a microRNA sponge……………………………………………… Figure Illustration of the sequence of a microRNA-10b binding site ……………………………………………………… Figure Genomic sequence alterations and copy number changes for components of the RTK/Ras/PI(3)K network of genes ………… ………………………………………………… Figure Genomic sequence alterations and copy number changes for components of the TP53 network of genes…… Figure Genomic sequence alterations and copy number changes for components of the RB1 network of genes……… Figure U87 and U87-2M1 glioma cells were xenografted intracranially in Balb c/nude mice for three weeks…………… Figure U87-2M1 showed higher endogenous protein expression of N-cadherin, fibronectin, vimentin, Twist, Stat3, MMP13, FOXM1, HGF, PLAUR and PLAU compared to U87 cells………………………………………………………………… Figure Quantification of miR-10b expression in glioma cell lines………………………………………………………………… Figure 10 Construction of control sponge or miR-10 sponge in baculoviral vectors and the transduction efficiency in U87-2M1 cells…………………………………………………………… Figure 11 MicroRNA-10b decoy vector, but not the control decoy vector, relieves the suppression of luciferase expression by endogenous miR-10b in U87-2M1 glioma cells Figure 12 MicroRNA-10b decoy vector decreases the level of detectable miR-10b in U87-2M1 glioma cells………………… Figure 13 Inhibition of miR-10b in U87-2M1 cells diminishes its capacity to invade through a transwell membrane coated with basement membrane matrix……………………………… Figure 14 Prior silencing of miR-10b in U87-2M1 cells in vitro reduces growth of orthotopic tumor with no evident signs of localized invasion………………………………………………… Figure 15 MicroRNA-10b silencing reduces protein expression of β-catenin, MMP13, RhoC, PLAUR, PLAU and HGF and upregulates HOXD10 protein expression…………… Figure 16 Over-expression of miR-10b promotes invasiveness of U87-2M1………………………………………… Figure 17 Inhibition of miR-10b suppresses angiogenesis by U87-2M1 glioma cells…………………………………………… 25 28 32 46 47 49 59 61 62 63 65 65 68 69 70 71 72 -8- Figure 18 Angiogenic potential of U87-2M1 cells were determined by an in vitro endothelial cell tube formation 73 assay………………………………………………………………… Figure 19 MicroRNA-10b likely reduces angiogenic potential of U87-2M1 by decreasing expression of pro-angiogenic 74 proteins such as VEGF, IL8, TGFβ2, CTGF and THBS1…… Figure 20 A panel of 13 angiogenic genes down-regulated by miR-10b silencing is frequently over-expressed in the Mesenchymal subgroup of glioblastoma multiforme (GBM)… Figure 21 MicroRNA-10b silencing promotes apoptosis of U87-2M1 cells……………………………………………………… Figure 22 MTS assay shows a decrease in cell viability after inhibition of miR-10b……………………………………………… Figure 23 Elevated caspase activity after miR-10b silencing was detected by the use of a caspase-sensitive Casp-Glo reagent……………………………………………………………… Figure 24 Western blotting confirms increased protein expression of cleaved caspase-3 and cleaved caspase-7…… Figure 25 Delivery of miR-10b decoy vector, but not the control decoy vector, into a subcutaneous U87-2M1 tumor results in enhanced TUNEL-positive staining………………… Figure 26 Mice bearing U87-2M1 tumors that arose from prior treatment in vitro with PBS, control decoy vector, or miR-10b decoy vector showed significantly different survival trends…… Figure 27 Predicted miR-10b binding sites in TP53, FOXO3, PAX6, CYLD, PTCH1 and NOTCH1…………………………… Figure 28 Identification of TP53, FOXO3, CYLD, NOTCH1, PTCH1 and PAX6 as targets of miR-10b……………………… Figure 29 Silencing of miR-10b up-regulates target proteins TP53, FOXO3, CYLD, PTCH1, NOTCH1 and PAX6………… Figure 30 NFkB transcriptional activity is significantly lower in miR-10b-silenced U87-2M1 cells………………………………… Figure 31 A mechanistic model summarizing the pleiotropic actions of miR-10b………………………………………………… Figure 32 Perturbed expression of direct targets of miR-10b are associated with poor patient survival……………………… Figure 33 Upregulation of indirect oncogenic targets of miR10b significantly correlates with poor patient survival………… 75 76 77 77 78 79 80 82 83 84 85 87 88 89 -9- List of Abbreviations AGO AKT AMO AMPK ANGPT1 ANXA2 BCL2 BIM CAB39 CCND1 CDK4 CDKN2A CMV COL1A2 CTGF CTNNB1 CYLD DAVID DVL E2F1 EGFP EGFR ELM EMT ERK EZH2 FN1 FOXM1 FOXO3 GADD45A GADD45B GBM GDP GTP HGF HOXD10 HUVEC IKB-Α IKB-Β IL8 ITGA4 JAG1 Argonaute Protein kinase B Anti-miRNA oligonucleotides 5' adenosine monophosphate- activated protein kinase Angiopoietin1 Annexin A2 B-cell CLL/lymphoma BCL2-like 11 (apoptosis facilitator) Calcium-binding protein 39 Cyclin D1 Cyclin dependent kinase Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) Cytomegalovirus Collagen 1A2 Connective tissue growth factor Catenin (cadherin-associated protein), beta Cylindromatosis (turban tumor syndrome) Database for Annotation, Visualization, and Integrated Discovery Dishevelled E2F transcription factor Enhanced green fluorescent protein Epidermal growth factor receptor Experimental lung metastasis Epithelial-mesenchymal-transition Extracellular signal-regulated kinase Enhancer of zeste homolog Fibronectin1 Forkhead box protein M1 Forkhead box O3 Growth arrest and DNA-damage-inducible, alpha Growth arrest and DNA-damage-inducible, beta Glioblastoma multiforme Guanosine diphosphate Guanosine triphosphate Hepatocyte growth factor Homeobox D10 Human umbilical vein endothelial cells I-kappa-B-kinase-alpha I-kappa-B-kinase-beta Interleukin Integrin, alpha Jagged - 10 - 80 Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al Silencing of microRNAs in vivo with 'antagomirs' Nature 2005 Dec 1;438(7068):685-9 81 Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al LNA-mediated microRNA silencing in non-human primates Nature 2008 Apr 17;452(7189):896-9 82 Davis S, Lollo B, Freier S, Esau C Improved targeting of miRNA with antisense oligonucleotides Nucleic Acids Res 2006;34(8):2294304 83 Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al Specificity, duplex degradation and subcellular localization of antagomirs Nucleic Acids Res 2007;35(9):2885-92 84 Fabani MM, Gait MJ miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNApeptide conjugates RNA 2008 Feb;14(2):336-46 85 Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting Cell Metab 2006 Feb;3(2):87-98 86 Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects Mol Pharmacol 2006 Nov;70(5):1621-9 - 109 - 87 Lin H, Xiao J, Luo X, Wang H, Gao H, Yang B, et al Overexpression HERG K(+) channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-kappaB and inactivation of tumor suppressor Nkx3.1 J Cell Physiol 2007 Jul;212(1):137-47 88 Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al p53-mediated activation of miRNA34 candidate tumorsuppressor genes Curr Biol 2007 Aug 7;17(15):1298-307 89 Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, et al Interferon modulation of cellular microRNAs as an antiviral mechanism Nature 2007 Oct 18;449(7164):919-22 90 Vermeulen A, Robertson B, Dalby AB, Marshall WS, Karpilow J, Leake D, et al Double-stranded regions are essential design components of potent inhibitors of RISC function RNA 2007 May;13(5):723-30 91 Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, et al Target mimicry provides a new mechanism for regulation of microRNA activity Nat Genet 2007 Aug;39(8):1033-7 92 Ivashuta S, Banks IR, Wiggins BE, Zhang Y, Ziegler TE, Roberts JK, et al Regulation of gene expression in plants through miRNA inactivation PLoS One 2011;6(6):e21330 93 Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP A coding-independent function of gene and pseudogene - 110 - mRNAs regulates tumour biology Nature 2010 Jun 24;465(7301):1033-8 94 Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, et al Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs Cell 2010 May 14;141(4):618-31 95 Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model Nat Biotechnol 2010 Apr;28(4):341-7 96 Bolisetty MT, Dy G, Tam W, Beemon KL Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival J Virol 2009 Dec;83(23):12009-17 97 Wilson JM Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency Mol Genet Metab 2009 Apr;96(4):151-7 98 D'Costa J, Mansfield SG, Humeau LM Lentiviral vectors in clinical trials: Current status Curr Opin Mol Ther 2009 Oct;11(5):55464 99 Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M Efficient gene transfer into human hepatocytes by baculovirus vectors Proc Natl Acad Sci U S A 1995 Oct 24;92(22):10099-103 - 111 - 100 Kost TA, Condreay JP Recombinant baculoviruses as mammalian cell gene-delivery vectors Trends Biotechnol 2002 Apr;20(4):173-80 101 Boyce FM, Bucher NL Baculovirus-mediated gene transfer into mammalian cells Proc Natl Acad Sci U S A 1996 Mar 19;93(6):234852 102 Hofmann C, Strauss M Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system Gene Ther 1998 Apr;5(4):531-6 103 Haeseleer F, Imanishi Y, Saperstein DA, Palczewski K Gene transfer mediated by recombinant baculovirus into mouse eye Invest Ophthalmol Vis Sci 2001 Dec;42(13):3294-300 104 Kinnunen K, Kalesnykas G, Mahonen AJ, Laidinen S, Holma L, Heikura T, et al Baculovirus is an efficient vector for the transduction of the eye: comparison of baculovirus- and adenovirus-mediated intravitreal vascular endothelial growth factor D gene transfer in the rabbit eye J Gene Med 2009 May;11(5):382-9 105 Luz-Madrigal A, Clapp C, Aranda J, Vaca L In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter Virol J 2007;4:88 106 Lehtolainen P, Tyynela K, Kannasto J, Airenne KJ, Yla-Herttuala S Baculoviruses exhibit restricted cell type specificity in rat brain: a - 112 - comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo Gene Ther 2002 Dec;9(24):1693-9 107 Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L, et al Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector Proc Natl Acad Sci U S A 2000 Dec 19;97(26):14638-43 108 Tani H, Abe T, Limn CK, Mochizuki R, Yamagishi J, Kitagawa Y, et al [Baculovirus vector gene transfer into mammalian cells] Uirusu 2003 Dec;53(2):185-93 109 Park HJ, Lee WY, Kim JH, Jung HJ, Kim NH, Kim BK, et al Interstitial tissue-specific gene expression in mouse testis by intratunica albuguineal injection of recombinant baculovirus Asian J Androl 2009 May;11(3):342-50 110 Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis Cell 2009 Jun 12;137(6):1032-46 111 Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, et al MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths Mol Biol Cell 2008 Aug;19(8):3272-82 112 Papapetrou EP, Korkola JE, Sadelain M A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells Stem Cells 2010 Feb;28(2):287-96 - 113 - 113 Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle J Gene Med 2004 Apr;6(4):395-404 114 Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, et al miR-15a and miR-16 are implicated in cell cycle regulation in a Rbdependent manner and are frequently deleted or down-regulated in non-small cell lung cancer Cancer Res 2009 Jul 1;69(13):5553-9 115 Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells Cell Host Microbe 2009 Apr 23;5(4):376-85 116 Gottwein E, Cullen BR A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest J Virol 2010 May;84(10):5229-37 117 Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, et al Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype Nat Med 2010 Jan;16(1):49-58 118 Hanlon K, Rudin CE, Harries LW Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL) PLoS One 2009;4(9):e7169 - 114 - 119 Bartel DP MicroRNAs: target recognition and regulatory functions Cell 2009 Jan 23;136(2):215-33 120 Brennecke J, Stark A, Russell RB, Cohen SM Principles of microRNA-target recognition PLoS Biol 2005 Mar;3(3):e85 121 Elbashir SM, Lendeckel W, Tuschl T RNA interference is mediated by 21- and 22-nucleotide RNAs Genes Dev 2001 Jan 15;15(2):188-200 122 Yekta S, Shih IH, Bartel DP MicroRNA-directed cleavage of HOXB8 mRNA Science 2004 Apr 23;304(5670):594-6 123 Filipowicz W, Bhattacharyya SN, Sonenberg N Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008 Feb;9(2):102-14 124 Scherr M, Venturini L, Battmer K, Schaller-Schoenitz M, Schaefer D, Dallmann I, et al Lentivirus-mediated antagomir expression for specific inhibition of miRNA function Nucleic Acids Res 2007;35(22):e149 125 Doench JG, Petersen CP, Sharp PA siRNAs can function as miRNAs Genes Dev 2003 Feb 15;17(4):438-42 126 Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, et al Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state Nat Biotechnol 2007 Dec;25(12):1457-67 - 115 - 127 Runx2 Huang J, Zhao L, Xing L, Chen D MicroRNA-204 regulates protein expression and mesenchymal progenitor cell differentiation Stem Cells 2010 Feb;28(2):357-64 128 Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, et al A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment Nat Cell Biol 2008 Aug;10(8):987-93 129 Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, et al MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes Biochem Biophys Res Commun 2009 Nov 13;389(2):315-20 130 Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al Suppression of non-small cell lung tumor development by the let-7 microRNA family Proc Natl Acad Sci U S A 2008 Mar 11;105(10):3903-8 131 Guha A, Feldkamp MM, Lau N, Boss G, Pawson A Proliferation of human malignant astrocytomas is dependent on Ras activation Oncogene 1997 Dec 4;15(23):2755-65 132 Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2 EMBO J 1998 Sep 1;17(17):5001-14 - 116 - 133 Sherr CJ, Roberts JM CDK inhibitors: positive and negative regulators of G1-phase progression Genes Dev 1999 Jun 15;13(12):1501-12 134 Labuhn M, Jones G, Speel EJ, Maier D, Zweifel C, Gratzl O, et al Quantitative real-time PCR does not show selective targeting of p14(ARF) but concomitant inactivation of both p16(INK4A) and p14(ARF) in 105 human primary gliomas Oncogene 2001 Mar 1;20(9):1103-9 135 Berens ME, Giese A " those left behind." Biology and oncology of invasive glioma cells Neoplasia 1999 Aug;1(3):208-19 136 Mischel PS, Cloughesy TF Targeted molecular therapy of GBM Brain Pathol 2003 Jan;13(1):52-61 137 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 Cancer Cell 2010 Jan 19;17(1):98-110 138 Chai G, Liu N, Ma J, Li H, Oblinger JL, Prahalad AK, et al MicroRNA-10b regulates tumorigenesis in neurofibromatosis type Cancer Sci 2010 Sep;101(9):1997-2004 139 Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, et al MicroRNA-10b is overexpressed in pancreatic cancer, - 117 - promotes its invasiveness, and correlates with a poor prognosis Surgery 2011 Nov;150(5):916-22 140 Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al MicroRNA- 10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines J Biol Chem 2010 Mar 12;285(11):798694 141 Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC Int J Cancer 2009 Sep 15;125(6):1407-13 142 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al Identification of human brain tumour initiating cells Nature 2004 Nov 18;432(7015):396-401 143 Xie Q, Thompson R, Hardy K, DeCamp L, Berghuis B, Sigler R, et al A highly invasive human glioblastoma pre-clinical model for testing therapeutics J Transl Med 2008;6:77 144 Wang CY, Li F, Yang Y, Guo HY, Wu CX, Wang S Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy Cancer Res 2006 Jun 1;66(11):5798-806 145 Huang da W, Sherman BT, Lempicki RA Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat Protoc 2009;4(1):44-57 - 118 - 146 Huang da W, Sherman BT, Lempicki RA Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists Nucleic Acids Res 2009 Jan;37(1):1-13 147 Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al The transcriptional network for mesenchymal transformation of brain tumours Nature 2010 Jan 21;463(7279):318-25 148 Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, et al Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity Int J Oncol 2010 Nov;37(5):1121-31 149 Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, et al FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells Cancer Res 2008 Nov 1;68(21):8733-42 150 Esencay M, Newcomb EW, Zagzag D HGF upregulates CXCR4 expression in gliomas via NF-kappaB: implications for glioma cell migration J Neurooncol 2010 Aug;99(1):33-40 151 Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, et al Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl Mol Cell 2010 Mar 12;37(5):607-19 - 119 - 152 Kunsch C, Lang RK, Rosen CA, Shannon MF Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6 J Immunol 1994 Jul 1;153(1):153-64 153 Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, et al Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis Mol Cell Biol 1997 Jul;17(7):4015-23 154 Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G The tumour suppressor CYLD negatively regulates NFkappaB signalling by deubiquitination Nature 2003 Aug 14;424(6950):801-5 155 Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members Nature 2003 Aug 14;424(6950):793-6 156 Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, et al Notch1 functions as a tumor suppressor in mouse skin Nat Genet 2003 Mar;33(3):416-21 157 Alvarez-Medina R, Le Dreau G, Ros M, Marti E Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation Development 2009 Oct;136(19):3301-9 - 120 - 158 Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al FoxM1 Promotes beta-Catenin Nuclear Localization and Controls Wnt Target-Gene Expression and Glioma Tumorigenesis Cancer Cell 2011 Oct 18;20(4):427-42 159 Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, et al FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells Cancer Res 2006 Apr 1;66(7):3593-602 160 Barsotti AM, Prives C Pro-proliferative FoxM1 is a target of p53- mediated repression Oncogene 2009 Dec 3;28(48):4295-305 161 Pandit B, Halasi M, Gartel AL p53 negatively regulates expression of FoxM1 Cell Cycle 2009 Oct 15;8(20):3425-7 162 Delpuech O, Griffiths B, East P, Essafi A, Lam EW, Burgering B, et al Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression Mol Cell Biol 2007 Jul;27(13):4917-30 163 Lin L, Hron JD, Peng SL Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a Immunity 2004 Aug;21(2):203-13 164 el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al WAF1, a potential mediator of p53 tumor suppression Cell 1993 Nov 19;75(4):817-25 - 121 - 165 Iotsova V, Stehelin D Down-regulation of fibronectin gene expression by the p53 tumor suppressor protein Cell Growth Differ 1996 May;7(5):629-34 166 Su F, Pascal LE, Xiao W, Wang Z Tumor suppressor U19/EAF2 regulates thrombospondin-1 expression via p53 Oncogene 2010 Jan 21;29(3):421-31 167 Zhou YH, Hu Y, Mayes D, Siegel E, Kim JG, Mathews MS, et al PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor A J Neurooncol 2010 Jan;96(2):191-200 168 Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, et al PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene Cancer Res 2006 Oct 15;66(20):9809-17 169 Institute NC REMBRANDT home page 2005 [20-11-2011]; Available from: http://rembrandt.nci.nih.gov 170 Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, et al Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations PLoS One 2009;4(11):e7752 171 T, et Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc al The proneural molecular signature is enriched in - 122 - oligodendrogliomas and predicts improved survival among diffuse gliomas PLoS One 2010;5(9):e12548 172 Sie M, Wagemakers M, Molema G, Mooij JJ, de Bont ES, den Dunnen WF The angiopoietin 1/angiopoietin balance as a prognostic marker in primary glioblastoma multiforme J Neurosurg 2009 Jan;110(1):147-55 173 Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, et al Annexin A2 promotes glioma cell invasion and tumor progression J Neurosci 2011 Oct 5;31(40):14346-60 174 Xu XL, Kapoun AM Heterogeneous activation of the TGFbeta pathway in glioblastomas identified by gene expression-based classification using TGFbeta-responsive genes J Transl Med 2009;7:12 175 Iversen PO, Drevon CA, Reseland JE Prevention of leptin binding to its receptor suppresses rat leukemic cell growth by inhibiting angiogenesis Blood 2002 Dec 1;100(12):4123-8 176 Taraboletti G Thrombospondin-1: an inhibitor of angiogenesis Haemostasis 2001;31 Suppl 1:23-4 177 Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, et al Thrombospondin-1 is a major activator of TGF-beta1 in vivo Cell 1998 Jun 26;93(7):1159-70 - 123 - ... Jia Teo, Jeyaseelan Kandiah, Shu Wang, MicroRNA- 10b Pleiotropically Regulates Angiogenicity, Invasion and Growth of Tumor Cells Resembling Mesenchymal Subgroup of Glioblastoma Multiforme, Submitted... Inhibition of miR -10b decreases invasiveness of U87-2M1 68 4.3 miR -10b silencing decreases angiogenicity of U87-2M1 71 -4- 4.4 Inhibition of miR -10b increases apoptosis of U87-2M1 glioma cells and prolongs... both We showed that silencing of microRNA- 10b by baculoviral decoy vectors in a glioma cell line resembling the mesenchymal subgroup of GBM reduces its growth, invasion and angiogenesis whilst promoting

Ngày đăng: 09/09/2015, 17:53

Tài liệu cùng người dùng

Tài liệu liên quan