1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Use of metabolomics in biomedical and environmental studies

194 487 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 194
Dung lượng 3,01 MB

Nội dung

USE OF METABOLOMICS IN BIOMEDICAL AND ENVIRONMENTAL STUDIES HUANG SHAOMIN B.SC. (HONS), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously Huang Shaomin A0031110M 13 August 2014 i ACKNOWLEDGEMENTS I would like to express my deepest appreciation to my PhD supervisor, Professor Ong Choon Nam (Saw Swee Hock School of Public Health) for his invaluable mentorship and encouragement over the past years. The multidisciplinary training in the OCN laboratory has not broaden my horizons and expertise, but most importantly made my PhD studies both fulfilling and enriching. I would also like to acknowledge the NUS Research Scholarship, which provided strong research and educational support for my PhD education. I gratefully thank my collaborators for their guidance and support through my projects. To my seniors and friends in the OCN lab (Xu Fengguo, Xu Yongjiang, Gao Liang, Cui Liang, Jinling, Su Jin, Zou Li, Yonghai), I sincerely thank you for being truly great and generous people. Your patience and kindness have eased me well into learning more about metabolomics and mass spectrometry. I would further like to thank Dr Tan Chuen Seng for guiding me with his wealth of statistical and programming knowledge. I also thank Dorothy, Bee Lan, Mr Ong Her Yam and Ai Li for their guidance and support. My PhD education would not be complete without great friends and hence to Eugene & Wei Zhong, it has been my greatest pleasure to have known you. Both of you have greatly enriched my life perspective and education in NUS. Lastly, I would like to thank my family and friends, especially my mum and girlfriend. Their constant care and support keeps me persevering and striving for excellence and mastery. ii TABLE OF CONTENTS DECLARATION ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF PUBLICATIONS CONFERENCE ABSTRACTS SUMMARY LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS i ii iii viii ix x xvi xvii xx Chapter – Introduction of Metabolomics 1.1 Introduction .2 1.1.1 Metabolomics as a tool for understanding responses in biological systems .2 1.1.2 The role of metabolism and its implication in biological responses .5 1.1.2.1 Metabolism provides free energy to carry out biological functions 1.1.2.2 Specific metabolic pathways produce specific metabolites 1.1.2.3 Differential metabolite levels are driven by enzyme regulation 1.1.2.4 Discovering perturbed pathways and potential biomarkers 10 1.2 The discovery process in metabolomics .11 1.2.1 Experimental design 11 1.2.1.1 Sample type and variability reduction .11 1.2.1.2 Sample collection .14 1.2.1.3 Sample preparation 15 1.2.1.4 Sample injection order .16 1.3.1 Analytical Instruments .16 1.3.1.1 LC-MS and GC-MS as key analytical instruments 17 1.3.1.2 Derivatization of metabolites for GC-MS 18 1.3.1.3 Ionization modes in LC-MS and GC-MS and its implications for data analysis 19 1.3.2 Data analysis in metabolomics 21 1.3.2.1 Pre-processing 22 1.3.2.2 Normalization of Peaks 23 iii 1.3.2.3 Multivariate analysis 26 1.3.2.4 Univariate Analysis 28 1.3.2.5 Peak shortlisting and identification 28 1.3.2.6 Biological Inference .30 1.4 Objective of thesis: the application of metabolomics to biomedical and environmental studies .30 Chapter – Toxicological evaluation of silica nanoparticles using an in vitro model 2.1 Introduction .39 2.2 Materials and Methods 40 2.2.1 SiO2NP synthesis .40 2.2.2 Cell culture 41 2.2.3 Treatment of MRC-5 with SiO2NP .41 2.2.4 Metabolite extraction and chemical derivatization 42 2.2.5 GC-MS and LC-MS .42 2.2.6 Spectral data analysis .44 2.2.7 MTS cell viability assay & cell area calculation .45 2.2.8 Confocal microscopy & TEM .45 2.2.9 TEM examination of SiO2NP treated cells and EDX analysis (Energydispersive X-ray Microanalysis) 46 2.2.10 TBARS assay .46 2.2.11 Statistical analysis 47 2.3 Results .47 2.3.1 SiO2NP synthesis .47 2.3.2 MRC-5 cell line assay 48 2.3.3 Metabolomics findings 49 2.3.4 Electron microscopy reveals uptake of SiO2NP in vacuoles .53 2.4 Discussion .56 2.5 Conclusion 58 2.6 Acknowledgements 58 iv Chapter – Use of Zebrafish Embryos and Metabolomics to Assess Water Quality 3.1 Introduction .63 3.2 Materials and methods 64 3.2.1 Collection procedure 64 3.2.2 Extraction 65 3.2.3 GC-MS and LC-MS analysis .66 3.2.4 Mass spectrometry data pretreatment, marker metabolites selection and identification .69 3.2.5 3.3 mRNA transcript matching with target metabolite 70 Results .71 3.3.1 Clustering of metabolomic data shows changes during embryogenesis .71 3.3.2 Hierarchical clustering analysis and identification of metabolites 74 3.3.3 Linking metabolite levels to gene expression levels .77 3.3.4 Linking proteomic data to metabolite levels .81 3.3.5 Proof of concept: Applying zebrafish metabolomics on embryos exposed to NDMA 82 3.4 Discussion .86 3.5 Conclusion 93 Chapter – An integrated LC- and GC-MS approach for investigating non-proteinuric chronic kidney disease 4.1 Introduction .101 4.2 Materials & Methods 103 4.2.1 Patients and urine samples .103 4.2.2 Definitions of non-proteinuria and low eGFR .103 4.2.3 Metabolomic analysis using GC-MS .104 4.2.4 Metabolomic analysis using LC-MS .105 4.2.5 Metabolomic data preprocessing .106 4.2.6 Statistical analysis 107 4.3 Results .108 v 4.3.1 Patient characteristics 108 4.3.2 GC-MS analyses 109 4.3.3 LC-MS analyses 114 4.4 Discussion .118 4.5 Conclusion 122 Acknowledgements 123 Contribution statement .123 Chapter – MetaboNexus – an interactive platform for integrated metabolomics analysis 5.1 Introduction .128 5.2 Methods .130 5.2.1 Overall Design .130 5.2.2 Method of use and file input 134 5.2.2.1 Input 1: Pre-processing with MetaboNexus .135 5.2.2.1 Input 2: Pre-processing with other softwares (e.g. MZmine) 136 5.2.3 Starting MetaboNexus .137 5.2.3.1 Data transformation & annotation .137 5.2.3.2 Principal Component Analysis (PCA) .138 5.2.3.3 Partial Least Squares-Discriminant Analysis (PLS-DA) .138 5.2.3.4 Random Forest (RF) 140 5.2.3.5 Merging Variable Importance with Univariate Analysis .140 5.2.3.6 Metabolite Search & Pathway Information .141 5.2.3.7 Heatmap .142 5.3 Results .143 5.3.1 Evaluating performance of MetaboNexus .143 5.3.2 User experience .145 5.4 Conclusion 147 Chapter – Conclusions, Limitations and Outlook vi 6.1 Conclusions .150 6.2 Limitations and Outlook .152 6.3 Metabolite identification .152 6.4 Biological Interpretation .153 6.5 Scalability of experiments .155 References 157 vii LIST OF PUBLICATIONS 1. Ng DP, Salim A, Liu Y, Zou L, Xu FG, Huang S, Leong H, Ong CN. A metabolomic study of low estimated GFR in non-proteinuric type diabetes mellitus. Diabetologia. 2012 Feb;55(2):499-508 2. Huang SM, Zuo X, Li JJ, Li SF, Bay BH, Ong CN. Metabolomics studies show dose-dependent toxicity induced by SiO(2) nanoparticles in MRC-5 human fetal lung fibroblasts. Advanced Healthcare Materials. 2012 Nov;1(6):779-84 3. Huang SM, Xu F, Lam SH, Gong Z, Ong CN. Metabolomics of developing zebrafish embryos using gas chromatography- and liquid chromatography-mass spectrometry. Molecular Biosystems. 2013 Jun;9(6):1372-80 4. Huang SM, Toh WZ, Benke PI, Tan CS, Ong CN. MetaboNexus: an interactive platform for integrated metabolomics analysis. Metabolomics 2014 Dec 10(6):108493 5. Gao Y, Lu Y, Huang SM, Gao L, Liang X, Wu Y, Wang J, Huang Q, Tang L, Wang G, Yang F, Hu S, Chen Z, Wang P, Jiang Q, Huang R, Xu Y, Yang X, Ong CN. Identifying Early Urinary Metabolic Changes with Long-Term Environmental Exposure to Cadmium by Mass-Spectrometry-Based Metabolomics. Environmental Science and Technology. 2014, May 48 (11), 6409-18 6. Ho WE, Xu YJ, Xu FG, Cheng C, Peh HY, Huang SM, Tannenbaum SR, Ong CN, Wong FWS. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics. 2014 July (e-publication) All publications have been reviewed by international referees. viii CONFERENCE PRESENTATIONS 1. Singapore Water Week 2012  “Use of zebrafish embryo for water quality assessment; an integrated genomic and metabolomics approach” 2. Lhasa Toxicity Symposium 2012 – New Horizons in Toxicity Prediction, Cambridge, United Kingdom  “Metabolomics as a tool for nanotoxicity assessment – a dual in vitro and in vivo approach” 3. Yong Loo Lin School of Medicine Annual Graduate Scientific Congress, Singapore  “Metabolomics of zebrafish embryos – a GC-MS and LC-MS approach” (2011)  “MetaboNexus – a software for integrated and in-depth metabolomics analysis” (2014) ix REFERENCES Aanes, H., Winata, C. L., Lin, C. H., Chen, J. P., Srinivasan, K. G., Lee, S. G. P., Lim, A. Y. M., Hajan, H. S., Collas, P., Bourque, G., Gong, Z., Korzh, V., Aleström, P., & Mathavan, S. (2011). Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Research, 21(8), 1328–1338. doi:10.1101/gr.116012.110 Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006a). The clinical applications of a systems approach. PLoS Medicine, 3(7), e209. doi:10.1371/journal.pmed.0030209 Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006b). The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Medicine, 3(6), e208. doi:10.1371/journal.pmed.0030208 Alexiou, M., & Leese, H. J. (1992). Purine utilisation, de novo synthesis and degradation in mouse preimplantation embryos. Development (Cambridge, England), 114(1), 185–192. Alfieri, R. R., Cavazzoni, A., Petronini, P. G., Bonelli, M. A., Caccamo, A. E., Borghetti, A. F., & Wheeler, K. P. (2002). Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. The Journal of Physiology, 540(Pt 2), 499–508. Anas, M.-K. I., Lee, M. B., Zhou, C., Hammer, M.-A., Slow, S., Karmouch, J., Liu, X. J., Bröer, S., Lever, M., & Baltz, J. M. (2008). SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development (Cambridge, England), 135(24), 4123–4130. doi:10.1242/dev.026575 Babushok, V. I., Linstrom, P. J., Reed, J. J., Zenkevich, I. G., Brown, R. L., Mallard, W. G., & Stein, S. E. (2007). Development of a database of gas chromatographic retention properties of organic compounds. Journal of Chromatography. A, 1157(1-2), 414–21. doi:10.1016/j.chroma.2007.05.044 Bagwe, R. P., Yang, C., Hilliard, L. R., & Tan, W. (2004). Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir : The ACS Journal of Surfaces and Colloids, 20(19), 8336–8342. doi:10.1021/la049137j Baker, S. G. (2003). The Central Role of Receiver Operating Characteristic (ROC) Curves in Evaluating Tests for the Early Detection of Cancer. JNCI Journal of the National Cancer Institute, 95(7), 511–515. doi:10.1093/jnci/95.7.511 157 Banasik, M., Komura, H., Shimoyama, M., & Ueda, K. (1992). Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. The Journal of Biological Chemistry, 267(3), 1569–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1530940 Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., van Ommen, B., & Smilde, A. K. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567–574. doi:10.1021/ac051495j Blute, I., Pugh, R. J., van de Pas, J., & Callaghan, I. (2009). Industrial manufactured silica nanoparticle sols. 2: Surface tension, particle concentration, foam generation and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337(1-3), 127–135. Boiteux, A., & Hess, B. (1981). Design of glycolysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 293(1063), 5–22. Bolstad, B. M., Irizarry, R. a, Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics (Oxford, England), 19(2), 185–93. Braissant, O., Henry, H., Villard, A.-M., Speer, O., Wallimann, T., & Bachmann, C. (2005). Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Developmental Biology, 5, 9. doi:10.1186/1471-213X-5-9 Brooks, S., Tyler, C. R., & Sumpter, J. P. (1997). Egg quality in fish: what makes a good egg? Reviews in Fish Biology and Fisheries, 7(4), 387–416. Burton, L., Ivosev, G., Tate, S., Impey, G., Wingate, J., & Bonner, R. (2008). Instrumental and experimental effects in LC-MS-based metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 871(2), 227–35. doi:10.1016/j.jchromb.2008.04.044 Bylesj, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(8-10), 341–351. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/cem.1006/abstract Cadaval, R. A., Kohlman, O., & Michelacci, Y. M. (2000). Urinary excretion of glycosaminoglycans and albumin in experimental diabetes mellitus. Glycobiology, 10(2), 185–92. Cai, S., Huo, T., Xu, J., Lu, X., Zheng, S., & Li, F. (2009). Effect of mitiglinide on Streptozotocin-induced experimental type diabetic rats: a urinary 158 metabonomics study based on ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(29), 3619–24. doi:10.1016/j.jchromb.2009.08.044 Carter, M. G., Hamatani, T., Sharov, A. A., Carmack, C. E., Qian, Y., Aiba, K., Ko, N. T., Dudekula, D. B., Brzoska, P. M., Hwang, S. S., & Ko, M. S. H. (2003). In situ-synthesized novel microarray optimized for mouse stem cell and early developmental expression profiling. Genome Research, 13(5), 1011–21. doi:10.1101/gr.878903 Chang, J. S., Chang, K. L. B., Hwang, D. F., & Kong, Z. L. (2007). In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environmental Science & Technology, 41(6), 2064–2068. Chen, F., Koufaty, D. a., & Zhang, X. (2009). Understanding intrinsic characteristics and system implications of flash memory based solid state drives. Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems - SIGMETRICS ’09, 181. doi:10.1145/1555349.1555371 Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668. doi:10.1021/nl052396o Cornish-Bowden, A. (2014). Understanding allosteric and cooperative interactions in enzymes. The FEBS Journal, 281(2), 621–32. doi:10.1111/febs.12469 Cox, T. M., & Cachón-González, M. B. (2012). The cellular pathology of lysosomal diseases. The Journal of Pathology, 226(2), 241–254. doi:10.1002/path.3021 Craig, S. A. S. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80(3), 539–549. De Muro, P., Fresu, P., Formato, M., Tonolo, G., Mameli, M., Maioli, M., Sanna, G. M., & Cherchi, G. M. (2002). Urinary glycosaminoglycan and proteoglycan excretion in normoalbuminuric patients with type diabetes mellitus. Journal of Nephrology, 15(3), 290–6. De Muro, P., Fresu, P., Tonolo, G., Maioli, M., Cherchi, G. B., Murgia, A., Ibba, C., Sanna, G. M., & Cherchi, G. M. (2006). A longitudinal evaluation of urinary glycosaminoglycan excretion in normoalbuminuric type diabetic patients. Clinical Chemistry and Laboratory Medicine : CCLM / FESCC , 44(5), 561–7. doi:10.1515/CCLM.2006.097 159 Dennery, P. A. (2007). Effects of oxidative stress on embryonic development. Birth Defects Research. Part C, Embryo Today : Reviews, 81(3), 155–162. doi:10.1002/bdrc.20098 Denslow, N. D., Chow, M. C., Kroll, K. J., & Green, L. (1999). Vitellogenin as a Biomarker of Exposure for Estrogen or Estrogen Mimics. Ecotoxicology, 8(5), 385–398. doi:10.1023/A:1008986522208 Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, I. D., Kell, D. B., & Goodacre, R. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–83. doi:10.1038/nprot.2011.335 Eknoyan, G., Lameire, N., Barsoum, R., Eckardt, K.-U., Levin, A., Levin, N., Locatelli, F., MacLeod, A., Vanholder, R., Walker, R., & Wang, H. (2004). The burden of kidney disease: improving global outcomes. Kidney International, 66(4), 1310–4. doi:10.1111/j.1523-1755.2004.00894.x Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35(Web Server issue), W606–12. doi:10.1093/nar/gkm324 Fang, F. C., & Casadevall, A. (2011). Reductionistic and holistic science. Infection and Immunity, 79(4), 1401–4. doi:10.1128/IAI.01343-10 Fiehn, O. (2002). Metabolomics--the link between genotypes and phenotypes. Plant Molecular Biology, 48(1-2), 155–71. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11860207 Fillingame, R. H. (1999). PROTEIN STRUCTURE: Molecular Rotary Motors. Science, 286(5445), 1687–1688. doi:10.1126/science.286.5445.1687 Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47. doi:10.1038/35041687 Finn, R., Henderson, J., & Fyhn, H. (1995). Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). II. Lipid metabolism and enthalpy balance. Marine Biology, 124(3), 371–379. Frolkis, A., Knox, C., Lim, E., Jewison, T., Law, V., Hau, D. D., Liu, P., Gautam, B., Ly, S., Guo, A. C., Xia, J., Liang, Y., Shrivastava, S., & Wishart, D. S. (2010). SMPDB: The Small Molecule Pathway Database. Nucleic Acids Research, 38(Database issue), D480–7. doi:10.1093/nar/gkp1002 160 Garcia Soriano F, Virág, L., Jagtap, P., Szabó, E., Mabley, J. G., Liaudet, L., Marton, A., Hoyt, D. G., Murthy, K. G., Salzman, A. L., Southan, G. J., & Szabó, C. (2001). Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Medicine, 7(1), 108–13. doi:10.1038/83241 Gibon, Y., & Rolin, D. (2012). Aspects of experimental design for plant metabolomics experiments and guidelines for growth of plant material. Methods in Molecular Biology (Clifton, N.J.), 860, 13–30. doi:10.1007/978-1-61779-5947_2 Gillen, D. L., Worcester, E. M., & Coe, F. L. (2005). Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney International, 67(2), 685–90. doi:10.1111/j.1523-1755.2005.67128.x Gong, C., Tao, G., Yang, L., Liu, J., Liu, Q., & Zhuang, Z. (2010). SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochemical and Biophysical Research Communications, 397(3), 397–400. Goodacre, R., Broadhurst, D., Smilde, A. K., Kristal, B. S., Baker, J. D., Beger, R., Bessant, C., Connor, S., Capuani, G., Craig, A., Ebbels, T., Kell, D. B., Manetti, C., Newton, J., Paternostro, G., Somorjai, R., Sjöström, M., … Wulfert, F. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 3(3), 231–241. doi:10.1007/s11306-007-0081-3 Görg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4(12), 3665–85. doi:10.1002/pmic.200401031 Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. Hammer, M.-A., & Baltz, J. M. (2002). Betaine is a highly effective organic osmolyte but does not appear to be transported by established organic osmolyte transporters in mouse embryos. Molecular Reproduction and Development, 62(2), 195–202. doi:10.1002/mrd.10088 Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., Mahendraker, T., Williams, M., Neumann, S., Rocca-Serra, P., Maguire, E., González-Beltrán, A., Sansone, S.-A., Griffin, J. L., & Steinbeck, C. (2013). MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database issue), D781–6. doi:10.1093/nar/gks1004 Hayashi, S., Akiyama, S., Tamaru, Y., Takeda, Y., Fujiwara, T., Inoue, K., Kobayashi, A., Maegawa, S., & Fukusaki, E. (2009). A novel application of metabolomics in 161 vertebrate development. Biochemical and Biophysical Research Communications, 386(1), 268–272. Hayashi, S., Yoshida, M., Fujiwara, T., Maegawa, S., & Fukusaki, E. (2011). Singleembryo metabolomics and systematic prediction of developmental stage in zebrafish. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 66(3-4), 191–198. Hoppel, C. (2003). The role of carnitine in normal and altered fatty acid metabolism. American Journal of Kidney Diseases : The Official Journal of the National Kidney Foundation, 41(4 Suppl 4), S4–12. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., … Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry : JMS , 45(7), 703–14. doi:10.1002/jms.1777 Hsu, H.-J., Hsu, N.-C., Hu, M.-C., & Chung, B.-C. (2006). Steroidogenesis in zebrafish and mouse models. Molecular and Cellular Endocrinology, 248(1-2), 160–163. doi:10.1016/j.mce.2005.10.011 Huang, S.-M., Toh, W., Benke, P. I., Tan, C. S., & Ong, C. N. (2014). MetaboNexus: an interactive platform for integrated metabolomics analysis. Metabolomics. doi:10.1007/s11306-014-0648-8 Huang, S.-M., Xu, F., Lam, S. H., Gong, Z., & Ong, C. N. (2013). Metabolomics of developing zebrafish embryos using gas chromatography- and liquid chromatography-mass spectrometry. Molecular bioSystems, 9(6), 1372–80. doi:10.1039/c3mb25450j Huang, S.-M., Zuo, X., Li, J. J., Li, S. F. Y., Bay, B. H., & Ong, C. N. (2012). Metabolomics studies show dose-dependent toxicity induced by SiO(2) nanoparticles in MRC-5 human fetal lung fibroblasts. Advanced Healthcare Materials, 1(6), 779–84. doi:10.1002/adhm.201200114 Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(Database issue), D109–14. doi:10.1093/nar/gkr988 Karasawa, R., Nishi, S., Suzuki, Y., Imai, N., & Arakawa, M. (1997). Early increase of chondroitin sulfate glycosaminoglycan in the glomerular basement membrane of rats with diabetic glomerulopathy. Nephron, 76(1), 62–71. Kessler, N., Neuweger, H., Bonte, A., Langenkämper, G., Niehaus, K., Nattkemper, T. W., & Goesmann, A. (2013). MeltDB 2.0-advances of the metabolomics 162 software system. Bioinformatics (Oxford, England), 29(19), 2452–9. doi:10.1093/bioinformatics/btt414 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics : An Official Publication of the American Association of Anatomists, 203(3), 253– 310. doi:10.1002/aja.1002030302 Klöck, C., & Khosla, C. (2012). Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Science : A Publication of the Protein Society, 21(12), 1781–91. doi:10.1002/pro.2162 Knowles, J. R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annual Review of Biochemistry, 49, 877–919. doi:10.1146/annurev.bi.49.070180.004305 Kwon, J. Y., Prat, F., Randall, C., & Tyler, C. R. (2001). Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). Biology of Reproduction, 65(6), 1701–9. Lane, A. N., Fan, T. W.-M., Bousamra, M., Higashi, R. M., Yan, J., & Miller, D. M. (2011). Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. Omics : A Journal of Integrative Biology, 15(3), 173–82. doi:10.1089/omi.2010.0088 Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., Geman, D., Baggerly, K., & Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews. Genetics, 11(10), 733–9. doi:10.1038/nrg2825 Lewis, P. M., Dunn, M. P., McMahon, J. A., Logan, M., Martin, J. F., St-Jacques, B., & McMahon, A. P. (2001). Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell, 105(5), 599–612. Li, J. J., Hartono, D., Ong, C.-N., Bay, B.-H., & Yung, L.-Y. L. (2010). Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 31(23), 5996–6003. doi:10.1016/j.biomaterials.2010.04.014 Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. Nature Reviews. Genetics, 8(5), 353–67. doi:10.1038/nrg2091 Lin, S. M., Zhu, L., Winter, A. Q., Sasinowski, M., & Kibbe, W. A. (2005). What is mzXML good for? Expert Review of Proteomics, 2(6), 839–45. doi:10.1586/14789450.2.6.839 163 Lin, Y., Chen, Y., Yang, X., Xu, D., & Liang, S. (2009). Proteome analysis of a single zebrafish embryo using three different digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Analytical Biochemistry, 394(2), 177–185. doi:10.1016/j.ab.2009.07.034 Link, V., Shevchenko, A., & Heisenberg, C.-P. (2006). Proteomics of early zebrafish embryos. BMC Developmental Biology, 6, 1. doi:10.1186/1471-213X-6-1 Lu, X., Tian, Y., Zhao, Q., Jin, T., Xiao, S., & Fan, X. (2011). Integrated metabonomics analysis of the size-response relationship of silica nanoparticlesinduced toxicity in mice. Nanotechnology, 22(5), 55101. doi:10.1088/09574484/22/5/055101 Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics (Oxford, England), 24(5), 732– 7. doi:10.1093/bioinformatics/btn023 MacIsaac, R., Tsalamandris, C., Panagiotopoulos, S., Smith, T., KJ, M., & Jerums, G. (2004). Nonalbuminuric renal insufficiency in type diabetes. Diabetes Care, 27(1). Martin, D. R., Lewington, A. J., Hammerman, M. R., & Padanilam, B. J. (2000). Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279(5), R1834–40. Mathavan, S., Lee, S. G. P., Mak, A., Miller, L. D., Murthy, K. R. K., Govindarajan, K. R., Tong, Y., Wu, Y. L., Lam, S. H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E. T., & Lufkin, T. (2005). Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genetics, 1(2), 260–276. doi:10.1371/journal.pgen.0010029 McCarthy, K. J., Abrahamson, D. R., Bynum, K. R., St John, P. L., & Couchman, J. R. (1994). Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 42(4), 473–84. Monod, J., Changeux, J. P., & Jacob, F. (1963). Allosteric proteins and cellular control systems. Journal of Molecular Biology, 6, 306–29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13936070 Mydlík, M., & Derzsiová, K. (2008). Oxalic Acid as a uremic toxin. Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation, 18(1), 33–9. doi:10.1053/j.jrn.2007.10.008 164 Mydlík, M., & Derzsiová, K. (2010). Vitamin B6 and oxalic acid in clinical nephrology. Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation, 20(5 Suppl), S95–102. doi:10.1053/j.jrn.2010.06.009 Nagel, R. (2002). DarT: The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology. ALTEX, 19 Suppl 1, 38–48. Napierska, D., Thomassen, L. C. J., Lison, D., Martens, J. A., & Hoet, P. H. (2010). The nanosilica hazard: another variable entity. Particle and Fibre Toxicology, 7(1), 39. doi:10.1186/1743-8977-7-39 Ng, D. P. K., Salim, A., Liu, Y., Zou, L., Xu, F. G., Huang, S., Leong, H., & Ong, C. N. (2012a). A metabolomic study of low estimated GFR in non-proteinuric type diabetes mellitus. Diabetologia, 55(2), 499–508. doi:10.1007/s00125-0112339-6 Ng, D. P. K., Salim, A., Liu, Y., Zou, L., Xu, F. G., Huang, S., Leong, H., & Ong, C. N. (2012b). A metabolomic study of low estimated GFR in non-proteinuric type diabetes mellitus. Diabetologia, 55(2), 499–508. doi:10.1007/s00125-0112339-6 Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999a). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 29(11), 1181–1189. doi:10.1080/004982599238047 Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999b). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 29(11), 1181–9. doi:10.1080/004982599238047 Niwa, T. (2010). Indoxyl sulfate is a nephro-vascular toxin. Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation, 20(5 Suppl), S2–6. doi:10.1053/j.jrn.2010.05.002 Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2009). GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research, 37(Web Server issue), W317–22. doi:10.1093/nar/gkp416 Ong, E. S., Zou, L., Li, S., Cheah, P. Y., Eu, K. W., & Ong, C. N. (2010). Metabolic profiling in colorectal cancer reveals signature metabolic shifts during 165 tumorigenesis. Molecular & Cellular Proteomics : MCP. doi:10.1074/mcp.M900551-MCP200 Orchard, S., Montechi-Palazzi, L., Deutsch, E. W., Binz, P.-A., Jones, A. R., Paton, N., Pizarro, A., Creasy, D. M., Wojcik, J., & Hermjakob, H. (2007). Five years of progress in the Standardization of Proteomics Data 4th Annual Spring Workshop of the HUPO-Proteomics Standards Initiative April 23-25, 2007 Ecole Nationale Supérieure (ENS), Lyon, France. Proteomics, 7(19), 3436–40. doi:10.1002/pmic.200700658 Palace, V. P., & Werner, J. (2006). Vitamins A and E in the maternal diet influence egg quality and early life stage development in fish: a review. Scientia Marina, 70(S2), 41–57. Papan, C., & Chen, L. (2009). Metabolic fingerprinting reveals developmental regulation of metabolites during early zebrafish embryogenesis. Omics : A Journal of Integrative Biology, 13(5), 397–405. doi:10.1089/omi.2009.0023 Patil, K. R., & Nielsen, J. (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2685–9. doi:10.1073/pnas.0406811102 Patterson, A. D., Bonzo, J. A., Li, F., Krausz, K. W., Eichler, G. S., Aslam, S., Tigno, X., Weinstein, J. N., Hansen, B. C., Idle, J. R., & Gonzalez, F. J. (2011). Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type diabetes mellitus. The Journal of Biological Chemistry, 286(22), 19511–22. doi:10.1074/jbc.M111.221739 Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7(3), 508–16. doi:10.1038/nprot.2011.454 Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews. Molecular Cell Biology, 13(4), 263–9. doi:10.1038/nrm3314 Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung, K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E., McComb, M. E., … Aebersold, R. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnology, 22(11), 1459– 66. doi:10.1038/nbt1031 Peng, J., Chen, Y.-T., Chen, C.-L., & Li, L. (2014). Development of a Universal Metabolome-Standard Method for Long-Term LC-MS Metabolome Profiling 166 and Its Application for Bladder Cancer Urine-Metabolite-Biomarker Discovery. Analytical Chemistry, 86(13), 6540–7. doi:10.1021/ac5011684 Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395. doi:10.1186/1471-210511-395 Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science (New York, N.Y.), 330(6009), 1344–1348. doi:10.1126/science.1193497 Retnakaran, R., Cull, C. A., Thorne, K. I., Adler, A. I., & Holman, R. R. (2006). Risk Factors for Renal Dysfunction in Type Diabetes. Diabetes, 55(June), 1832– 1839. doi:10.2337/db05-1620. Rognstad, R. (1979). Rate-limiting steps in metabolic pathways. The Journal of Biological Chemistry, 254, 1875–1878. Saeed, A. I., Bhagabati, N. K., Braisted, J. C., Liang, W., Sharov, V., Howe, E. A., Li, J., Thiagarajan, M., White, J. A., & Quackenbush, J. (2006). TM4 microarray software suite. Methods in Enzymology, 411, 134–193. doi:10.1016/S00766879(06)11009-5 Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2(1), 13. doi:10.1186/2047-217X-2-13 Samoilov, M., Plyasunov, S., & Arkin, A. P. (2005). Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2310–5. doi:10.1073/pnas.0406841102 Sauer, U., Heinemann, M., & Zamboni, N. (2007). Genetics. Getting closer to the whole picture. Science (New York, N.Y.), 316(5824), 550–1. doi:10.1126/science.1142502 Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., Pujos-Guillot, E., Verheij, E., Wishart, D., & Wopereis, S. (2009). Massspectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics : Official Journal of the Metabolomic Society, 5(4), 435–458. doi:10.1007/s11306-0090168-0 Scherer, A. (2009). Batch Effects and Noise in Microarray Experiments. In A. Scherer (Ed.), . Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9780470685983 167 Schmidt, A., Kellermann, J., & Lottspeich, F. (2005). A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics, 5(1), 4– 15. doi:10.1002/pmic.200400873 Schwender, J., Ohlrogge, J., & Shachar-Hill, Y. (2004). Understanding flux in plant metabolic networks. Current Opinion in Plant Biology, 7(3), 309–17. doi:10.1016/j.pbi.2004.03.016 Shevalye, H., Maksimchyk, Y., Watcho, P., & Obrosova, I. G. (2010). Poly(ADPribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochimica et Biophysica Acta, 1802(11), 1020–7. doi:10.1016/j.bbadis.2010.07.004 Shevalye, H., Stavniichuk, R., Xu, W., Zhang, J., Lupachyk, S., Maksimchyk, Y., Drel, V. R., Floyd, E. Z., Slusher, B., & Obrosova, I. G. (2010). Poly(ADPribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochemical Pharmacology, 79(7), 1007–14. doi:10.1016/j.bcp.2009.11.018 Soanes, K. H., Achenbach, J. C., Burton, I. W., Hui, J. P. M., Penny, S. L., & Karakach, T. K. (2011). Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies. Journal of Proteome Research, 10(11), 5102–5117. doi:10.1021/pr2005549 Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W.-M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics : Official Journal of the Metabolomic Society , 3(3), 211–221. doi:10.1007/s11306-007-0082-2 Sysi-Aho, M., Katajamaa, M., Yetukuri, L., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93. doi:10.1186/1471-2105-8-93 Szabó, C., Biser, A., Benko, R., Böttinger, E., & Suszták, K. (2006). Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type diabetic Leprdb/db mice. Diabetes, 55(11), 3004–12. doi:10.2337/db06-0147 Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. doi:10.1186/1471-2105-9-504 168 Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J., & Siuzdak, G. (2012). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 30(9), 826–8. doi:10.1038/nbt.2348 Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: a web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–9. doi:10.1021/ac300698c Tay, T. L., Lin, Q., Seow, T. K., Tan, K. H., Hew, C. L., & Gong, Z. (2006). Proteomic analysis of protein profiles during early development of the zebrafish, Danio rerio. Proteomics, 6(10), 3176–3188. doi:10.1002/pmic.200600030 Team, R. D. C. (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Thisse, B., & Thisse, C. (2004). Fast Release Clones: A High Throughput Expression Analysis. Retrieved March 26, 2014, from http://zfin.org/ZDB-PUB-040907-1 Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine, 16(4), 385–95. Tingaud-Sequeira, A., & Cerdà, J. (2007). Phylogenetic relationships and gene expression pattern of three different cathepsin L (Ctsl) isoforms in zebrafish: Ctsla is the putative yolk processing enzyme. Gene, 386(1-2), 98–106. doi:10.1016/j.gene.2006.08.018 Tomita, M., Kawakami, M., Soga, T., Robert, M., & Sugimoto, M. (2012). Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Current Bioinformatics, 7(1), 96–108. Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479. doi:10.1021/pr060594q Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, N.Y.), 324(5930), 1029–33. doi:10.1126/science.1160809 Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., … Zhu, X. (2001). The sequence of the human genome. Science (New York, N.Y.), 291(5507), 1304–51. doi:10.1126/science.1058040 Voet, D., & Voet, J. G. (2004a). Biochemistry (pp. 765–796). Wiley. Voet, D., & Voet, J. G. (2004b). Biochemistry (pp. 549–574). 169 Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. The Biochemical Journal, 281 ( Pt 1, 21–40. Wang, S.-Y., Kuo, C.-H., & Tseng, Y. J. (2013). Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration met. Analytical Chemistry, 85(2), 1037–46. doi:10.1021/ac302877x Wang, X.-R., & Christiani, D. C. (2003). Occupational lung disease in China. International Journal of Occupational and Environmental Health, 9(4), 320–325. Watson, E., MacNeil, L. T., Arda, H. E., Zhu, L. J., & Walhout, A. J. M. (2013). Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell, 153(1), 253–66. doi:10.1016/j.cell.2013.02.050 Wegener, G., & Krause, U. (2002). Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochemical Society Transactions, 30(2), 264–70. doi:10.1042/ WHO. (2008). Guidelines for Drinking-water Quality (THIRD EDIT., p. 421). World Health Organization. Wiegand, M. D. (1996). Composition, accumulation and utilization of yolk lipids in teleost fish. Reviews in Fish Biology and Fisheries, 6(3), 259–286. doi:10.1007/BF00122583 Wills, M. R. (1985). Uremic toxins, and their effect on intermediary metabolism. Clinical Chemistry, 31(1), 5–13. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y., Mandal, R., Aziat, F., Dong, E., Bouatra, S., Sinelnikov, I., Arndt, D., Xia, J., Liu, P., Yallou, F., Bjorndahl, T., … Scalbert, A. (2013). HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Research, 41(Database issue), D801–7. doi:10.1093/nar/gks1065 Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J. a, Lim, E., Sobsey, C. a, … Forsythe, I. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37(Database issue), D603–10. doi:10.1093/nar/gkn810 170 Wold, S., & Sjostrom, M. (2001). PLS-regression : a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, (58), 109–130. Worcester, E. M., & Coe, F. L. (2010). Clinical practice. Calcium kidney stones. The New England Journal of Medicine, 363(10), 954–63. doi:10.1056/NEJMcp1001011 Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492. Wu, G., Fang, Y.-Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492. Xia, J., Mandal, R., Sinelnikov, I. V, Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(Web Server issue), W127–33. doi:10.1093/nar/gks374 Xu, F., Zou, L., Lin, Q., & Ong, C. N. (2009). Use of liquid chromatography/tandem mass spectrometry and online databases for identification of phosphocholines and lysophosphatidylcholines in human red blood cells. Rapid Communications in Mass Spectrometry : RCM , 23(19), 3243–3254. doi:10.1002/rcm.4246 Xu, F., Zou, L., & Ong, C. N. (2010). Experiment-originated variations, and multipeak and multi-origination phenomena in derivatization-based GC-MS metabolomics. TrAC Trends in Analytical Chemistry, 29(3), 269–280. doi:10.1016/j.trac.2009.12.007 Yagi, K. (1998). Simple assay for the level of total lipid peroxides in serum or plasma. Methods in Molecular Biology (Clifton, N.J.), 108, 101–106. doi:10.1385/089603-472-0:101 Yamashita, M., & Fenn, J. B. (1984). Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry, 88(20), 4451–4459. doi:10.1021/j150664a002 Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., & others. (2010). SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol, 7(1), 1. Yekutieli, D., & Benjamini, Y. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188. doi:10.1214/aos/1013699998 171 Zhang, B., Kirov, S., & Snoddy, J. (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Research, 33(Web Server issue), W741–8. doi:10.1093/nar/gki475 Zhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-Dependent Endocytosis of Nanoparticles. Advanced Materials (Deerfield Beach, Fla.), 21, 419–424. doi:10.1002/adma.200801393 Zhao, L.-C., Zhang, X.-D., Liao, S.-X., Gao, H.-C., Wang, H.-Y., & Lin, D.-H. (2010). A metabonomic comparison of urinary changes in Zucker and GK rats. Journal of Biomedicine & Biotechnology, 2010, 431894. doi:10.1155/2010/431894 Zhao, X., Fritsche, J., Wang, J., Chen, J., Rittig, K., Schmitt-Kopplin, P., Fritsche, A., Häring, H.-U., Schleicher, E. D., Xu, G., & Lehmann, R. (2010). Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics : Official Journal of the Metabolomic Society, 6(3), 362– 374. doi:10.1007/s11306-010-0203-1 Zhong, W. (2009). Nanomaterials in fluorescence-based biosensing. Analytical and Bioanalytical Chemistry, 394(1), 47–59. 172 [...]... reproducible and accessible by collaborators and broader readership The overall findings of this thesis demonstrate that metabolomics can complement and add value to existing approaches in biomedical and environmental research by providing a comprehensive and sensitive means of detecting and classifying biological responses in sample types of increasing complexity The development of an integrated software... in designing a metabolomics experiment In metabolomics, experiments are carefully designed from the initial sampling process to the final injection sequence During the collection of each sample type, the process itself may introduce undesired variability in the form of batch effect or confounding factors The sample integrity and metabolic profile is preserved by quenching metabolism and refrigerating... Further investigations involving ultrastructural studies revealed uptake of nanosilica through dose-dependently increased vacuolization Here the feasibility of metabolomics for in vitro investigations was demonstrated and metabolomics further complemented existing methodologies for toxicological assessment In vivo animal models are valuable in demonstrating and extrapolating clinical relevance of exposure... from the use of different batches of living organisms or from different operating conditions of instrument/reagent Often, batch effect is detected when the data are found to not correlate with variables of interest, but instead with different batches of organisms, reagents and instrument operating conditions Hence batch effect introduces systematic variation that are of a confounding nature and could... understand metabolic perturbation caused by Nnitrosodimethylamine (NDMA), a potent carcinogen present in drinking water The embryos were exposed to increasing doses of NDMA (0, 0.1, 1, 10 µg/L) with the exposure sustained up to 48 hpf Morphological inspection of zebrafish embryos and xii mortality counts revealed no significant effects of NDMA up to the highest dose of 10 µg/L of NDMA Despite the lack of. .. proteins and metabolites (Sauer, Heinemann, & Zamboni, 2007) Often, the responses generate and/ or modify a broad array of molecular components that are interdependent and integrated with each other For example, a transcription factor would initiate the expression of a certain class of genes in response to a stressor and the translation of these genes may further regulate other protein functions in the... and gender These factors would therefore rank urine as the most complex and variable sample type to analyse from the technical aspect In Chapter 4 we applied metabolomics to study the feasibility of urine metabolomics owing to the benefits of non-invasive sampling and ease of collection from the study population In the diagnosis of renal insufficiency, urine samples from patients are traditionally analysed... understanding biological responses and biomarker discovery Furthermore, these studies reaffirm that metabolite levels are indeed a valuable source of information for understanding diseases and toxicological responses Metabolomics is a rapidly-evolving discipline of systems biology, with major advances in analytical chemistry and related bioinformatics However, the current state of metabolomics analysis lacks... focus on recruiting a near-homogenous pool of subjects to eliminate confounders They are typically qualified for inclusion by matching factors such as age, gender, health status and lifestyle habits before their samples are used in a metabolomics experiment On top of eliminating confounders, careful sample preparation and sample injection is needed to avoid introducing batch effect during data acquisition... collection In vitro and in vivo samples contain cells that are capable of metabolism and in order to ensure a more accurate measurement of metabolites, the metabolism within these live samples needs to be quenched Metabolism quenching can be achieved by the use of rapid cooling methods such as snap freezing in liquid nitrogen or by washing the samples with cold buffer solutions After quenching is performed, . and environmental research by providing a comprehensive and sensitive means of detecting and classifying biological responses in sample types of increasing complexity. The development of an integrated. technical aspect. In Chapter 4 we applied metabolomics to study the feasibility of urine metabolomics owing to the benefits of non-invasive sampling and ease of collection from the study population. In the. USE OF METABOLOMICS IN BIOMEDICAL AND ENVIRONMENTAL STUDIES HUANG SHAOMIN B.SC. (HONS), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH NATIONAL

Ngày đăng: 09/09/2015, 11:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w