Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 127 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
127
Dung lượng
3,54 MB
Nội dung
CD137L SIGNALLING INDUCES DIFFERENTIATION OF PRIMARY ACUTE MYELOID LEUKAEMIA CELLS CHENG CHEONG KIN (B. Biomed. Sc. (Hons.), Monash University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSIOLOGY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in this thesis. This thesis has also not been submitted for any degree in any university previously. _________________________________________________ Cheng Cheong Kin 24 January 2014 i ACKNOWLEDGEMENTS I am deeply indebted to my supervisor, Associate Professor Herbert Schwarz, for his constant guidance, support, instruction and unwavering patience throughout the duration of my PhD. This work would have been impossible without his leadership and I am deeply grateful for the difference he has made. I am thankful also for my colleagues and the members of my lab, for their constant assistance, encouragement and for telling me I worry too much. I am grateful to my friends and family for bearing my burdens and without whom I could not have made it this far. And thanks be to God, with whom all things are possible. ii TABLE OF CONTENTS SUMMARY vii LIST OF TABLES viii LIST OF FIGURES ix LIST OF ABBREVIATIONS xi LIST OF PUBLICATIONS xiv INTRODUCTION 1.1 CD137 biology 1.1.1 The CD137 protein 1.1.2 CD137 expression and function 1.1.2 Dual roles of CD137 signalling in anti-tumour immunity and autoimmune disease 1.2 1.3 CD137L biology 1.2.1 The CD137L protein 1.2.2 CD137L expression 1.2.3 Bi-directional signalling of CD137/CD137L 1.2.4 CD137L signalling in monocytes 1.2.5 CD137L signalling in dendritic cells 1.2.6 CD137L signalling in B cells 1.2.7 CD137L signalling in T cells Influence of CD137L signalling on myelopoiesis 10 1.3.1 Myelopoiesis and myeloid cells 10 1.3.2 CD137L signalling and myelopoiesis 12 1.4 Trogocytosis 13 1.5 Activity of soluble and immobilized CD137 15 1.6 Acute myeloid leukaemia 15 1.6.1 Classification and subtypes of AML 16 1.6.2 Patient prognosis and AML classification 17 1.6.3 Runx1 and Cbfb murine models of AML 19 1.6.4 Emerging therapies in AML 20 iii 1.6.5 Immunotherapy of AML 21 1.6.6 Differentiation therapy of AML 23 1.7 CD137-CD137L interactions in AML 24 1.8 Research objectives 25 MATERIALS AND METHODS 27 2.1 Recombinant proteins 28 2.2 Cells and cell culture 28 2.2.1 Patient samples 28 2.2.2 Recovery of cryopreserved AML cells 28 2.2.3 Cell lines 28 2.2.4 Murine AML cells 29 2.3 Immunophenotypic analysis by flow cytometry 29 2.4 Functional assays 30 2.4.1 Assessment of phagocytosis 30 2.4.2 Transwell migration assay 30 2.4.3 Assessment of AML proliferation 31 2.5 Detection of cytokine secretion by ELISA 31 2.6 Allogeneic mixed lymphocyte reaction 32 2.7 Cell morphology 32 2.8 Transfer of CD137 from donor to recipient cells 32 2.9 Allogeneic MLR with monocytes possessing transferred CD137 33 2.10 CD137/CD137L localization by confocal microscopy 33 2.11 Immobilization of CD137-Fc on red blood cell membrane 34 2.12 Statistics 34 RESULTS 3.1 35 Effects of CD137L signalling in cryopreserved acute myeloid leukaemia cells 3.1.1 36 CD137L signalling induces little to no change in the immunophenotype of AML cells iv 36 3.1.2 CD137L signalling induces cytokine secretion from a proportion of AML cells 3.2 37 Effects of CD137L signalling in freshly isolated AML cells 3.2.1 CD137L signalling induces immunophenotypic changes in AML cells consistent with differentiation 43 3.2.2 CD137L signalling induces cytokine secretion by AML cells 46 3.2.3 CD137L signalling induces morphological changes in AML cells that are consistent with DC differentiation 3.2.4 phagocytosis in monocytic AML cells 46 3.2.5 AML cells treated with CD137 exhibit enhanced migratory ability 50 3.2.6 AML cells treated with CD137 exhibit enhanced T cell co-stimulatory activity 50 3.2.7 AML cells treated with CD137 possess reduced proliferative capacity 50 3.2.8 Patterns of observed changes induced by CD137L signalling depend Transfer of CD137 to AML cells 3.3.1 CD137 is transferred from cell lines to monocytes and inhibits subsequent cytokine release from T cells 61 3.3.2 CD137 is transferred from activated T cells to monocytes 61 3.3.3 CD137 from activated T cells and immobilized recombinant CD137 3.3.4 64 The CD137-CD137L complex is internalized into AML cells that are sensitive to CD137-induced differentiation 3.5 53 61 is transferred to AML cells 3.4 46 CD137L signalling increases CD83 expression and reduces on cell type from which AML is derived 3.3 43 64 CD137L signalling induces differentiation of myeloid cells in a murine model of leukaemia 67 Immobilization of recombinant CD137 protein for in vivo applications 72 3.5.1 CD137-Fc immobilized onto red blood cells induces IL-8 secretion and immunophenotypic changes in monocytes v 72 DISCUSSION 4.1 4.2 78 Previously cryopreserved AML cells are resistant to CD137-induced differentiation 79 CD137L signalling induces differentiation of freshly obtained AML cells 80 4.2.1 CD137-treated AML cells undergo immunophenotypic changes consistent with differentiation 4.2.2 80 Monocytic AML cells acquire DC-like characteristics in response to treatment with recombinant CD137 82 4.2.3 AML heterogeneity and sensitivity to recombinant CD137 85 4.2.4 Utility of CD137-treated AML cells in immunotherapy 86 4.3 Transfer of CD137 to AML cells 89 4.4 CD137L signalling induces differentiation of myeloid cells in a murine model of leukaemia 91 4.5 Immobilization of recombinant CD137 protein for in vivo applications 92 4.6 Conclusion 94 4.7 Future work 94 4.7.1 Further characterization of T cell responses to CD137-treated AML cells 4.7.2 4.7.3 94 Immobilization of recombinant CD137 protein or anti-CD137L antibodies 95 Effects of CD137L signalling on AML cells in vivo 96 REFERENCES 97 APPENDICES 109 vi SUMMARY The ligand for CD137 is expressed on hematopoietic progenitor cells and antigen-presenting cells such as monocytes, dendritic cells and B cells. Reverse signalling of CD137 ligand into the cell delivers a potent activating signal that results in the differentiation of hematopoietic progenitor cells into macrophages, and monocytes into dendritic cells. CD137 ligand is also expressed on acute myeloid leukaemia cells, which characteristically possess a maturation block that leads to arrested differentiation and malignancy. We hypothesized that CD137 ligand reverse signalling via stimulation with CD137 may also induce differentiation of the transformed myeloid cells in acute myeloid leukaemia. Primary acute myeloid leukaemia blasts isolated from either the bone marrow or peripheral blood of patients at time of diagnosis were stimulated with a recombinant CD137 protein in vitro. Reverse signalling through CD137 ligand induced differentiation of these leukemic blasts based on morphology, immunophenotype, cellular functions such as phagocytosis and proliferation, and cytokine release. These differentiated cells functionally demonstrated a more potent T cell co-stimulatory capacity as evidenced by up-regulation of co-stimulatory molecules, induction of increased T cell proliferation and cytokine release. These results suggest that CD137, as a single factor, is able to induce differentiation of the immature blasts in acute myeloid leukaemia into more effective antigen-presenting cells with enhanced T cell co-stimulatory potential. The ability to overcome the block in myeloid maturation and drive differentiation of acute myeloid leukaemia cells has implications for the development of differentiation therapies and anti-leukaemia vaccines. vii LIST OF TABLES 1. Frozen AML samples tested 38 2. Immunophenotypic changes and cytokine secretion in AML samples, without maturation 54 3. Immunophenotypic changes and cytokine secretion in AML samples, with maturation 55 4. Immunophenotypic changes and cytokine secretion in AML samples, monocytic 56 5. Freshly obtained AML samples tested 57 viii LIST OF FIGURES 1. Gating strategy used to identify myeloid population 35 2. CD137 induces only minor in immunophenotype of frozen AML samples 36 3. CD137 induces cytokine secretion from a proportion of frozen AML samples 37 4. Majority of frozen AML samples die within days of culture 39 5. CD137 induces immunophenotypic changes in AML cells consistent with differentiation 41 6. CD137 induces secretion of cytokines by AML cells 44 7. CD137 induces adherence and morphological changes in AML cells 45 8. CD137 induces up-regulation of CD83 and decreases phagocytosis in monocytic AML cells 46 9. CD137-treated AML cells demonstrate increased invasiveness 48 10. CD137-treated AML cells enhance allogeneic T cell activation 49 11. CD137-treated AML cells demonstrate reduced proliferation 51 12. Side scatter characteristics and CD45 expression of bone marrow mononuclear cells from representative samples of different FAB subtypes 52 13. CD137 is transferred from CD137-expressing L428 cells to monocytes 59 14. CD137 is transferred from activated T cells to monocytes 60 15. CD137 is transferred to AML cells from activated T cells and from the surface of a culture dish 62 16. The CD137L-CD137 complex is internalized into AML cells 63 17. Haematopoietic stem cells from Cbfb knockout mice spontaneously differentiate in vitro 65 18. CD137 induces immunophenotypic changes consistent with myeloid differentiation in a mouse model of AML 67 19. CD137 induces apoptosis of bone marrow myeloid cells from a Cbfb knock-out mouse 68 ix REFERENCES 97 Alderson, M.R., Smith, C.A., Tough, T.W., Davis-Smith, T., Armitage, R.J., Falk, B., Roux, E., Baker, E., Sutherland, G.R. & Din, W.S. (1994) Molecular and biological characterization of human 41BB and its ligand. Eur J Immunol, 24, 2219-2227. Anderson, C.F., Gerber, J.S. & Mosser, D.M. (2002) Modulating macrophage function with IgG immune complexes. J Endotoxin Res, 8, 477-481. Aoki, K., Kurooka, M., Chen, J.J., Petryniak, J., Nabel, E.G. & Nabel, G.J. (2001) Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity. Nat Immunol, 2, 333-337. Arber, D.A., Stein, A.S., Carter, N.H., Ikle, D., Forman, S.J. & Slovak, M.L. (2003) Prognostic impact of acute myeloid leukemia classification. Importance of detection of recurring cytogenetic abnormalities and multilineage dysplasia on survival. Am J Clin Pathol, 119, 672-680. Armitage, R.J. (1994) Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol, 6, 407-413. Baessler, T., Charton, J.E., Schmiedel, B.J., Grunebach, F., Krusch, M., Wacker, A., Rammensee, H.G. & Salih, H.R. (2010) CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood, 115, 30583069. Banchereau, J. & Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature, 392, 245-252. Bansal-Pakala, P. & Croft, M. (2002) Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J Immunol, 169, 5005-5009. Batista, F.D., Iber, D. & Neuberger, M.S. (2001) B cells acquire antigen from target cells after synapse formation. Nature, 411, 489-494. Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A., Gralnick, H.R. & Sultan, C. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) cooperative group. Br J Haematol, 33, 451-458. Blazar, B.R., Kwon, B.S., Panoskaltsis-Mortari, A., Kwak, K.B., Peschon, J.J. & Taylor, P.A. (2001) Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J Immunol, 166, 3174-3183. Blobel, G. & Dobberstein, B. (1975) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol, 67, 852-862. Bonnotte, B., Larmonier, N., Favre, N., Fromentin, A., Moutet, M., Martin, M., Gurbuxani, S., Solary, E., Chauffert, B. & Martin, F. (2001) Identification of tumor-infiltrating macrophages as the killers of tumor cells after immunization in a rat model system. J Immunol, 167, 5077-5083. Broll, K., Richter, G., Pauly, S., Hofstaedter, F. & Schwarz, H. (2001) CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol, 115, 543-549. Brown, P., Meshinchi, S., Levis, M., Alonzo, T.A., Gerbing, R., Lange, B., Arceci, R. & Small, D. (2004) Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood, 104, 1841-1849. Bug, G., Schwarz, K., Schoch, C., Kampfmann, M., Henschler, R., Hoelzer, D., Ottmann, O.G. & Ruthardt, M. (2007) Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica, 92, 542-545. Caboux, E., Paciencia, M., Durand, G., Robinot, N., Wozniak, M.B., Galateau-Salle, F., Byrnes, G., Hainaut, P. & Le Calvez-Kelm, F. (2013) Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples. PLoS One, 8, e79826. Cao, W., Britos-Bray, M., Claxton, D.F., Kelley, C.A., Speck, N.A., Liu, P.P. & Friedman, A.D. (1997) CBF beta-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells. Oncogene, 15, 1315-1327. 98 Carlin, L.M., Eleme, K., McCann, F.E. & Davis, D.M. (2001) Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J Exp Med, 194, 1507-1517. Carreno, B.M. & Collins, M. (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol, 20, 29-53. Castilla, L.H., Garrett, L., Adya, N., Orlic, D., Dutra, A., Anderson, S., Owens, J., Eckhaus, M., Bodine, D. & Liu, P.P. (1999) The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet, 23, 144-146. Castilla, L.H., Wijmenga, C., Wang, Q., Stacy, T., Speck, N.A., Eckhaus, M., Marin-Padilla, M., Collins, F.S., Wynshaw-Boris, A. & Liu, P.P. (1996) Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell, 87, 687-696. Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I. & Banchereau, J. (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med, 180, 12631272. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A. & Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med, 184, 747-752. Chambers, C.A. & Allison, J.P. (1999) Costimulatory regulation of T cell function. Curr Opin Cell Biol, 11, 203-210. Cheng, Y., Wang, Y., Wang, H., Chen, Z., Lou, J., Xu, H., Wang, H., Qian, W., Meng, H., Lin, M. & Jin, J. (2009) Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China. Leukemia, 23, 1801-1806. Choi, B.K., Bae, J.S., Choi, E.M., Kang, W.J., Sakaguchi, S., Vinay, D.S. & Kwon, B.S. (2004) 4-1BBdependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J Leukoc Biol, 75, 785-791. Croft, M. (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol, 3, 609-620. Curti, A., Trabanelli, S., Onofri, C., Aluigi, M., Salvestrini, V., Ocadlikova, D., Evangelisti, C., Rutella, S., De Cristofaro, R., Ottaviani, E., Baccarani, M. & Lemoli, R.M. (2010) Indoleamine 2,3dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica, 95, 2022-2030. Dantzig, A.H., Shepard, R.L., Cao, J., Law, K.L., Ehlhardt, W.J., Baughman, T.M., Bumol, T.F. & Starling, J.J. (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res, 56, 4171-4179. DeAngelo, D.J., Stone, R.M., Heaney, M.L., Nimer, S.D., Paquette, R.L., Klisovic, R.B., Caligiuri, M.A., Cooper, M.R., Lecerf, J.M., Karol, M.D., Sheng, S., Holford, N., Curtin, P.T., Druker, B.J. & Heinrich, M.C. (2006) Phase clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood, 108, 3674-3681. Dissanayake, D., Hall, H., Berg-Brown, N., Elford, A.R., Hamilton, S.R., Murakami, K., Deluca, L.S., Gommerman, J.L. & Ohashi, P.S. (2011) Nuclear factor-kappaB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat Med, 17, 1663-1667. Douer, D. & Tallman, M.S. (2005) Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol, 23, 2396-2410. Drenkard, D., Becke, F.M., Langstein, J., Spruss, T., Kunz-Schughart, L.A., Tan, T.E., Lim, Y.C. & Schwarz, H. (2007) CD137 is expressed on blood vessel walls at sites of inflammation and enhances monocyte migratory activity. FASEB J, 21, 456-463. Dufour, A., Schneider, F., Metzeler, K.H., Hoster, E., Schneider, S., Zellmeier, E., Benthaus, T., Sauerland, M.C., Berdel, W.E., Buchner, T., Wormann, B., Braess, J., Hiddemann, W., 99 Bohlander, S.K. & Spiekermann, K. (2010) Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol, 28, 570-577. Dutour, A., Marin, V., Pizzitola, I., Valsesia-Wittmann, S., Lee, D., Yvon, E., Finney, H., Lawson, A., Brenner, M., Biondi, A., Biagi, E. & Rousseau, R. (2012) In Vitro and In Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33 Acute Myeloid Leukemia. Adv Hematol, 2012, 683065. Eissner, G., Kolch, W. & Scheurich, P. (2004) Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev, 15, 353-366. Elagib, K.E. & Goldfarb, A.N. (2007) Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation. Cancer Lett, 251, 179-186. Falini, B., Nicoletti, I., Martelli, M.F. & Mecucci, C. (2007) Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood, 109, 874-885. Fenske, T.S., Pengue, G., Mathews, V., Hanson, P.T., Hamm, S.E., Riaz, N. & Graubert, T.A. (2004) Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci U S A, 101, 15184-15189. Ferguson, L.R., Tatham, A.L., Lin, Z. & Denny, W.A. (2011) Epigenetic regulation of gene expression as an anticancer drug target. Curr Cancer Drug Targets, 11, 199-212. Fleire, S.J., Goldman, J.P., Carrasco, Y.R., Weber, M., Bray, D. & Batista, F.D. (2006) B cell ligand discrimination through a spreading and contraction response. Science, 312, 738-741. Foell, J., Strahotin, S., O'Neil, S.P., McCausland, M.M., Suwyn, C., Haber, M., Chander, P.N., Bapat, A.S., Yan, X.J., Chiorazzi, N., Hoffmann, M.K. & Mittler, R.S. (2003) CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB x NZW F1 mice. J Clin Invest, 111, 1505-1518. Futagawa, T., Akiba, H., Kodama, T., Takeda, K., Hosoda, Y., Yagita, H. & Okumura, K. (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol, 14, 275-286. Garni-Wagner, B.A., Lee, Z.H., Kim, Y.J., Wilde, C., Kang, C.Y. & Kwon, B.S. (1996) 4-1BB is expressed on CD45RAhiROhi transitional T cell in humans. Cell Immunol, 169, 91-98. Ge, W., Ma, X., Li, X., Wang, Y., Li, C., Meng, H., Liu, X., Yu, Z., You, S. & Qiu, L. (2009) B7-H1 upregulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells. Leuk Res, 33, 948-957. Ghanem, H., Tank, N. & Tabbara, I.A. (2012) Prognostic implications of genetic aberrations in acute myelogenous leukemia with normal cytogenetics. Am J Hematol, 87, 69-77. Goodwin, R.G., Din, W.S., Davis-Smith, T., Anderson, D.M., Gimpel, S.D., Sato, T.A., Maliszewski, C.R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & et al. (1993) Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol, 23, 2631-2641. Gramaglia, I., Cooper, D., Miner, K.T., Kwon, B.S. & Croft, M. (2000) Co-stimulation of antigenspecific CD4 T cells by 4-1BB ligand. Eur J Immunol, 30, 392-402. Gravestein, L.A. & Borst, J. (1998) Tumor necrosis factor receptor family members in the immune system. Semin Immunol, 10, 423-434. Green, C.L., Koo, K.K., Hills, R.K., Burnett, A.K., Linch, D.C. & Gale, R.E. (2010) Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol, 28, 2739-2747. Grimwade, D., Hills, R.K., Moorman, A.V., Walker, H., Chatters, S., Goldstone, A.H., Wheatley, K., Harrison, C.J., Burnett, A.K. & National Cancer Research Institute Adult Leukaemia Working, G. (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination 100 of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood, 116, 354-365. Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A. & Goldstone, A. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 92, 2322-2333. Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S.R., Teachey, D.T., Chew, A., Hauck, B., Wright, J.F., Milone, M.C., Levine, B.L. & June, C.H. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med, 368, 1509-1518. Hardwick, N., Chan, L., Ingram, W., Mufti, G. & Farzaneh, F. (2010) Lytic activity against primary AML cells is stimulated in vitro by an autologous whole cell vaccine expressing IL-2 and CD80. Cancer Immunol Immunother, 59, 379-388. Harris, N.L., Jaffe, E.S., Diebold, J., Flandrin, G., Muller-Hermelink, H.K., Vardiman, J., Lister, T.A. & Bloomfield, C.D. (2000) The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. Mod Pathol, 13, 193-207. Hasserjian, R.P. (2013) Acute myeloid leukemia: advances in diagnosis and classification. Int J Lab Hematol, 35, 358-366. Hentschel, N., Krusch, M., Kiener, P.A., Kolb, H.J., Salih, H.R. & Schmetzer, H.M. (2006) Serum levels of sCD137 (4-1BB) ligand are prognostic factors for progression in acute myeloid leukemia but not in non-Hodgkin's lymphoma. Eur J Haematol, 77, 91-101. Hickey, M.J. & Kubes, P. (2009) Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol, 9, 364-375. Higuchi, M., O'Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E.J. & Downing, J.R. (2002) Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell, 1, 63-74. Hirai, H., Zhang, P., Dayaram, T., Hetherington, C.J., Mizuno, S., Imanishi, J., Akashi, K. & Tenen, D.G. (2006) C/EBPbeta is required for 'emergency' granulopoiesis. Nat Immunol, 7, 732-739. Ho, W.T., Pang, W.L., Chong, S.M., Castella, A., Al-Salam, S., Tan, T.E., Moh, M.C., Koh, L.K., Gan, S.U., Cheng, C.K. & Schwarz, H. (2013) Expression of CD137 on Hodgkin and Reed-Sternberg cells inhibits T-cell activation by eliminating CD137 ligand expression. Cancer Res, 73, 652-661. Hombach, A.A., Holzinger, A. & Abken, H. (2013) The weal and woe of costimulation in the adoptive therapy of cancer with chimeric antigen receptor (CAR)-redirected T cells. Curr Mol Med, 13, 1079-1088. Houtenbos, I., Westers, T.M., Dijkhuis, A., de Gruijl, T.D., Ossenkoppele, G.J. & van de Loosdrecht, A.A. (2007) Leukemia-specific T-cell reactivity induced by leukemic dendritic cells is augmented by 4-1BB targeting. Clin Cancer Res, 13, 307-315. Huang, J.F., Yang, Y., Sepulveda, H., Shi, W., Hwang, I., Peterson, P.A., Jackson, M.R., Sprent, J. & Cai, Z. (1999) TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science, 286, 952-954. Hurtado, J.C., Kim, Y.J. & Kwon, B.S. (1997) Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol, 158, 26002609. Imai, Y., Kurokawa, M., Izutsu, K., Hangaishi, A., Takeuchi, K., Maki, K., Ogawa, S., Chiba, S., Mitani, K. & Hirai, H. (2000) Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood, 96, 3154-3160. Ingram, W., Chan, L., Guven, H., Darling, D., Kordasti, S., Hardwick, N., Barber, L., Mufti, G.J. & Farzaneh, F. (2009) Human CD80/IL2 lentivirus-transduced acute myeloid leukaemia (AML) cells promote natural killer (NK) cell activation and cytolytic activity: implications for a phase I clinical study. Br J Haematol, 145, 749-760. 101 Jiang, D., Chen, Y. & Schwarz, H. (2008a) CD137 induces proliferation of murine hematopoietic progenitor cells and differentiation to macrophages. J Immunol, 181, 3923-3932. Jiang, D. & Schwarz, H. (2010) Regulation of granulocyte and macrophage populations of murine bone marrow cells by G-CSF and CD137 protein. PLoS One, 5, e15565. Jiang, D., Yue, P.S., Drenkard, D. & Schwarz, H. (2008b) Induction of proliferation and monocytic differentiation of human CD34+ cells by CD137 ligand signaling. Stem Cells, 26, 2372-2381. Joly, E. & Hudrisier, D. (2003) What is trogocytosis and what is its purpose? Nat Immunol, 4, 815. Ju, S., Ju, S., Ge, Y., Qiu, H., Lu, B., Qiu, Y., Fu, J., Liu, G., Wang, Q., Hu, Y., Shu, Y. & Zhang, X. (2009) A novel approach to induce human DCs from monocytes by triggering 4-1BBL reverse signaling. Int Immunol, 21, 1135-1144. Ju, S.W., Ju, S.G., Wang, F.M., Gu, Z.J., Qiu, Y.H., Yu, G.H., Ma, H.B. & Zhang, X.G. (2003) A functional anti-human 4-1BB ligand monoclonal antibody that enhances proliferation of monocytes by reverse signaling of 4-1BBL. Hybrid Hybridomics, 22, 333-338. June, C.H., Ledbetter, J.A., Linsley, P.S. & Thompson, C.B. (1990) Role of the CD28 receptor in T-cell activation. Immunol Today, 11, 211-216. Jung, H.W., Choi, S.W., Choi, J.I. & Kwon, B.S. (2004) Serum concentrations of soluble 4-1BB and 41BB ligand correlated with the disease severity in rheumatoid arthritis. Exp Mol Med, 36, 1322. Kang, Y.J., Kim, S.O., Shimada, S., Otsuka, M., Seit-Nebi, A., Kwon, B.S., Watts, T.H. & Han, J. (2007) Cell surface 4-1BBL mediates sequential signaling pathways 'downstream' of TLR and is required for sustained TNF production in macrophages. Nat Immunol, 8, 601-609. Kienzle, G. & von Kempis, J. (2000) CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol, 12, 73-82. Kim, J., Choi, S.P., La, S., Seo, J.S., Kim, K.K., Nam, S.H. & Kwon, B. (2003) Constitutive expression of 41BB on T cells enhances CD4+ T cell responses. Exp Mol Med, 35, 509-517. Kim, J., Choi, W.S., La, S., Suh, J.H., Kim, B.S., Cho, H.R., Kwon, B.S. & Kwon, B. (2005) Stimulation with 4-1BB (CD137) inhibits chronic graft-versus-host disease by inducing activation-induced cell death of donor CD4+ T cells. Blood, 105, 2206-2213. Kim, Y.J., Brutkiewicz, R.R. & Broxmeyer, H.E. (2002) Role of 4-1BB (CD137) in the functional activation of cord blood CD28(-)CD8(+) T cells. Blood, 100, 3253-3260. Kitawaki, T., Kadowaki, N., Fukunaga, K., Kasai, Y., Maekawa, T., Ohmori, K., Itoh, T., Shimizu, A., Kuzushima, K., Kondo, T., Ishikawa, T. & Uchiyama, T. (2011a) Cross-priming of CD8(+) T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia. Exp Hematol, 39, 424-433 e422. Kitawaki, T., Kadowaki, N., Fukunaga, K., Kasai, Y., Maekawa, T., Ohmori, K., Kondo, T., Maekawa, R., Takahara, M., Nieda, M., Kuzushima, K., Ishikawa, T. & Uchiyama, T. (2011b) A phase I/IIa clinical trial of immunotherapy for elderly patients with acute myeloid leukaemia using dendritic cells co-pulsed with WT1 peptide and zoledronate. Br J Haematol, 153, 796-799. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N. & Schuler, G. (1996) High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med, 184, 741-746. Kochenderfer, J.N., Dudley, M.E., Feldman, S.A., Wilson, W.H., Spaner, D.E., Maric, I., StetlerStevenson, M., Phan, G.Q., Hughes, M.S., Sherry, R.M., Yang, J.C., Kammula, U.S., Devillier, L., Carpenter, R., Nathan, D.A., Morgan, R.A., Laurencot, C. & Rosenberg, S.A. (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119, 2709-2720. Kodelja, V., Muller, C., Tenorio, S., Schebesch, C., Orfanos, C.E. & Goerdt, S. (1997) Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology, 197, 478-493. Koeffler, H.P. (2010) Is there a role for differentiating therapy in non-APL AML? Best Pract Res Clin Haematol, 23, 503-508. 102 Kremser, A., Dressig, J., Grabrucker, C., Liepert, A., Kroell, T., Scholl, N., Schmid, C., Tischer, J., Kufner, S., Salih, H., Kolb, H.J. & Schmetzer, H. (2010) Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother, 33, 185-199. Kussick, S.J., Stirewalt, D.L., Yi, H.S., Sheets, K.M., Pogosova-Agadjanyan, E., Braswell, S., Norwood, T.H., Radich, J.P. & Wood, B.L. (2004) A distinctive nuclear morphology in acute myeloid leukemia is strongly associated with loss of HLA-DR expression and FLT3 internal tandem duplication. Leukemia, 18, 1591-1598. Kwajah, M.M.S. & Schwarz, H. (2010) CD137 ligand signaling induces human monocyte to dendritic cell differentiation. Eur J Immunol, 40, 1938-1949. Kwon, B.S., Kestler, D.P., Eshhar, Z., Oh, K.O. & Wakulchik, M. (1989) Expression characteristics of two potential T cell mediator genes. Cell Immunol, 121, 414-422. Laderach, D., Wesa, A. & Galy, A. (2003) 4-1BB-ligand is regulated on human dendritic cells and induces the production of IL-12. Cell Immunol, 226, 37-44. Langstein, J., Becke, F.M., Sollner, L., Krause, G., Brockhoff, G., Kreutz, M., Andreesen, R. & Schwarz, H. (2000) Comparative analysis of CD137 and LPS effects on monocyte activation, survival, and proliferation. Biochem Biophys Res Commun, 273, 117-122. Langstein, J., Michel, J., Fritsche, J., Kreutz, M., Andreesen, R. & Schwarz, H. (1998) CD137 (ILA/41BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol, 160, 2488-2494. Langstein, J. & Schwarz, H. (1999) Identification of CD137 as a potent monocyte survival factor. J Leukoc Biol, 65, 829-833. Lee, H.W., Nam, K.O., Park, S.J. & Kwon, B.S. (2003a) 4-1BB enhances CD8+ T cell expansion by regulating cell cycle progression through changes in expression of cyclins D and E and cyclindependent kinase inhibitor p27kip1. Eur J Immunol, 33, 2133-2141. Lee, H.W., Nam, K.O., Seo, S.K., Kim, Y.H., Kang, H. & Kwon, B.S. (2003b) 4-1BB cross-linking enhances the survival and cell cycle progression of CD4 T lymphocytes. Cell Immunol, 223, 143-150. Lee, H.W., Park, S.J., Choi, B.K., Kim, H.H., Nam, K.O. & Kwon, B.S. (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol, 169, 4882-4888. Lenschow, D.J., Walunas, T.L. & Bluestone, J.A. (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol, 14, 233-258. Leroy, H., Roumier, C., Huyghe, P., Biggio, V., Fenaux, P. & Preudhomme, C. (2005) CEBPA point mutations in hematological malignancies. Leukemia, 19, 329-334. Li, L., Giannopoulos, K., Reinhardt, P., Tabarkiewicz, J., Schmitt, A., Greiner, J., Rolinski, J., Hus, I., Dmoszynska, A., Wiesneth, M. & Schmitt, M. (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol, 28, 855-861. Lichtenegger, F.S., Schnorfeil, F.M., Hiddemann, W. & Subklewe, M. (2013) Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy, 5, 63-78. Lindstedt, M., Johansson-Lindbom, B. & Borrebaeck, C.A. (2003) Expression of CD137 (4-1BB) on human follicular dendritic cells. Scand J Immunol, 57, 305-310. Lippert, U., Zachmann, K., Ferrari, D.M., Schwarz, H., Brunner, E., Mahbub-Ul Latif, A.H., Neumann, C. & Soruri, A. (2008) CD137 ligand reverse signaling has multiple functions in human dendritic cells during an adaptive immune response. Eur J Immunol, 38, 1024-1032. Lowenberg, B., Griffin, J.D. & Tallman, M.S. (2003) Acute myeloid leukemia and acute promyelocytic leukemia. Hematology Am Soc Hematol Educ Program, 82-101. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. (2002) Macrophage polarization: tumorassociated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549-555. 103 Marcucci, G., Maharry, K., Radmacher, M.D., Mrozek, K., Vukosavljevic, T., Paschka, P., Whitman, S.P., Langer, C., Baldus, C.D., Liu, C.G., Ruppert, A.S., Powell, B.L., Carroll, A.J., Caligiuri, M.A., Kolitz, J.E., Larson, R.A. & Bloomfield, C.D. (2008) Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol, 26, 5078-5087. Martinez, F.O., Sica, A., Mantovani, A. & Locati, M. (2008) Macrophage activation and polarization. Front Biosci, 13, 453-461. McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M. & Byrne, M.C. (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 16, 311-323. Melero, I., Johnston, J.V., Shufford, W.W., Mittler, R.S. & Chen, L. (1998) NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-41BB monoclonal antibodies. Cell Immunol, 190, 167-172. Melero, I., Shuford, W.W., Newby, S.A., Aruffo, A., Ledbetter, J.A., Hellstrom, K.E., Mittler, R.S. & Chen, L. (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med, 3, 682-685. Michel, J., Pauly, S., Langstein, J., Krammer, P.H. & Schwarz, H. (1999) CD137-induced apoptosis is independent of CD95. Immunology, 98, 42-46. Mittler, R.S., Bailey, T.S., Klussman, K., Trailsmith, M.D. & Hoffmann, M.K. (1999) Anti-4-1BB monoclonal antibodies abrogate T cell-dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med, 190, 1535-1540. Mosser, D.M. & Edwards, J.P. (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 8, 958-969. Mueller, D.L. (2000) T cells: A proliferation of costimulatory molecules. Curr Biol, 10, R227-230. Mughal, T.I., Ejaz, A.A., Foringer, J.R. & Coiffier, B. (2010) An integrated clinical approach for the identification, prevention, and treatment of tumor lysis syndrome. Cancer Treat Rev, 36, 164-176. Mytar, B., Siedlar, M., Woloszyn, M., Ruggiero, I., Pryjma, J. & Zembala, M. (1999) Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer, 79, 737-743. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321-330. Osato, M., Asou, N., Abdalla, E., Hoshino, K., Yamasaki, H., Okubo, T., Suzushima, H., Takatsuki, K., Kanno, T., Shigesada, K. & Ito, Y. (1999) Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, 93, 1817-1824. Pang, W.L., Ho, W.T. & Schwarz, H. (2013) Ectopic CD137 expression facilitates the escape of Hodgkin and Reed-Sternberg cells from immunosurveillance. Oncoimmunology, 2, e23441. Pasqualucci, L., Liso, A., Martelli, M.P., Bolli, N., Pacini, R., Tabarrini, A., Carini, M., Bigerna, B., Pucciarini, A., Mannucci, R., Nicoletti, I., Tiacci, E., Meloni, G., Specchia, G., Cantore, N., Di Raimondo, F., Pileri, S., Mecucci, C., Mandelli, F., Martelli, M.F. & Falini, B. (2006) Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: Impact on WHO classification. Blood, 108, 4146-4155. Patel, D.M. & Mannie, M.D. (2001) Intercellular exchange of class II major histocompatibility complex/peptide complexes is a conserved process that requires activation of T cells but is constitutive in other types of antigen presenting cell. Cell Immunol, 214, 165-172. Pauly, S., Broll, K., Wittmann, M., Giegerich, G. & Schwarz, H. (2002) CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J Leukoc Biol, 72, 35-42. 104 Pollok, K.E., Kim, Y.J., Hurtado, J., Zhou, Z., Kim, K.K. & Kwon, B.S. (1994) 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol, 24, 367-374. Pollok, K.E., Kim, Y.J., Zhou, Z., Hurtado, J., Kim, K.K., Pickard, R.T. & Kwon, B.S. (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol, 150, 771-781. Polte, T., Jagemann, A., Foell, J., Mittler, R.S. & Hansen, G. (2007) CD137 ligand prevents the development of T-helper type cell-mediated allergic asthma by interferon-gammaproducing CD8+ T cells. Clin Exp Allergy, 37, 1374-1385. Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. & June, C.H. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med, 365, 725-733. Reilly, J.T. (2003) FLT3 and its role in the pathogenesis of acute myeloid leukaemia. Leuk Lymphoma, 44, 1-7. Renneville, A., Roumier, C., Biggio, V., Nibourel, O., Boissel, N., Fenaux, P. & Preudhomme, C. (2008) Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia, 22, 915-931. Robak, T. & Wierzbowska, A. (2009) Current and emerging therapies for acute myeloid leukemia. Clin Ther, 31 Pt 2, 2349-2370. Roddie, H., Klammer, M., Thomas, C., Thomson, R., Atkinson, A., Sproul, A., Waterfall, M., Samuel, K., Yin, J., Johnson, P. & Turner, M. (2006) Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol, 133, 152-157. Russo, V., Zhou, D., Sartirana, C., Rovere, P., Villa, A., Rossini, S., Traversari, C. & Bordignon, C. (2000) Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood, 95, 3473-3477. Salih, H.R., Kosowski, S.G., Haluska, V.F., Starling, G.C., Loo, D.T., Lee, F., Aruffo, A.A., Trail, P.A. & Kiener, P.A. (2000) Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. J Immunol, 165, 2903-2910. Salih, H.R., Nuessler, V., Denzlinger, C., Starling, G.C., Kiener, P.A. & Schmetzer, H.M. (2004) Serum levels of CD137 ligand and CD178 are prognostic factors for progression of myelodysplastic syndrome. Leuk Lymphoma, 45, 301-308. Sato, W., Fukazawa, N., Suzuki, T., Yusa, K. & Tsuruo, T. (1991) Circumvention of multidrug resistance by a newly synthesized quinoline derivative, MS-073. Cancer Res, 51, 2420-2424. Schlenk, R.F., Dohner, K., Krauter, J., Frohling, S., Corbacioglu, A., Bullinger, L., Habdank, M., Spath, D., Morgan, M., Benner, A., Schlegelberger, B., Heil, G., Ganser, A., Dohner, H. & GermanAustrian Acute Myeloid Leukemia Study, G. (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med, 358, 1909-1918. Schneider, P., Holler, N., Bodmer, J.L., Hahne, M., Frei, K., Fontana, A. & Tschopp, J. (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med, 187, 12051213. Scholl, N., Loibl, J., Kremser, A., Liepert, A., Grabrucker, C., Salih, H.R., Kolb, H.J. & Schmetzer, H.M. (2009) The role of soluble and cell-surface expressed 4-1BB ligand in patients with malignant hemopoietic disorders. Leuk Lymphoma, 50, 427-436. Schwarz, H., Blanco, F.J., von Kempis, J., Valbracht, J. & Lotz, M. (1996) ILA, a member of the human nerve growth factor/tumor necrosis factor receptor family, regulates T-lymphocyte proliferation and survival. Blood, 87, 2839-2845. Schwarz, H., Tuckwell, J. & Lotz, M. (1993) A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene, 134, 295-298. Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J. & Lotz, M. (1995) ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood, 85, 1043-1052. 105 Seo, S.K., Choi, J.H., Kim, Y.H., Kang, W.J., Park, H.Y., Suh, J.H., Choi, B.K., Vinay, D.S. & Kwon, B.S. (2004) 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med, 10, 1088-1094. Shabihkhani, M., Lucey, G.M., Wei, B., Mareninov, S., Lou, J.J., Vinters, H.V., Singer, E.J., Cloughesy, T.F. & Yong, W.H. (2014) The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin Biochem. Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., Pearson, T.C., Ledbetter, J.A., Aruffo, A. & Mittler, R.S. (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 186, 47-55. Silveira, G.F., Wowk, P.F., Machado, A.M., Duarte dos Santos, C.N. & Bordignon, J. (2013) Immature dendritic cells generated from cryopreserved human monocytes show impaired ability to respond to LPS and to induce allogeneic lymphocyte proliferation. PLoS One, 8, e71291. Song, J.Y., Han, S.K., Son, E.H., Pyo, S.N., Yun, Y.S. & Yi, S.Y. (2002) Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol, 2, 857865. Song, W.J., Sullivan, M.G., Legare, R.D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I.C., Haworth, C., Hock, R., Loh, M., Felix, C., Roy, D.C., Busque, L., Kurnit, D., Willman, C., Gewirtz, A.M., Speck, N.A., Bushweller, J.H., Li, F.P., Gardiner, K., Poncz, M., Maris, J.M. & Gilliland, D.G. (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, 23, 166-175. Stasi, R., Evangelista, M.L., Buccisano, F., Venditti, A. & Amadori, S. (2008) Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer Treat Rev, 34, 49-60. Stegmaier, K., Corsello, S.M., Ross, K.N., Wong, J.S., Deangelo, D.J. & Golub, T.R. (2005) Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood, 106, 2841-2848. Sternberg, N., Georgieva, R., Duft, K. & Baumler, H. (2012) Surface-modified loaded human red blood cells for targeting and delivery of drugs. J Microencapsul, 29, 9-20. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity, 15, 751-761. Stone, R.M., DeAngelo, D.J., Klimek, V., Galinsky, I., Estey, E., Nimer, S.D., Grandin, W., Lebwohl, D., Wang, Y., Cohen, P., Fox, E.A., Neuberg, D., Clark, J., Gilliland, D.G. & Griffin, J.D. (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a smallmolecule FLT3 tyrosine kinase inhibitor, PKC412. Blood, 105, 54-60. Stone, R.M., O'Donnell, M.R. & Sekeres, M.A. (2004) Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program, 98-117. Sun, Y., Lin, X., Chen, H.M., Wu, Q., Subudhi, S.K., Chen, L. & Fu, Y.X. (2002) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol, 168, 1457-1465. Tabiasco, J., Espinosa, E., Hudrisier, D., Joly, E., Fournie, J.J. & Vercellone, A. (2002) Active transsynaptic capture of membrane fragments by natural killer cells. Eur J Immunol, 32, 15021508. Takahashi, C., Mittler, R.S. & Vella, A.T. (1999) Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol, 162, 5037-5040. Tallman, M.S. (2006) New agents for the treatment of acute myeloid leukemia. Best Pract Res Clin Haematol, 19, 311-320. Tallman, M.S., Gilliland, D.G. & Rowe, J.M. (2005) Drug therapy for acute myeloid leukemia. Blood, 106, 1154-1163. Tang, Q., Jiang, D., Alonso, S., Pant, A., Martinez Gomez, J.M., Kemeny, D.M., Chen, L. & Schwarz, H. (2013) CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol, 43, 1555-1567. Taraban, V.Y., Rowley, T.F., O'Brien, L., Chan, H.T., Haswell, L.E., Green, M.H., Tutt, A.L., Glennie, M.J. & Al-Shamkhani, A. (2002) Expression and costimulatory effects of the TNF receptor 106 superfamily members CD134 (OX40) and CD137 (4-1BB), and their role in the generation of anti-tumor immune responses. Eur J Immunol, 32, 3617-3627. Vanherberghen, B., Andersson, K., Carlin, L.M., Nolte-'t Hoen, E.N., Williams, G.S., Hoglund, P. & Davis, D.M. (2004) Human and murine inhibitory natural killer cell receptors transfer from natural killer cells to target cells. Proc Natl Acad Sci U S A, 101, 16873-16878. Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R. & Ottenhoff, T.H. (2004) Human IL-23-producing type macrophages promote but IL-10-producing type macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A, 101, 4560-4565. Vinay, D.S. & Kwon, B.S. (1998) Role of 4-1BB in immune responses. Semin Immunol, 10, 481-489. Vire, B., de Walque, S., Restouin, A., Olive, D., Van Lint, C. & Collette, Y. (2009) Anti-leukemia activity of MS-275 histone deacetylase inhibitor implicates 4-1BBL/4-1BB immunomodulatory functions. PLoS One, 4, e7085. Vitale, C., Romagnani, C., Falco, M., Ponte, M., Vitale, M., Moretta, A., Bacigalupo, A., Moretta, L. & Mingari, M.C. (1999) Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci U S A, 96, 15091-15096. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H. & Speck, N.A. (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A, 93, 3444-3449. Wang, Z.Y. & Chen, Z. (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood, 111, 2505-2515. Watts, T.H. & DeBenedette, M.A. (1999) T cell co-stimulatory molecules other than CD28. Curr Opin Immunol, 11, 286-293. Westers, T.M., Stam, A.G., Scheper, R.J., Regelink, J.C., Nieuwint, A.W., Schuurhuis, G.J., van de Loosdrecht, A.A. & Ossenkoppele, G.J. (2003) Rapid generation of antigen-presenting cells from leukaemic blasts in acute myeloid leukaemia. Cancer Immunol Immunother, 52, 17-27. Wilcox, R.A., Flies, D.B., Zhu, G., Johnson, A.J., Tamada, K., Chapoval, A.I., Strome, S.E., Pease, L.R. & Chen, L. (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest, 109, 651-659. Wilcox, R.A., Tamada, K., Flies, D.B., Zhu, G., Chapoval, A.I., Blazar, B.R., Kast, W.M. & Chen, L. (2004) Ligation of CD137 receptor prevents and reverses established anergy of CD8+ cytolytic T lymphocytes in vivo. Blood, 103, 177-184. Wilson, C.S., Davidson, G.S., Martin, S.B., Andries, E., Potter, J., Harvey, R., Ar, K., Xu, Y., Kopecky, K.J., Ankerst, D.P., Gundacker, H., Slovak, M.L., Mosquera-Caro, M., Chen, I.M., Stirewalt, D.L., Murphy, M., Schultz, F.A., Kang, H., Wang, X., Radich, J.P., Appelbaum, F.R., Atlas, S.R., Godwin, J. & Willman, C.L. (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood, 108, 685-696. Wyzgol, A., Muller, N., Fick, A., Munkel, S., Grigoleit, G.U., Pfizenmaier, K. & Wajant, H. (2009) Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol, 183, 1851-1861. Zelent, A., Petrie, K., Lotan, R., Waxman, S. & Gore, S.D. (2005) Clinical translation of epigenetics in cancer: eN-CORe--a report on the second workshop. Mol Cancer Ther, 4, 1810-1819. Zhang, L., Gajewski, T.F. & Kline, J. (2009) PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood, 114, 1545-1552. Zheng, G., Wang, B. & Chen, A. (2004) The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol, 173, 2428-2434. Zhong, R.K., Loken, M., Lane, T.A. & Ball, E.D. (2006) CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy, 8, 3-12. 107 Zhou, J., Tagaya, Y., Tolouei-Semnani, R., Schlom, J. & Sabzevari, H. (2005) Physiological relevance of antigen presentasome (APS), an acquired MHC/costimulatory complex, in the sustained activation of CD4+ T cells in the absence of APCs. Blood, 105, 3238-3246. Zhou, Z., Kim, S., Hurtado, J., Lee, Z.H., Kim, K.K., Pollok, K.E. & Kwon, B.S. (1995) Characterization of human homologue of 4-1BB and its ligand. Immunol Lett, 45, 67-73. Zhu, G., Flies, D.B., Tamada, K., Sun, Y., Rodriguez, M., Fu, Y.X. & Chen, L. (2001) Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Ealpha)-transgenic mice. J Immunol, 167, 2671-2676. 108 APPENDICES 109 APPENDIX 1: TISSUE CULTURE MEDIA 1. RPMI 1640 (1 L) RPMI powder (Sigma-Aldrich) 16.35 g L-glutamine (200 mM) (Invitrogen) 10 mL Sodium bicarbonate (Sigma-Aldrich) 2.0 g MilliQ water Top up to L 2. RPMI 1640 + 10% FBS (1 L) RPMI 1640 900 mL Fetal bovine serum (Biowest) 100 mL 3. RPMI 1640 + 10% FBS + P/S (1 L) RPMI 1640 + 10% FBS 990 mL Penicillin/Streptomycin (Invitrogen) 10 mL 110 APPENDIX 2: BUFFERS FOR ISOLATION OF PBMCS 1. PBS + mM EDTA (1 L) 10X PBS (1st Base) 100 mL EDTA (0.5 M) (1st Base) mL MilliQ water Top up to L 2. RBC lysis buffer (1 L) NH4Cl (Sigma-Aldrich) 8.29 g NaHCO3 (Sigma-Aldrich) 0.84 g EDTA (0.5 M) 23 µL MilliQ water Top up to L 3. MACS buffer (1 L) 10X PBS 100 mL EDTA (0.5 M) mL 0.5% BSA (Biowest) 5g pH of all buffers adjusted to 7.4. Buffers were sterile filtered through a 0.22 µm filter membrane before use. 111 APPENDIX 3: MISCELLANEOUS BUFFERS 1. 10 mM EDTA in PBS (50 mL) EDTA (0.5 M) mL 10X PBS mL MilliQ water Top up to 50 mL 2. FACS buffer (1 L) Fetal bovine serum mL Sodium azide (Sigma-Aldrich) 0.2 g 10X PBS 100 mL MilliQ water Top up to L pH of all buffers adjusted to 7.4. Buffers were sterile filtered through a 0.22 µm filter membrane before use. 112 [...]... Methods for immobilization of CD137-Fc 70 21 Conjugation of CD137-Fc to surface membrane of red blood cells 72 22 RBC-CD137-Fc induces changes in monocytes consistent with differentiation 73 23 Schematic showing CD137-induced myelopoiesis of primary AML cells 79 x LIST OF ABBREVIATIONS AICD Activation-induced cell death AML Acute myeloid leukaemia APC Antigen presenting cell APL Acute promyelocytic leukaemia... levels of CD137L on T cells is so low that detection via flow cytometry or other commonly used methods is not possible Unlike the activating abilities of CD137L signalling in APCs, or the co-stimulating abilities of CD137 on T cells, CD137L signalling in T cell lines appears to be inhibitory Coculture of CD137-expressing transfected CHO cells with anti-CD3-activated human peripheral blood mononuclear cells. .. (Lippert 2008) 8 1.2.6 CD137L signalling in B cells Studies on CD137L signalling in B cells have produced somewhat conflicting results While CD137L is expressed on B cells, whether this expression is induced or constitutive is unclear (Jung, et al 2004, Zhou, et al 1995) In a transgenic mouse model, constitutive expression of CD137L on APCs resulted in gradual depletion of peripheral B cells over time (Zhu,... 2000), it is also possible that activated T cells, which express CD137, may become over-stimulated by the CD137L- expressing B cells, leading to B cell elimination CD137 -CD137L interactions also likely play important roles in regulating maturation and activation of B cells (Pauly, et al 2002) 1.2.7 CD137L signalling in T cells CD137L is not expressed on primary T cells, or constitutively expressed at very... constitutively expressed on mature B cells and activated B cells (Pollok, et al 1994) Like CD137, low levels of CD137L are inducible on T cells, with expression being strictly activation-dependent (Goodwin, et al 1993, Polte, et al 2007) 1.2.3 Bi-directional signalling of CD137 /CD137L CD137L exerts its effects on CD137-expressing cells, like activated T cells, via engagement of CD137, leading to signal transduction... 1999) 1.3 Influence of CD137L signalling on myelopoiesis 1.3.1 Myelopoiesis and myeloid cells All white blood cells are derived from the haematopoietic stem cells (HSCs) found in the bone marrow Being undifferentiated and pluripotent, HSCs have the ability to differentiate into any cell of the lymphoid or myeloid lineage of white blood cells, thereby replenishing or increasing the size of the relevant... Reed-Sternberg cells inhibits T-cell activation by eliminating CD137 ligand expression Cancer Research, 73, 652-661 xiv INTRODUCTION 1 This thesis focusses the effects of CD137L signalling on acute myeloid leukaemia and its potential therapeutic application The following introduction, therefore, presents an overview of CD137 and CD137L biology Acute myeloid leukaemia and its current state of therapy will... cytolytic potential of CD8+ T cells via massive induction of IFN-γ and TNF-α (Shuford, et al 1997, Takahashi, et al 1999), and induces differentiation to CD8+ memory T cells, as suggested by up-regulation of the memory CD8+ T cell marker, CD45RO, the CC chemokine receptor 6 and the contents of granzyme B (Kim, et al 2002) By comparison, studies on the effects of CD137 signalling in CD4+ T cells have been... organization xiii LIST OF PUBLICATIONS Cheng, K., Wong, S.C., Linn, Y.C., Ho, L.P., Chng, W.J & Schwarz, H (2014) CD137 ligand signalling induces differentiation of primary acute myeloid leukaemia cells British Journal of Haematology, 165, 134-144 Ho, W.T., Pang, W.L., Chong, S.M., Castella, A., Al-Salam, S., Tan, T.E., Moh, M.C., Koh, L.K., Gan, S.U., Cheng, C.K & Schwarz, H (2013) Expression of CD137 on Hodgkin... 1998) Compared to CD137 signalling, less is currently known about the effects of CD137L signalling into the cells on which it is expressed 1.2.4 CD137L signalling in monocytes 7 Cross-linking of CD137L on the monocyte cell surface by recombinant CD137 protein or anti -CD137L antibody results in increased adherence within just a few hours (Langstein and Schwarz 1999), secretion of pro-inflammatory cytokines . 1.2.4 CD137L signalling in monocytes 8 1.2.5 CD137L signalling in dendritic cells 8 1.2.6 CD137L signalling in B cells 9 1.2.7 CD137L signalling in T cells 9 1.3 Influence of CD137L signalling. AML cells in immunotherapy 86 4.3 Transfer of CD137 to AML cells 89 4.4 CD137L signalling induces differentiation of myeloid cells in a murine model of leukaemia 91 4.5 Immobilization of recombinant. proportion of AML cells 37 3.2 Effects of CD137L signalling in freshly isolated AML cells 43 3.2.1 CD137L signalling induces immunophenotypic changes in AML cells consistent with differentiation