1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Microfluidic processes for protein separations

189 254 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

MICROFLUIDIC PROCESSES FOR PROTEIN SEPARATIONS LEE SU HUI, SOPHIA (B. Eng. (Hons), NUS) (M. Sc. (SMA-MEBCS), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL AND PHARMACEUTICAL ENGINEERING (CPE) SINGAPORE-MIT ALLIANCE NATIONAL UNIVERSITY OF SINGAPORE 2012 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _______________ Lee Su Hui, Sophia 30 June 2012 Acknowledgements First and foremost, I would like to express my sincere gratitude to my thesis advisors, Dr Saif A. Khan and Prof. T. Alan Hatton for their guidance and support. I would also like to thank my thesis committee members, Prof Raj Rajagopalan, Prof Patrick S. Doyle and Associate Prof Yang Kun Lin for their time and suggestions. I am also thankful for a great lab with positive and supportive members (Pravien, Suhanya, Swee Kun, Carl, Zahra, AJ, Dr Rahman, Reno, Arpi, and Prasanna) who are there to help me and cheer me up whenever I have difficulties or feel discouraged. I would also like to take this opportunity to thank my FYPs (Swee Kun, Carl, Loren, Taurus, Irma, and Ray) for their help and the fun times I had with them. In addition, I need to thank our collaborators for the HSSP project (Khalid and Prof Choi) for their generous help. Lastly, I must thank my wonderful family members. I am most thankful for my husband, Akasta, who has been a constant source of support and help for me throughout the course of my Ph.D. Thank you for going through all my manuscripts, and for giving me great suggestions and ideas. To my grandma, grandpa, mum and dad, thank you all for your love and for the sacrifices you have made throughout my life to give me the best. Finally, I thank National University of Singapore and Singapore-MIT Alliance for their financial support in my research. i Table of Contents Acknowledgements Summary i viii List of Tables x List of Figures xi Introduction 1.1 Protein Separation 1.2 Magnetic Separation 1.3 Liquid-Liquid Extraction 1.4 Motivation: Microfluidics for Separation 1.5 Thesis Objectives and Layout Literature Review 2.1 Protein Separation 2.1.1 Liquid-Liquid Extraction 2.1.2 Chromatography 2.2 Magnetic Particles 2.2.1 Chemical Synthesis of Magnetic Nanoclusters 10 2.2.2 Applications of Magnetic Particles 12 2.3 Aqueous Two-Phase Systems 13 2.3.1 Applications of ATPS 15 2.3.2 Mixing of Immiscible Liquids 18 2.4 Microfluidic Continuous Separations 23 2.4.1 Pinched Flow Fractionation 24 ii 2.4.2 Hydrodynamic Filtration 25 2.4.3 Continuous Flow Filtration 27 2.4.4 Deterministic Lateral Displacement 28 2.4.5 Inertial Lift and Dean Flow 29 2.4.6 Split Flow Thin (SPLITT) Fractionation 30 2.4.7 Liquid-Liquid Extraction 31 2.4.8 Free-flow Focussing Electrophoresis and Free-flow 32 2.4.9 Separation by Sound Pressure 34 2.4.10 Separation by Optical Forces 35 2.4.11 Separation by Gravity 36 2.4.12 Separation by Magnetic Fields 37 2.5 Droplet Microfluidics Isoelectric 39 2.5.1 Device Considerations 40 2.5.2 Droplet Formation 41 2.5.3 Droplet Fusion 44 2.5.4 Mixing in Droplets 46 2.5.5 Applications of Droplets Microfluidics 49 Microfluidic Continuous Magnetophoretic Protein Separation 52 3.1 Introduction 52 3.2 Focus of the Chapter 55 3.3 Concept 56 3.4 Materials and Methods 58 3.4.1 Synthesis of Magnetic Nanoclusters (MNCs) 58 iii 3.4.2 Silica Coating of MNCs 58 3.4.3 Particle Characterisation 59 3.4.4 Microfluidic Devices 59 3.4.5 Microfluidic Protein Separation 59 3.4.6 Quantification of Collected Proteins 61 3.5 Theory and Calculations 3.5.1 Calculation of Particle Trajectories 62 62 3.5.2 Finite Element Modeling (FEM) of Transverse Migration of BSA using COMSOL Multiphysics 3.3a 65 3.6 Results and Discussion 66 3.6.1 Superparamagnetic Nanoparticles 66 3.6.2 Experimental Results for Microfluidic Protein Separation 69 3.6.3 Formation of SMNC-Hb Aggregates 73 3.6.4 Calculation of Hb Recovery 75 3.6.5 Calculation of BSA Recovery 78 3.7 Enhancements in Separation Performance 79 3.8 Summary 81 Aqueous Two-Phase Microdroplets with Tunable Spatial Heterogeneity in Structure and Composition 83 4.1 Introduction 83 4.2 Focus of the Chapter 84 4.3 Concept 85 4.4 Materials and Methods 86 4.4.1 Materials 86 4.4.2 Microfluidic Devices 86 iv 4.4.3 Microfluidic Device Setup and Operation 87 4.4.4 Viscosity Measurements 88 4.5 Theory and Calculations 88 4.5.1 Calculation of Critical Thread Diameter and Comparison with Established Theory: 88 4.5.2 Calculation of Interface Thickness at Equilibrium: 4.6 Results and Discussion 4.6.1 Morphologies of ATPS Microdroplets 91 96 96 4.6.2 Construction of Dynamic Morphology Diagram 101 4.6.3 Fluid Filaments in Reticulate Microdroplets 105 4.6.4 Equilibrium Interfacial Thickness 108 4.7 Summary 109 Aqueous Two-Phase Microdroplets for Protein Partitioning 110 5.1 Introduction 110 5.2 Focus of the Chapter 111 5.3 Concept 111 5.4 Materials and Methods 112 5.4.1 Materials 112 5.4.2 Batch Partitioning 113 5.4.3 Image Intensity Calibration 115 5.4.4 Microfluidic Device Setup and Operation 117 5.4.5 Intensity Measurements within Droplets 118 5.5 Theory and Calculations 119 5.5.1 Calculation of Protein Partitioning using Two-resistance Theory224 119 v 5.6 Results and Discussion 122 5.6.1 Protein Partitioning in Batch System 122 5.6.2 Protein Partitioning in ATPS Microdroplets 124 5.6.3 Calculation of Protein Partitioning (CC) 126 5.7 Summary 128 Hierarchical Materials Synthesis at Soft All-Aqueous Interfaces 129 6.1 Introduction 129 6.2 Focus of the Chapter 130 6.3 Concept 131 6.4 Materials and Methods 134 6.4.1 Synthesis of HSSP on Hybrid Hydrophilic-superhydrophobic Nanostructured Silicon Surfaces 134 6.4.2 Characterization of HSSP 135 6.4.3 Viscosity Measurements 135 6.4.4 Microfluidic Devices 135 6.4.5 Microfluidic Device Setup and Operation 136 6.5 Results and Discussion 137 6.5.1 Hierarchically Structured Superparamagnetic Iron Oxide Particles 137 6.5.2 PAA-Fe Complex Formation: Role of PAA 139 6.5.3 Microreactor Synthesis of HSSP 144 6.6 Summary 147 Summary and Outlook 148 7.1 Thesis Contributions 148 7.2 Research Opportunities 149 vi 7.2.1 Continuous Magnetophoretic Separation Process 149 7.2.2 Microfluidic Aqueous Two-Phase System 150 7.2.3 Hierarchical Materials Synthesis at Soft All-Aqueous Interfaces 151 References 153 Publications 169 vii Summary This thesis demonstrates microfluidic-based approaches for chemical/biomolecular separation. Traditional separation methods are usually processes such as chromatography, electrophoresis, ultrafiltration or precipitation. Microfluidic continuous-flow separation techniques offer attractive alternatives to more conventional batch-based methods, and several such methods based on a variety of separation principles have been developed in recent years. Advantages of microfluidic continuous separation include continuous sample injection, continuous results readout, and integration with upstream and downstream process units. In this thesis, microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates and aqueous two-phase microdroplets for protein partitioning are explored. In microfluidic continuous magnetophoretic protein separation, silica coated superparamagnetic nanoparticles interact preferentially with hemoglobin in a mixture with bovine serum albumin, form protein-nanoparticle aggregates through electrostatic interactions, and are recovered online by magnetophoresis. Detailed modeling and analysis of this process are also presented in this thesis, and quantitative estimates of the recovery of both proteins are also validated with experimental results. The results reveal the importance of accounting for particle size distributions in calculating particle recovery, and therefore in estimating separation efficiency. viii 31. A. Ditsch, Purification of Recombinant Proteins with Magnetic Nanoclusters, Ph. D. Thesis, Massachusetts Institute of Technology, 2004. 32. Y. S. Song, Y. H. Choi and D. H. Kim, Journal of Chromatography A, 2007, 1162, 180-186. 33. S. Roe, Protein Purification Techniques: A Practical Approach, Oxford University Press, Oxford, 2001. 34. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chemical Reviews, 2008, 108, 2064-2110. 35. N. A. Frey, S. Peng, K. Cheng and S. H. Sun, Chemical Society Reviews, 2009, 38, 2532-2542. 36. R. E. Rosensweig, Ferrohydrodynamics., Cambridge University Press, London 1985. 37. A. Ditsch, S. Lindenmann, P. E. Laibinis, D. I. C. Wang and T. A. Hatton, Industrial & Engineering Chemistry Research, 2005, 44, 6824-6836. 38. A. Ditsch, P. E. Laibinis, D. I. C. Wang and T. A. Hatton, Langmuir, 2005, 21, 6006-6018. 39. J. P. Ge, Y. X. Hu, M. Biasini, W. P. Beyermann and Y. D. Yin, Angewandte Chemie-International Edition, 2007, 46, 4342-4345. 40. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen and Y. Li, Angewandte Chemie International Edition, 2005, 44, 2782-2785. 41. J. Kim, J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park and T. Hyeon, Advanced Materials, 2008, 20, 478-483. 42. J. Q. Zhuang, H. M. Wu, Y. A. Yang and Y. C. Cao, Journal of the American Chemical Society, 2007, 129, 14166-14167. 43. J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang and T. Hyeon, Nature Materials, 2004, 3, 891-895. 44. Y. Lu, Y. D. Yin, B. T. Mayers and Y. N. Xia, Nano Letters, 2002, 2, 183186. 45. J. P. Ge, Y. X. Hu, T. R. Zhang and Y. D. Yin, Journal of the American Chemical Society, 2007, 129, 8974-8975. 155 46. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard and W. H. Tan, Langmuir, 2001, 17, 2900-2906. 47. S. Y. Chang, L. Liu and S. A. Asher, Journal of the American Chemical Society, 1994, 116, 6745-6747. 48. W. Stober, A. Fink and E. Bohn, Journal of Colloid and Interface Science, 1968, 26, 62-69. 49. T. Douglas, J. W. M. Bulte, D. P. E. Dickson, R. B. Frankel, Q. A. Pankhurst, B. M. Moskowitz and S. Mann, Hybrid Organic-Inorganic Composites, 1995, 585, 19-28. 50. T. Kawaguchi, A. Yoshino, M. Hasegawa, T. Hanaichi, S. Maruno and N. Adachi, Journal of Materials Science-Materials in Medicine, 2002, 13, 113-117. 51. A. S. Lubbe, C. Bergemann, J. Brock and D. G. McClure, Journal of Magnetism and Magnetic Materials, 1999, 194, 149-155. 52. M. Suzuki, M. Shinkai, M. Kamihira and T. Kobayashi, in Biotechnology and Applied Biochemistry, 1995, vol. 21, pp. 335-345. 53. I. Safarik and M. Safarikova, Journal of Chromatography B, 1999, 722, 33-53. 54. M. V. Ariyapadi and E. B. Nauman, Journal of Polymer Science: Part B: Polymer Physics, 1990, 28, 2395-2409. 55. D. Forciniti, Journal of Chromatography A, 1994, 668, 95-100. 56. J. Lotwin and E. D. Clark, Biotechnology and Bioengineering, 1999, 65, 437-446. 57. C. Ramsch, L. B. Kleinelanghorst, E. A. Knieps, J. Thommes and M. R. Kula, Biotechnology and Bioengineering, 2000, 69, 83-90. 58. H. Umakoshi, J. Persson, M. Kroon, H. O. Johansson, D. E. Otzen, R. Kuboi and F. Tjerneld, Journal of Chromatography B, 2000, 743, 13-19. 59. R. Kuboi, S. Morita, H. Ota and H. Umakoshi, Journal of Chromatography B, 2000, 743, 215-223. 60. M. Zaveckas, A. Zvirbliene, G. Zvirblis, V. Chmieliauskaite, V. Bumelis and H. Pesliakas, Journal of Chromatography B, 2007, 852, 409-419. 156 61. M. S. Long, C. D. Jones, M. R. Helfrich, L. K. Mangeney-Slavin and C. D. Keating, Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5920-5925. 62. G. Johansson and H. Walter, International Review of Cytology, 2000, 192, 33-60. 63. F. Tjerneld, I. Persson, P.-A. Albertsson and B. Hahn-Hagerdal, Biotechnology and Bioengineering, 1985, 27, 1036-1043. 64. F. Tjerneld, I. Persson, P.-A. Albertsson and B. Hahn-Hagerdal, Biotechnology and bioengineering symposium, 1985, 15, 419. 65. F. Tjerneld, I. Persson, P.-A. Albertsson and B. Hahn-Hagerdal, Biotechnology and Bioengineering, 1985, 27, 1044-1050. 66. M. Larsson, V. Arasaratnam and B. Mattiasson, Biotechnology and Bioengineering, 1989, 33, 758-766. 67. E. Andersson, B. Mattiasson and B. Hahn-Hagerdal, Enzyme and Microbial Technology, 1984, 6, 301-306. 68. G. I. Taylor, Proceedings of the Royal Society of London Series AContaining Papers of a Mathematical and Physical Character, 1932, 138, 41-48. 69. G. I. Taylor, Proceedings of the Royal Society of London Series AMathematical, Physical and Engineering Sciences, 1934, 146, 0501-0523. 70. H. P. Grace, Chemical Engineering Communications, 1982, 14, 225-277. 71. B. J. Bentley and L. G. Leal, Journal of Fluid Mechanics, 1986, 167, 241283. 72. K. B. Migler, Physical Review Letters, 2001, 86, 1023-1026. 73. R. Chella and J. M. Ottino, Industrial & Engineering Chemistry Fundamentals, 1985, 24, 170-180. 74. H. Aref and G. Tryggvason, Physica D, 1984, 12, 59-70. 75. J. M. H. Janssen, Dynamics of Liquid-Liquid Mixing. Ph.D. Thesis. Eindhoven University of Technology, 1993. 76. J. M. H. Janssen and H. E. H. Meijer, Journal of Rheology, 1993, 37, 597608. 157 77. P. H. M. Elemans, H. L. Bos, J. M. H. Janssen and H. E. H. Meijer, Chemical Engineering Science, 1993, 48, 267-276. 78. H. E. H. Meijer and J. M. H. Janssen, Section 1.4 of Mixing and Compounding-Theory and Practice, Progress in Polymer Proc. Series (Carl Hanser, Munich, 1993). 79. H. Aref, Physics of Fluids A, 1991, 3, 1009-1016. 80. J. M. Ottino, Annual Review of Fluid Mechanics, 1990, 22, 207-253. 81. C. W. Leong and J. M. Ottino, Journal of Fluid Mechanics, 1989, 209, 463-499. 82. M. Yamada, M. Nakashima and M. Seki, Analytical Chemistry, 2004, 76, 5465-5471. 83. J. Takagi, M. Yamada, M. Yasuda and M. Seki, Lab on a Chip, 2005, 5, 778-784. 84. Y. Sai, M. Yamada, M. Yasuda and M. Seki, Journal of Chromatography A, 2006, 1127, 214-220. 85. M. Yamada and M. Seki, Lab on a Chip, 2005, 5, 1233-1239. 86. M. Yamada and M. Seki, Analytical Chemistry, 2006, 78, 1357-1362. 87. W. Hattori, H. Someya, M. Baba and H. Kawaura, Journal of Chromatography A, 2004, 1051, 141-146. 88. P. Sethu, A. Sin and M. Toner, Lab on a Chip, 2006, 6, 83-89. 89. X. Chen, D. F. Cui, C. C. Liu, H. Li and J. Chen, Analytica Chimica Acta, 2007, 584, 237-243. 90. V. VanDelinder and A. Groisman, Analytical Chemistry, 2006, 78, 37653771. 91. V. VanDelinder and A. Groisman, Analytical Chemistry, 2007, 79, 20232030. 92. L. R. Huang, E. C. Cox, R. H. Austin and J. C. Sturm, Science, 2004, 304, 987-990. 93. D. W. Inglis, J. A. Davis, R. H. Austin and J. C. Sturm, Lab on a Chip, 2006, 6, 655-658. 158 94. A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Lab on a Chip, 2008, 8, 1906-1914. 95. C. X. Zhang and A. Manz, Analytical Chemistry, 2003, 75, 5759-5766. 96. Y. Xu, C. X. Zhang, D. Janasek and A. Manz, Lab on a Chip, 2003, 3, 224-227. 97. M. P. MacDonald, G. C. Spalding and K. Dholakia, Nature, 2003, 426, 421-424. 98. G. Milne, D. Rhodes, M. MacDonald and K. Dholakia, Optics Letters, 2007, 32, 1144-1146. 99. F. Petersson, A. Nilsson, C. Holm, H. Jonsson and T. Laurell, Lab on a Chip, 2005, 5, 20-22. 100. T. M. Squires and S. R. Quake, Reviews of Modern Physics, 2005, 77, 977-1026. 101. J. C. Giddings, Separation Science and Technology, 1985, 20, 749-768. 102. Y. H. Zhang, R. W. Barber and D. R. Emerson, Current Analytical Chemistry, 2005, 1, 345-354. 103. N. Narayanan, A. Saldanha and B. K. Gale, Lab on a Chip, 2006, 6, 105114. 104. M. Yamada, V. Kasim, M. Nakashima, J. Edahiro and M. Seki, Biotechnology and Bioengineering, 2004, 88, 489-494. 105. K. H. Nam, W. J. Chang, H. Hong, S. M. Lim, D. I. Kim and Y. M. Koo, Biomedical Microdevices, 2005, 7, 189-195. 106. J. R. SooHoo and G. M. Walker, Biomedical Microdevices, 2009, 11, 323329. 107. M. Tsukamoto, S. Taira, S. Yamamura, Y. Morita, N. Nagatani, Y. Takamura and E. Tamiya, Analyst, 2009, 134, 1994-1998. 108. R. J. Meagher, Y. K. Light and A. K. Singh, Lab on a Chip, 2008, 8, 527532. 109. G. Munchow, S. Hardt, J. P. Kutter and K. S. Drese, Lab on a Chip, 2007, 7, 98-102. 159 110. D. Huh, J. H. Bahng, Y. B. Ling, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg and S. Takayama, Analytical Chemistry, 2007, 79, 1369-1376. 111. K. H. Han and A. B. Frazier, Lab on a Chip, 2006, 6, 265-273. 112. A. C. Siegel, S. S. Shevkoplyas, D. B. Weibel, D. A. Bruzewicz, A. W. Martinez and G. M. Whitesides, Angewandte Chemie-International Edition, 2006, 45, 6877-6882. 113. D. Schuler and R. B. Frankel, Applied Microbiology and Biotechnology, 1999, 52, 464-473. 114. M. Zborowski, G. R. Ostera, L. R. Moore, S. Milliron, J. J. Chalmers and A. N. Schechter, Biophysical Journal, 2003, 84, 2638-2645. 115. S. Y. Teh, R. Lin, L. H. Hung and A. P. Lee, Lab on a Chip, 2008, 8, 198220. 116. H. Song, D. L. Chen and R. F. Ismagilov, Angewandte ChemieInternational Edition, 2006, 45, 7336-7356. 117. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone and D. A. Weitz, Science, 2005, 308, 537-541. 118. M. G. Pollack, A. D. Shenderov and R. B. Fair, Lab on a Chip, 2002, 2, 96-101. 119. K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schon, M. Roth, J. M. Kohler and J. Metze, Lab on a Chip, 2003, 3, 202-207. 120. S. W. Hu, X. Q. Ren, M. Bachman, C. E. Sims, G. P. Li and N. L. Allbritton, Analytical Chemistry, 2004, 76, 1865-1870. 121. W. Cho, Y.-J. Ko, Y. Ahn, J.-Y. Yoon and N. G. Cho, Key Engineering Materials, 2006, 326–328, 297–300. 122. J. H. Xu, S. W. Li, J. Tan, Y. J. Wang and G. S. Luo, Langmuir, 2006, 22, 7943-7946. 123. T. Nisisako, S. Okushima and T. Torii, Soft Matter, 2005, 1, 23-27. 124. S. L. Anna and H. C. Mayer, Physics of Fluids, 2006, 18(121512), 1-13. 125. T. Thorsen, R. W. Roberts, F. H. Arnold and S. R. Quake, Physical Review Letters, 2001, 86, 4163-4166. 160 126. C. Priest, S. Herminghaus and R. Seemann, Applied Physics Letters, 2006, 88(024106), 1-3. 127. J. H. Xu, S. W. Li, J. Tan, Y. J. Wang and G. S. Luo, AIChE Journal, 2006, 52, 3005-3010. 128. T. Nisisako, T. Torii and T. Higuchi, Lab on a Chip, 2002, 2, 24-26. 129. S. L. Anna, N. Bontoux and H. A. Stone, Applied Physics Letters, 2003, 82, 364-366. 130. A. Woodward, T. Cosgrove, J. Espidel, P. Jenkins and N. Shaw, Soft Matter, 2007, 3, 627-633. 131. L. Yobas, S. Martens, W. L. Ong and N. Ranganathan, Lab on a Chip, 2006, 6, 1073-1079. 132. C. F. Zhou, P. T. Yue and J. J. Feng, Physics of Fluids, 2006, 18(092105), 1-14. 133. Y. C. Tan, V. Cristini and A. P. Lee, Sensors and Actuators B, 2006, 114, 350-356. 134. R. Ahmed and T. B. Jones, Journal of Electrostatics, 2006, 64, 543-549. 135. T. B. Jones, Journal of Electrostatics, 2001, 51, 290-299. 136. T. B. Jones, M. Gunji, M. Washizu and M. J. Feldman, Journal of Applied Physics, 2001, 89, 1441-1448. 137. R. Ahmed and T. B. Jones, Journal of Micromechanics and Microengineering, 2007, 17, 1052-1058. 138. K. L. Wang, T. B. Jones and A. Raisanen, Journal of Micromechanics and Microengineering, 2007, 17, 76-80. 139. S. K. Cho, H. J. Moon and C. J. Kim, Journal of Microelectromechanical Systems, 2003, 12, 70-80. 140. J. Lee, H. Moon, J. Fowler, T. Schoellhammer and C. J. Kim, Sensors and Actuators A, 2002, 95, 259-268. 141. J. Berthier, P. Clementz, O. Raccurt, D. Jary, P. Claustre, C. Peponnet and Y. Fouillet, Sensors and Actuators A, 2006, 127, 283-294. 161 142. J. M. Roux, Y. Fouillet and J. L. Achard, Sensors and Actuators A, 2007, 134, 486-493. 143. L. S. Jang, G. H. Lin, Y. L. Lin, C. Y. Hsu, W. H. Kan and C. H. Chen, Biomedical Microdevices, 2007, 9, 777-786. 144. Y. P. Hong and F. J. Wang, Microfluidics and Nanofluidics, 2007, 3, 341346. 145. K. Liu, H. J. Ding, Y. Chen and X. Z. Zhao, Microfluidics and Nanofluidics, 2007, 3, 239-243. 146. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini and A. P. Lee, Lab on a Chip, 2004, 4, 292-298. 147. L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea and A. P. Lee, Lab on a Chip, 2006, 6, 174-178. 148. J. M. Kohler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin and J. Metze, Chemical Engineering Journal, 2004, 101, 201-216. 149. L. M. Fidalgo, C. Abell and W. T. S. Huck, Lab on a Chip, 2007, 7, 984986. 150. K. Ahn, J. Agresti, H. Chong, M. Marquez and D. A. Weitz, Applied Physics Letters, 2006, 88(264105), 1-3. 151. C. Priest, S. Herminghaus and R. Seemann, Applied Physics Letters, 2006, 89(134101), 1-3. 152. J. Wang and C. Lu, Applied Physics Letters, 2006, 89(234102), 1-3. 153. P. Singh and N. Aubry, Electrophoresis, 2007, 28, 644-657. 154. J. A. Schwartz, J. V. Vykoukal and P. R. C. Gascoyne, Lab on a Chip, 2004, 4, 11-17. 155. R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries and D. T. Chiu, Analytical Chemistry, 2006, 78, 6433-6439. 156. K. Handique and M. A. Burns, Journal of Micromechanics and Microengineering, 2001, 11, 548-554. 157. H. Song, J. D. Tice and R. F. Ismagilov, Angewandte ChemieInternational Edition, 2003, 42, 768-772. 162 158. M. R. Bringer, C. J. Gerdts, H. Song, J. D. Tice and R. F. Ismagilov, Philosophical Transactions of the Royal Society of London Series AMathematical, Physical and Engineering Sciences, 2004, 362, 1087-1104. 159. F. Sarrazin, L. Prat, N. Di Miceli, G. Cristobal, D. R. Link and D. A. Weitz, Chemical Engineering Science, 2007, 62, 1042-1048. 160. A. Liau, R. Karnik, A. Majumdar and J. H. D. Cate, Analytical Chemistry, 2005, 77, 7618-7625. 161. J. T. Cabral and S. D. Hudson, Lab on a Chip, 2006, 6, 427-436. 162. D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King and R. L. Garrell, Lab on a Chip, 2006, 6, 199-206. 163. A. R. Wheeler, H. Moon, C. J. Kim, J. A. Loo and R. L. Garrell, Analytical Chemistry, 2004, 76, 4833-4838. 164. P. Paik, V. K. Pamula, M. G. Pollack and R. B. Fair, Lab on a Chip, 2003, 3, 28-33. 165. P. Paik, V. K. Pamula and R. B. Fair, Lab on a Chip, 2003, 3, 253-259. 166. S. A. Khan, A. Gunther, M. A. Schmidt and K. F. Jensen, Langmuir, 2004, 20, 8604-8611. 167. S. Duraiswamy and S. A. Khan, Small, 2009, 5, 2828-2834. 168. L. Frenz, A. El Harrak, M. Pauly, S. Begin-Colin, A. D. Griffiths and J. C. Baret, Angewandte Chemie-International Edition, 2008, 47, 6817-6820. 169. B. K. H. Yen, A. Gunther, M. A. Schmidt, K. F. Jensen and M. G. Bawendi, Angewandte Chemie-International Edition, 2005, 44, 54475451. 170. J. U. Otaigbe, M. D. Barnes, K. Fukui, B. G. Sumpter and D. W. Noid, Polymer Physics and Engineering, 2001, 154, 1-86. 171. S. Takeuchi, P. Garstecki, D. B. Weibel and G. M. Whitesides, Advanced Materials, 2005, 17, 1067-1072. 172. S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin and G. M. Whitesides, Angewandte Chemie-International Edition, 2005, 44, 724-728. 163 173. S. H. Cho, J. B. Jun, J. H. Ryu and K. D. Suh, Colloids and Surfaces APhysicochemical and Engineering Aspects, 2005, 254, 1-7. 174. Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis and E. Kumacheva, Journal of the American Chemical Society, 2005, 127, 8058-8063. 175. G. R. Yi, T. Thorsen, V. N. Manoharan, M. J. Hwang, S. J. Jeon, D. J. Pine, S. R. Quake and S. M. Yang, Advanced Materials, 2003, 15, 13001304. 176. M. Seo, Z. H. Nie, S. Q. Xu, P. C. Lewis and E. Kumacheva, Langmuir, 2005, 21, 4773-4775. 177. J. L. Steinbacher, R. W. Y. Moy, K. E. Price, M. A. Cummings, C. Roychowdhury, J. J. Buffy, W. L. Olbricht, M. Haaf and D. T. McQuade, Journal of the American Chemical Society, 2006, 128, 9442-9447. 178. R. Ameloot, F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels and D. E. D. Vos, Nature Chemistry, 2011, 3, 382-387. 179. D. Dendukuri, K. Tsoi, T. A. Hatton and P. S. Doyle, Langmuir, 2005, 21, 2113-2116. 180. M. Zourob, S. Mohr, A. G. Mayes, A. Macaskill, N. Perez-Moral, P. R. Fielden and N. J. Goddard, Lab on a Chip, 2006, 6, 296-301. 181. W. J. Jeong, J. Y. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong and S. H. Lee, Langmuir, 2005, 21, 3738-3741. 182. T. Nisisako, T. Torii, T. Takahashi and Y. Takizawa, Advanced Materials, 2006, 18, 1152-1156. 183. B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester and S. C. De Smedt, Langmuir, 2005, 21, 10275-10279. 184. S. Okushima, T. Nisisako, T. Torii and T. Higuchi, Langmuir, 2004, 20, 9905-9908. 185. E. Lorenceau, A. S. Utada, D. R. Link, G. Cristobal, M. Joanicot and D. A. Weitz, Langmuir, 2005, 21, 9183-9186. 186. R. D. Shull, Journal of Iron and Steel Research International, 2007, 14, 69-74. 187. A. K. Gupta and M. Gupta, Biomaterials, 2005, 26, 3995-4021. 164 188. G. D. Moeser, K. A. Roach, W. H. Green, P. E. Laibinis and T. A. Hatton, Industrial & Engineering Chemistry Research, 2002, 41, 4739-4749. 189. A. Sinha, R. Ganguly, A. K. De and I. K. Puri, Physics of Fluids, 2007, 19(117102), 1-5. 190. C. P. Lee and M. F. Lai, Journal of Applied Physics, 2010, 107(09B524), 1-3. 191. E. P. Furlani, Journal of Applied Physics, 2006, 99(024912), 1-11. 192. N. Modak, A. Datta and R. Ganguly, Microfluidics and Nanofluidics, 2009, 6, 647-660. 193. X. Wu, H. Wu and Y. Hu, Microfluidics and nanofluidics, 2011, 11, 1124. 194. B. D. Plouffe, L. H. Lewis and S. K. Murthy, Biomicrofluidics, 2011, 5(013413), 1-22. 195. Y. Xia and G. M. Whitesides, Annual Reviews of Materials Science, 1998, 28, 153-184. 196. W. M. Deen, Analysis of Transport Phenomena, Oxford University Press, 1998. 197. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, McGraw-Hill: New York, 1986. 198. J. M. Singer, F. C. A. Vekemans, J. W. T. Lichtenbelt, F. T. Hesselink and P. H. Wiersema, Journal of Colloid and Interface Science, 1973, 45, 608614. 199. C. L. Cambiaso, L. M. Galanti, P. Leautaud and P. L. Masson, Journal of Clinical Microbiology, 1992, 30, 882-888. 200. F. E. Torres, W. B. Russel and W. R. Schowalter, Journal of Colloid and Interface Science, 1991, 145, 51-73. 201. M. Frank, D. Anderson, E. R. Weeks and J. F. Morris, Journal of Fluid Mechanics, 2003, 493, 363-378. 202. D. Semwogerere and E. R. Weeks, Physics of Fluids, 2008, 20(043306), 1-7. 203. K. F. Jensen, Chemical Engineering Science, 2001, 56, 293-303. 165 204. I. Ziemecka, V. van Steijn, G. J. M. Koper, M. Rosso, A. M. Brizard, J. H. van Esch and M. T. Kreutzer, Lab on a Chip, 2011, 11, 620-624. 205. H. Tavana, A. Jovic, B. Mosadegh, Q. Y. Lee, X. Liu, K. E. Luker, G. D. Luker, S. J. Weiss and S. Takayama, Nature Materials, 2009, 8, 736-741. 206. I. Ziemecka, V. van Steijn, G. J. M. Koper, M. T. Kreutzer and J. H. van Esch, Soft Matter, 2011, 7, 9878-9880. 207. S. Torza and S. G. Mason, Journal of Colloid and Interface Science, 1970, 33, 67-83. 208. J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, 1989. 209. J. M. Ottino, Scientific American, 1989, 260, 56-67. 210. C. J. Allegre and D. L. Turcotte, Nature, 1986, 323, 123-127. 211. D. V. Khakhar and J. M. Ottino, International Journal of Multiphase Flow, 1987, 13, 71-86. 212. D. V. Khakhar and J. M. Ottino, Journal of Fluid Mechanics, 1986, 166, 265-285. 213. W. Kuhn, Kolloid Z., 1953, 132, 84-99. 214. J. W. Cahn and J. E. Hilliard, Journal of Chemical Physics, 1958, 28, 258267. 215. D. Q. He, S. Kwak and E. B. Nauman, Macromolecular Theory and Simulations, 1996, 5, 801-827. 216. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano and K. Ito, Polymer, 1997, 38, 2885-2891. 217. C. E. Ioan, T. Aberle and W. Burchard, Macromolecules, 2001, 34, 326336. 218. H. O. Johansson, G. Karlstrom, F. Tjerneld and C. A. Haynes, Journal of Chromatography B, 1998, 711, 3-17. 219. A. Eliassi, H. Modarress and G. A. Mansoori, Journal of Chemical and Engineering Data, 1998, 43, 719-721. 166 220. O. V. Alekseeva, O. V. Rozhkova, O. V. Eliseeva and A. N. Prusov, Russian Journal of Applied Chemistry, 2005, 78, 971-974. 221. A. D. Diamond and J. T. Hsu, Biotechnology Techniques, 1989, 3, 119124. 222. M. Tjahjadi and J. M. Ottino, Journal of Fluid Mechanics, 1991, 232, 191219. 223. R. J. Ellis and A. P. Minton, Nature, 2003, 425, 27-28. 224. J. R. Welty, C. E. Wicks, R. E. Wilson and G. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, WILEY, 2001. 225. J. Hong, M. Choi, J. B. Edel and A. J. deMello, Lab on a Chip, 2010, 10, 2702-2709. 226. N. A. J. M. Sommerdijk and H. Colfen, MRS Bulletin, 2010, 35, 116-119. 227. S. Mann, Biomimetic Materials Chemistry, VCH, 1996. 228. T. Kato, T. Sakamoto and T. Nishimura, MRS Bulletin, 2010, 35, 127-132. 229. S. Johnsen and K. J. Lohmann, Nature Reviews Neuroscience, 2005, 6, 703-712. 230. K. J. Lohmann, Nature, 2010, 464, 1140-1142. 231. C. N. R. Rao and K. P. Kalyanikutty, Accounts of Chemical Research, 2008, 41, 489-499. 232. G. Y. Chai and W. B. Krantz, Journal of Membrane Science, 1994, 93, 175-192. 233. J. T. Russell, Y. Lin, A. Boker, L. Su, P. Carl, H. Zettl, J. B. He, K. Sill, R. Tangirala, T. Emrick, K. Littrell, P. Thiyagarajan, D. Cookson, A. Fery, Q. Wang and T. P. Russell, Angewandte Chemie-International Edition, 2005, 44, 2420-2426. 234. J. Liu, F. Liu, K. Gao, J. S. Wu and D. F. Xue, Journal of Materials Chemistry, 2009, 19, 6073-6084. 235. D. Crespy, M. Stark, C. Hoffmann-Richter, U. Ziener and K. Landfester, Macromolecules, 2007, 40, 3122-3135. 167 236. L. A. Linden and J. F. Rabek, Journal of Applied Polymer Science, 1993, 50, 1331-1341. 237. H. Yokoi, E. Nomoto and S. Ikoma, Journal of Materials Chemistry, 1993, 3, 389-392. 238. R. Baigorri, J. M. Garcia-Mina and G. Gonzalez-Gaitano, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 212216. 239. S. H. S. Lee, T. A. Hatton and S. A. Khan, Microfluidics and Nanofluidics, 2011, 11, 429-438. 240. M. K. Dawood, H. Zheng, T. H. Liew, K. C. Leong, Y. L. Foo, R. Rajagopalan, S. A. Khan and W. K. Choi, Langmuir, 2011, 27, 4126– 4133. 241. C. L. Lin, C. F. Lee and W. Y. Chiu, Journal of Colloid and Interface Science, 2005, 291, 411-420. 242. K. D. Kim, S. S. Kim, Y. H. Choa and H. T. Kim, Journal of Industrial and Engineering Chemistry, 2007, 13, 1137-1141. 243. D. Kuila, G. A. Blay, R. E. Borjas, S. Hughes, P. Maddox, K. Rice, W. Stansbury and N. Laurel, Journal of Applied Polymer Science, 1999, 73, 1097-1115. 168 Publications Journal Articles 1. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Microfluidic Continuous Magnetophoretic Protein Separation using Nanoparticle Aggregates” Microfluidics and Nanofluidics, 2011, 11, 429–438. 2. Su Hui Sophia Lee, Pengzhi Wang, Swee Kun Yap, T. Alan Hatton, and Saif A. Khan. “Tunable Spatial Heterogeneity in Structure and Composition within Aqueous Microfluidic Droplets” Biomicrofluidics (Special Topic), 2012, 6, 022005. 3. Su Hui Sophia Lee, M. K. Dawood, W. K. Choi, T. Alan Hatton, and Saif A. Khan. “Hierarchical Materials Synthesis at Soft All-Aqueous Interfaces” Soft Matter, 2012, 8, 3924-3928. 4. Swee Kun Yap, Su Hui Sophia Lee, and Saif A. Khan. “The Dynamics of High Throughput Protein Partitioning within Nanoliter Biphasic Droplets in Microfluidics” Manuscript in preparation Conferences 1. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Functional Colloids for Continuous Separation Processes” SMA Symposium – 2009. 2. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Microfluidic Protein Chromatography with Magnetic Nanoclusters” SMA Symposium – 2010. 3. S. H. S. Lee, and S. A. Khan. “Microfluidic moving-bed protein chromatography with silica-coated magnetic nanoclusters” 11th International Conference on Microreaction Technology, Japan – 2010. 4. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Microfluidic Protein Chromatography with Silica-Coated Magnetic Nanoclusters” The 5th SBE International Conference on Bioengineering and Nanotechnology, Singapore – 2010. 169 5. Saif A. Khan, Su Hui Sophia Lee, Pengzhi Wang, and Swee Kun Yap. “Stirring a Cahn-Hilliard fluid in moving microdroplets” American Physical Society, 63rd Annual Meeting of the APS Division of Fluid Dynamics, California – 2010. 6. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Microfluidic Protein Separation with Silica-coated Magnetic Nanoclusters” SMA Symposium – 2011 7. Su Hui Sophia Lee, T. Alan Hatton, and Saif A. Khan. “Dynamic field responsive nanoparticle aggregates for continuous microfluidic protein separations” International Conference on Materials for Advanced Technologies, Singapore – 2011. 8. Su Hui Sophia Lee, Pengzhi Wang, Swee Kun Yap, and Saif A. Khan. “Stirring immiscible liquids in nanoliter cavities” The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle Washington - 2011 170 [...]... often applied for separation of materials.2 The advantages of this method include high capacity, ease of scale-up and continuous operation Aqueous polymeric solutions or reversed micelle systems are commonly applied for protein separation, and separation is based on the relative partitioning of the protein and impurities in these aqueous phases 2 1.4 Motivation: Microfluidics for Separation Microfluidic. .. conditions, making them ideal for a broad range of biological applications such as extractive bioconversions28 and separation of biomolecules.29 In chapter 2, literature review on protein separation, magnetic particles, aqueous two–phase systems, microfluidic continuous separations, and droplet microfluidics, will be presented A microfluidic continuous magnetophoretic protein separation process will... interface.29, 32 This method can be applied for separating proteins from nucleic acids, polysaccharides, or other proteins, or for extracting proteins from cell debris.2 The purification procedure often involves partitioning of protein and impurities between the polymeric phases, followed by phase separation of the polymers, and polymer recovery Subsequent recovery of protein from the polymer is often carried... be applied for protein separation.33 Typically, aryl- or alkyl- ligands are conjugated to the adsorbents in HIC for protein capture, and separation is based on van der Waals interaction The density of the ligand is in the range of 5-50 mol/ml gel, and is considered low when compared to RPC This is beneficial for preserving the structure of the protein In RPC, the hydrophobic parts of the protein bind... The application of ATPS for protein refolding has been demonstrated by several groups.55-60 ATPS is attractive for protein refolding as the immiscible phases also enable separation of the refolded protein from the denatured and aggregated forms.60 Another promising application of much recent interest involves encapsulating ATPS in lipid vesicles to create experimental cell models for emulating complex... 146 xvii 1 Introduction 1.1 Protein Separation Separation and purification of proteins, peptides and other biomolecules is of major importance to the biosciences and biotechnology industries Traditional separation methods are usually processes such as chromatography, electrophoresis, ultrafiltration or precipitation.1 Macroscale continuous processes for purification of proteins include adsorptive and... of droplet flows for separation.23-25 Mary et al have demonstrated that extraction/purification process in microfluidic systems were orders of magnitude faster than conventional methods.23 1.5 Thesis Objectives and Layout The goal of this thesis is to explore the application of microfluidic systems for separation of proteins Specifically, the two systems studied in this thesis include microfluidic- magnetophoretic... isolation and concentration of proteins from materials such as salts and organic molecules, and the common techniques used are precipitation, extraction and chromatography Lastly, the fine purification of proteins is conducted by chromatography to resolve different proteins Ion-exchange, hydrophobic interaction/reverse phase and affinity chromatography are often used for separating proteins.2 In the following... include microfluidic- magnetophoretic and aqueous two-phase microdroplets for protein separation Microfluidic magnetophoresis is usually carried out under relatively mild conditions, which preserve the natural state of biological entities.8 3 Hence, it has been widely applied for cell separation, immunoassays, blood cleansing, protein extraction, and purification of carbon nanotubes.7-22 In aqueous... Chromatography Ion exchange chromatography is commonly applied for protein separation and separation is based on Coulombic interaction.33 The charged amino acid 6 residues on different protein surfaces allow their adsorptive properties to be easily manipulated by pH The adsorbed protein can be eluted by increasing the ionic strength of the buffer As most protein surface contain some hydrophobic patches, hydrophobic . MICROFLUIDIC PROCESSES FOR PROTEIN SEPARATIONS LEE SU HUI, SOPHIA (B. Eng. (Hons), NUS) (M. Sc. (SMA-MEBCS), NUS) A THESIS SUBMITTED FOR THE DEGREE OF. magnetophoretic protein separation using nanoparticle aggregates and aqueous two-phase microdroplets for protein partitioning are explored. In microfluidic continuous magnetophoretic protein separation,. The particle and protein concentrations used for this visualization experiment are nearly 10 times those used in the experimental runs for protein separation. (c) Separation performance of Hb,

Ngày đăng: 09/09/2015, 10:19

Xem thêm: Microfluidic processes for protein separations

TỪ KHÓA LIÊN QUAN