1. Trang chủ
  2. » Luận Văn - Báo Cáo

Yeast systems biotechnology for production of value added biochemicals

163 315 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 163
Dung lượng 2,81 MB

Nội dung

YEAST SYSTEMS BIOTECHNOLOGY FOR PRODUCTION OF VALUE-ADDED BIOCHEMICALS CHUNG KAI SHENG, BEVAN (B. Eng. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NUS Graduate School for Integrative Sciences and Engineering NATIONAL UNIVERSITY OF SINGAPORE 2012 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Chung Kai Sheng, Bevan 12 November 2012 i Acknowledgements It gives me great pleasure to express my heartfelt thanks to people who have, in one way or another, contributed to the successful completion of this thesis. First and foremost, I want to thank my Lord, Jesus Christ, whose super-abounding grace has supplied me with all that I need to accomplish my tasks in life. I am grateful to my supervisor Asst. Prof. Lee Dong-Yup who has played an instrumental role in imparting invaluable research skills. Interactions with the Thesis Advisory Committee members, Prof. Karimi, I.A. and Asst. Prof. Matthew Chang, have also helped to hone my analytical skills. I wish to acknowledge the scientists in the Korea Research Institute of Bioscience & Biotechnology (KRIBB), especially Dr. Ahn Jung Oh, Dr. Choi EuiSung and Dr. Lee Hong-Weon, for their valuable advice and for being such hospitable hosts during my research stint in Korea. The colleagues in the Biotechnology Process Engineering Center (BPEC) of KRIBB have also been very accommodating and helpful. I am also thankful for the company of colleagues and fellow Ph.D. students from the Bioinformatics group of Bioprocessing Technology Institute (BTI), A*STAR, and the Department of Chemical and Biomolecular Engineering, NUS, who have contributed to my growth as a researcher through intellectually stimulating discussions and the sharing of useful insights. Finally, I want to thank my loved ones: my parents, Mr. Chung Eng Huat and Ms. Lum Siew Yoke, for their care and support, and Ms. Pan Yihui Summer for her love and encouragement during the course of my Ph.D. ii Table of Contents Summary . vi  List of Tables viii  List of Figures .x  List of Symbols . xiii  Chapter 1. Introduction .1  1.1. Background of yeasts 1  1.2. The Pichia pastoris expression system .2  1.3. Scope of thesis .3  1.4. Organization of thesis 4  Chapter 2. Overview of systems biotechnology .7  2.1. The advent of systems biology 7  2.2. Application of systems biology to biotechnology .9  2.3. In silico modeling of biological systems .10  2.4. Constraints-based flux analysis .13  2.4.1. The basic constraints‐based flux analysis framework  . 14  2.4.2. Exploring metabolic capabilities using constraints‐based flux analysis   18  2.4.3. Strain improvement using constraints‐based flux analysis  . 19  2.5. Genome-scale metabolic model (GSMM) 20  2.5.1. GSMM reconstruction  . 20  2.5.2. GSMM validation  . 22  Chapter 3. Pichia pastoris genome-scale metabolic model reconstruction .24  3.1. Methylotrophic yeast Pichia pastoris .24  3.2. Reconstruction of P. pastoris genome-scale metabolic model .25  3.3. Manual curation and gap-filling 27  3.4. GSMM biomass composition 29  3.4.1. Overall cellular composition   30  3.4.2. Amino acid composition   30  3.4.3. Carbohydrates composition   31  3.4.4. DNA composition  . 32  3.4.5. RNA composition  . 32  3.4.6. Lipid composition   33  iii 3.4.7. Growth associated ATP requirement   34  3.4.8. Other essential biomass components  . 35  3.4.9. Biomass synthesis reaction  . 36  3.5. Uniqueness of P. pastoris metabolism 37  3.6. P. pastoris chemostat culture 41  3.7. GSMM validation 42  3.7.1. Non‐growth associated ATP maintenance requirement  . 42  3.7.2. Validation with chemostat experimental data   43  3.7.3. Validation with omics data   45  3.7.4. Quality of the iPP668 model   49  3.8. GSMM reconstruction in systems biotechnology .50  Chapter 4. Flux-sum analysis 51  4.1. Reaction-centric versus metabolite-centric perspectives 51  4.2. Flux-sum analysis 51  4.3. Flux-sum perturbation .53  4.3.1. Linearization of flux‐sum  . 53  4.3.2. Flux‐sum maximization   54  4.3.3. Attenuation and intensification of flux‐sum  . 55  4.4. Case study: Metabolite flux-sums of E. coli .56  4.4.1. Basal metabolite flux‐sums  . 57  4.4.2. Flux‐sum maxima  . 59  4.4.3. Flux‐sum attenuation analysis  . 61  4.4.4. Flux‐sum intensification analysis  . 64  4.4.5. Flux‐sum based metabolite classification  . 67  4.5. Flux-sum analysis for enhancing succinate production 68  4.5.1. Flux‐sum attenuation target for improved succinate production   70  4.5.2. Flux‐sum intensification targets for improved succinate production  . 74  4.5.3. Flux‐sum perturbation for metabolic engineering   75  Chapter 5. P. pastoris GSMM analysis 76  5.1. P. pastoris GSMM for recombinant protein production .76  5.2. Protein synthesis in P. pastoris GSMM 77  5.3. Carbon source analysis for recombinant protein production 80  iv 5.4. P. pastoris for whole-cell biotransformation 84  Chapter 6. Codon optimization methodology .87  6.1. Designing synthetic genes for heterologous protein expression .87  6.2. Codon usage diversity .88  6.3. Individual codon usage optimization (ICO) 91  6.3.1. Preliminaries   91  6.3.2. Definition of fitness  . 92  6.3.3. ICO mathematical formulation   94  6.3.4. Solving the ICO problem   95  6.4. Codon context optimization (CCO) 97  6.4.1. CCO mathematical formulation  . 98  6.4.2. Solving the CCO problem  . 101  6.5. Multi-objective codon optimization (MOCO) 104  6.5.1. MOCO mathematical formulation  . 104  6.5.2. Solving the MOCO problem  . 106  Chapter 7. Comparison of ICO and CCO .109  7.1. Codon optimization in P. pastoris .109  7.2. ICU and CC preference of P. pastoris 110  7.2.1. Pearson’s chi‐squared test for biasness in ICU and CC distributions   112  7.2.2. Principal component analysis of ICU and CC distributions  . 115  7.2.3. Alternative methods of evaluating ICU and CC preference   116  7.3. Cross-validation of codon optimization approaches .117  7.4. In vivo protein expression of optimized sequences .120  7.5. Efficacy of CCO 123  7.6. Potential applications of CCO .124  7.7. Rare codons and protein folding .125  Chapter 8. Conclusion .126  8.1. Summary of contributions .126  8.2. Future perspectives 127  Bibliography .130  v Summary The earliest industrial exploitation of yeast micro-organisms dates back thousands of years ago when the fermentation capability of Saccharomyces cerevisiae was harnessed for baking bread and producing alcoholic beverages. With advancements in cellular engineering technology, genetically engineered yeasts have become important microbial cell factories for producing a wide range of biochemicals in the biotechnological industry. Among them, the methylotrophic yeast Pichia pastoris has been recognized as a popular host organism for expressing protein molecules due to factors such as (1) its ability to achieve high cell density under respiratory growth, (2) its capability of performing eukaryotic post-translational modifications, (3) simplicity of applying genetic manipulation techniques to the organism and (4) low levels of endogeneous protein secretion leading to easier heterologous protein product purification procedures. While many experimental studies on recombinant protein expression in P. pastoris have been performed, a rational framework for engineering the methylotrophic yeast still eludes researchers. Towards this end, this thesis aims to develop analysis tools that can characterize the cellular physiology of P. pastoris to facilitate the rational design of strain improvement strategies for enhancing the microbe’s performance. A genome-scale metabolic model was reconstructed to characterize the metabolic capabilities of P. pastoris. The analysis of cellular metabolism using the constraints-based flux analysis approach enables the rational identification of metabolic engineering targets for strain improvement. A novel computational framework, known as “flux-sum analysis”, was developed to analyze the metabolite turnover rates during cell growth and recombinant protein production. The flux-sum vi analysis was able to identify essential metabolites in P. pastoris, and further elucidated the organism’s potential as a whole-cell biocatalyst for reducing ketone substrates into valuable chiral alcohols which are important precursors for producing fine chemicals and active pharmaceutical ingredients. Apart from the analysis of cellular metabolism, this thesis also examines potential issues in heterologous protein synthesis during the translation of mRNA to protein. The typically low expression of heterologous proteins has been largely attributed to discrepancies in codon usage patterns between the host’s native genes and the foreign gene. Therefore, the design of synthetic genes to enhance codon usage patterns was studied in detail. Computational procedures for optimizing individual codon usage (ICU) and codon pair usage, also known as codon context (CC), were developed. Surprisingly, the comparison of results from different codon optimization approaches revealed that CC is a relatively more important design parameter than the commonly considered ICU. Hence, the incorporation of CC optimization into existing synthetic gene design tools, which were mainly based on ICU optimization, is expected to produce sequences with improved protein expression capabilities. The in silico tools developed in this thesis are capable of incorporating highthroughput genomic, transcriptomic and metabolomic data for the analysis and optimization of P. pastoris from a systems perspective. With the increasing amount of biological data being generated with time, the presented systems biotechnology framework will become an important tool for harnessing these large-scale data to systematically study and engineer living organisms for industrial applications. vii List of Tables Table 2.1. Composition of M9 minimal medium. . 23  Table 3.1. Composition of major cellular components 30  Table 3.2. Calculation of amino acid composition. . 31  Table 3.3. Carbohydrate composition. . 32  Table 3.4. DNA composition. 32  Table 3.5. RNA composition. 33  Table 3.6. Fatty acid composition. . 33  Table 3.7. Phospholipid composition . 34  Table 3.8. Sterol composition. . 34  Table 3.9. Growth associated ATP requirement. . 35  Table 3.10. Trace components. 36  Table 3.11. Comparison of two yeast GSMMs. Data for S. cerevisiae obtained from iMM904 GSMM (Mo et al, 2009). 38  Table 3.12. Functional classification of metabolic reactions. 39  Table 3.13. Chemostat experimental data. . 42  Table 3.14. Prediction of metabolite utilization. Metabolites involved in reactions with nonzero fluxes are marked with a tick while the rest are marked with a cross. . 47  Table 5.1. Amino acid requirements for EPO synthesis. . 79  Table 6.1. Synonymous codon(s) of amino acids. . 89  Table 7.1. Pearson’s chi-squared tests. Singular amino acids (pairs) and those with expected counts less than are not amenable to the chi-squared test and classified as “unevaluated”. Abbreviations: DH, codon (pair) distribution of highexpression genes; DA, codon (pair) distribution of all genes; U, uniform distribution. 114  Table 7.2. Summary of fitness values and similarity measures. The p M values are computed through pairwise comparison of the different types of sequences. . 119  viii Table 7.3. Tournament matrix. The number in each cell indicates the number of wins (losses) per 100 tournaments by the optimization approach indicated in the leftmost (topmost) column (row). 120  ix Bibliography _____________________________________________________________________ Chatterjee A, Li Y, Zhang Y, Grove TL, Lee M, Krebs C, Booker SJ, Begley TP, Ealick SE (2008) Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat Chem Biol 4: 758-765 Chiba Y, Akeboshi H (2009) Glycan engineering and production of 'humanized' glycoprotein in yeast cells. Biol Pharm Bull 32: 786-795 Chung BK, Lee DY (2009) Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst Biol 3: 117 Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee DY (2010) Genomescale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9: 50 Cochran WG (1954) Some Methods for Strengthening the Common χ2 Tests. Biometrics 10: 417-451 Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320: 1784-1787 Corchero JL, Villaverde A (1998) Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. Biotechnol Bioeng 58: 625-632 Costa RS, Machado D, Rocha I, Ferreira EC (2011) Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. Iet Systems Biology 5: 157-163 Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277: 28058-28064 Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213: 73-88 Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24: 2044-2050 132 Bibliography _____________________________________________________________________ Cregg JM (2007) Introduction: distinctions between Pichia pastoris and other expression systems. Methods Mol Biol 389: 1-10 Csete M, Doyle J (2004) Bow ties, metabolism and disease. Trends Biotechnol 22: 446-450 De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27: 561-566 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evo Comp 6: 182-197 Diaz Ricci JC, Hernandez ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20: 79-108 Dlauchy D, Tornai-Lehoczki J, Fulop L, Peter G (2003) Pichia (Komagataella) pseudopastoris sp. nov., a new yeast species from Hungary. Antonie Van Leeuwenhoek 83: 327-332 Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L et al (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 40: D918-923 Drud AS (2006) CONOPT. GAMS - The Solver Manuals Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27: 753-759 Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 96: 4482-4487 Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20: 700-707 Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33: 164-190 133 Bibliography _____________________________________________________________________ Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19: 125130 Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1: Edwards JS, Ramakrishna R, Palsson BO (2002) Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng 77: 27-36 Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5: e8 Famili I, Mahadevan R, Palsson BO (2005) k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Biophys J 88: 1616-1625 Faulds D, Sorkin EM (1989) Epoetin (recombinant human erythropoietin). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in anaemia and the stimulation of erythropoiesis. Drugs 38: 863-899 Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3: 121 Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7: 129-143 Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13: 344-349 Fell DA, Small JR (1986) Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J 238: 781-786 Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25: 12391249 134 Bibliography _____________________________________________________________________ Förster J, Famili I, Fu P, Palsson BØ (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13: 244-253 Foster JW, Moat AG (1980) Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 44: 83-105 Fuglsang A (2003) Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif 31: 247-249 Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673-5684 Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22: 1409-1414 Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinformatics 9: 43 Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7: 481 Giordano FR, Fox WP, Weir MD (2009) A First Course in Mathematical Modeling: Brooks/Cole, Cengage Learning. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning: Addison-Wesley Pub. Co. Goldberg K, Schroer K, Lutz S, Liese A (2007a) Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76: 237-248 Goldberg K, Schroer K, Lutz S, Liese A (2007b) Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl Microbiol Biotechnol 76: 249-255 Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10: 7055-7074 135 Bibliography _____________________________________________________________________ Grantham R, Gautier C, Gouy M, Mercier R, Pave A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8: r49-r62 Grossmann IE, Lee S (2003) Generalized Convex Disjunctive Programming: Nonlinear Convex Hull Relaxation. Computational Optimization and Applications 26: 83-100 Gui L, Sunnarborg A, Pan B, LaPorte DC (1996) Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178: 321-324 Gurakan T, Marison IW, Von Stockar U, Gustafsson L, Gnaiger E (1990) Proposals for a standardized sample handling procedure for the determination of elemental composition and enthalpy of combustion of biological material. Thermochim Act 172: 251-266 Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22: 346-353 Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A 86: 3699-3703 Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18: 387-392 Harder W, Brooke AG (1990) Methylotrophic Yeasts. In Yeast : biotechnology and biocatalysis, Verachtert H, Mot Rd (eds), 13, pp 395-428. New York: M. Dekker Hardesty B, Tsalkova T, Kramer G (1999) Co-translational folding. Curr Opin Struct Biol 9: 111-114 Harper D. (2012) Online Etymology Dictionary. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402: C47-52 Hatfield GW, Roth DA (2007) Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering. Biotechnol Annu Rev 13: 27-42 136 Bibliography _____________________________________________________________________ Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42: 287299 Hong SH, Lee SY (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnology and Bioengineering 74: 89-95 Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30: e43 Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: W585587 Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19: 936-949 Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E et al (2002) The Ensembl genome database project. Nucleic Acids Res 30: 38-41 Inan M, Meagher MM (2001) Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng 92: 585-589 Ishida S, Tazuya-Murayama K, Kijima Y, Yamada K (2008) The direct precursor of the pyrimidine moiety of thiamin is not urocanic acid but histidine in Saccharomyces cerevisiae. J Nutr Sci Vitaminol (Tokyo) 54: 7-10 Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6: 494-500 Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, Park S (2007a) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci U S A 104: 13638-13642 Kim SY, Sohn JH, Pyun YR, Yang IS, Kim KH, Choi ES (2007b) In vitro evolution of lipase B from Candida antarctica using surface display in hansenula polymorpha. J Microbiol Biotechnol 17: 1308-1315 Kitano H (2002) Systems biology: a brief overview. Science 295: 1662-1664 137 Bibliography _____________________________________________________________________ Kitano H (2004) Biological robustness. Nat Rev Genet 5: 826-837 Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems Biology in Practice: Concepts, Implementation and Application: John Wiley & Sons. Knijnenburg TA, Daran JM, van den Broek MA, Daran-Lapujade PA, de Winde JH, Pronk JT, Reinders MJ, Wessels LF (2009) Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10: 53 Knorr AL, Jain R, Srivastava R (2007) Bayesian-based selection of metabolic objective functions. Bioinformatics 23: 351-357 Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34: 16-24 Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208 Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 13-37 Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8: 120-126 Kurland C, Gallant J (1996) Errors of heterologous protein expression. Curr Opin Biotechnol 7: 489-493 Kurtzman CP (2000) Three new ascomycetous yeasts from insect-associated arboreal habitats. Can J Microbiol 46: 50-58 Kurtzman CP, Fell JW, Boekhout T. (2010) The yeasts a taxonomic study. Elsevier, Amsterdam ; Oxford, pp. online resource (xxii, 289, 222, 178 p.). Lawhorn BG, Mehl RA, Begley TP (2004) Biosynthesis of the thiamin pyrimidine: the reconstitution of a remarkable rearrangement reaction. Org Biomol Chem 2: 25382546 138 Bibliography _____________________________________________________________________ Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34: D689-691 Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY (2005a) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71: 7880-7887 Lee SY, Lee DY, Kim TY (2005b) Systems biotechnology for strain improvement. Trends Biotechnol 23: 349-358 Leonard E, Nielsen D, Solomon K, Prather KJ (2008) Engineering microbes with synthetic biology frameworks. Trends Biotechnol 26: 674-681 Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4: 92 Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24: 210-215 Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z, et al. (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A 82: 7580-7584 Ma HW, Zeng AP (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19: 1423-1430 Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270 Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5: 264-276 Martin CH, Nielsen DR, Solomon KV, Prather KL (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16: 277-286 139 Bibliography _____________________________________________________________________ Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29: 1-16 Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Applied and Environmental Microbiology 62: 1808-1810 Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3: 37 Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182-185 Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28: 292 Newell PC, Tucker RG (1968) Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J 106: 279-287 Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55: 263-283 Nielsen J, Keasling JD (2011) Synergies between synthetic biology and metabolic engineering. Nat Biotechnol 29: 693-695 Nielsen JH, Villadsen J (1994) Bioreaction engineering principles, New York: : Plenum Press. Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7: 296 Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320 140 Bibliography _____________________________________________________________________ Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y (1999) Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63: 1977-1983 Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28: 245-248 Ow DS, Lee DY, Yap MG, Oh SK (2009) Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genomescale in silico analysis. Biotechnol Prog 25: 61-67 Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40: D571579 Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Becam AM, Rytka J, Herbert CJ (2002) Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett 517: 97-102 Papoutsakis ET, Meyer CL (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioeng 27: 50-66 Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54: 287-301 Peccoud J, Blauvelt MF, Cai Y, Cooper KL, Crasta O, DeLalla EC, Evans C, Folkerts O, Lyons BM, Mane SP, Shelton R, Sweede MA, Waldon SA (2008) Targeted development of registries of biological parts. PLoS One 3: e2671 Pharkya P, Burgard AP, Maranas CD (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 84: 887-899 Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14: 2367-2376 Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8: 1-13 141 Bibliography _____________________________________________________________________ Pinney JW, Shirley MW, McConkey GA, Westhead DR (2005) metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Res 33: 1399-1409 Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2: 886-897 Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35: W126-131 Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10: 435-449 Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14: 1797-1805 Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54 Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS (2010) GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res 38: 26032606 Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16: 550-556 Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 8: 41 Rouillard JM, Lee W, Truan G, Gao X, Zhou X, Gulari E (2004) Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res 32: W176-180 Saha BC, Sakakibara Y, Cotta MA (2007) Production of D-arabitol by a newly isolated Zygosaccharomyces rouxii. J Ind Microbiol Biotechnol 34: 519-523 142 Bibliography _____________________________________________________________________ Sambrook J, Russell DW (2001) Molecular cloning : a laboratory manual, 3rd edn. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. Satish Kumar V, Dasika MS, Maranas CD (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8: 212 Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathwayoriented perspective. J Theor Biol 203: 229-248 Schink B, Zeikus JG (1980) Microbial Methanol Formation - a Major End Product of Pectin Metabolism. Current Microbiology 4: 387-389 Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 28: 336-341 Schroer K, Peter Luef K, Stefan Hartner F, Glieder A, Pscheidt B (2010) Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab Eng 12: 8-17 Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3: 119 Schuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252: 497-504 Sharp PM, Li WH (1987) The codon adaptation index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15: 1281-1295 Shetty RP, Endy D, Knight TF, Jr. (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2: Smith D, Yarus M (1989) tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci U S A 86: 4397-4401 Sola A, Jouhten P, Maaheimo H, Sanchez-Ferrando F, Szyperski T, Ferrer P (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153: 281-290 143 Bibliography _____________________________________________________________________ Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207: 365-377 Stelling J (2004) Mathematical models in microbial systems biology. Curr Opin Microbiol 7: 513-518 Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24: 374-381 Suh SO, Blackwell M, Kurtzman CP, Lachance MA (2006) Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 98: 1006-1017 Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120: 49-58 Tats A, Tenson T, Remm M (2008) Preferred and avoided codon pairs in three domains of life. BMC Genomics 9: 463 Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5: 93-121 Thiele I, Price ND, Vo TD, Palsson BO (2005) Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem 280: 1168311695 Tredwell GD, Edwards-Jones B, Leak DJ, Bundy JG (2011) The development of metabolomic sampling procedures for Pichia pastoris, and baseline metabolome data. PLoS One 6: e16286 van Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb Ecol 53: 513-523 Varma A, Boesch BW, Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59: 2465-2473 Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60: 3724-3731 144 Bibliography _____________________________________________________________________ Verduyn C (1991) Physiology of yeasts in relation to biomass yields. Antonie Van Leeuwenhoek 60: 325-353 Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59: 49-63 Vijay Kumar N, Rangarajan PN (2011) Catabolite repression of phosphoenolpyruvate carboxykinase by a zinc finger protein under biotin- and pyruvate carboxylasedeficient conditions in Pichia pastoris. Microbiology 157: 3361-3369 Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7: 285 Wagner C, Urbanczik R (2005) The geometry of the flux cone of a metabolic network. Biophys J 89: 3837-3845 Walsh G (2005) Biopharmaceuticals: recent approvals and likely directions. Trends Biotechnol 23: 553-558 Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28: 917-924 Wang Q, Chen X, Yang Y, Zhao X (2006) Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl Microbiol Biotechnol 73: 887-894 Wareing MD, Tannock GA (2001) Live attenuated vaccines against influenza; an historical review. Vaccine 19: 3320-3330 Welch M, Villalobos A, Gustafsson C, Minshull J (2009) You're one in a googol: optimizing genes for protein expression. J R Soc Interface Suppl 4: S467-476 Wiback SJ, Famili I, Greenberg HJ, Palsson BO (2004) Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J Theor Biol 228: 437-447 Wriessnegger T, Leitner E, Belegratis MR, Ingolic E, Daum G (2009) Lipid analysis of mitochondrial membranes from the yeast Pichia pastoris. Biochim Biophys Acta 1791: 166-172 145 Bibliography _____________________________________________________________________ Yamada Y, Matsuda M, Maeda K, Mikata K (1995) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae). Biosci Biotechnol Biochem 59: 439-444 Yang Z, Nielsen R (2008) Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol 25: 568-579 Yarus M, Folley LS (1985) Sense codons are found in specific contexts. J Mol Biol 182: 529-540 Zeidler J, Sayer BG, Spenser ID (2003) Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid. J Am Chem Soc 125: 13094-13105 Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51: 545-552 Zhu HY, Xu H, Dai XY, Zhang Y, Ying HJ, Ouyang PK (2010) Production of Darabitol by a newly isolated Kodamaea ohmeri. Bioprocess Biosyst Eng 33: 565-571 Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21: 1010-1024 Zouridis H, Hatzimanikatis V (2007) A model for protein translation: polysome selforganization leads to maximum protein synthesis rates. Biophys J 92: 717-730 Zouridis H, Hatzimanikatis V (2008) Effects of codon distributions and tRNA competition on protein translation. Biophys J 95: 1018-1033 146 Publications _____________________________________________________________________ List of publications 1. Chung, B. K. & Lee, D.-Y. (2012). Computational codon optimization of synthetic gene for protein expression. BMC Systems Biology, 6:134. 2. Lakshmanan, M., Koh, G., Chung, B. K. & Lee, D.-Y. (2012). Software applications for flux balance analysis. Briefings in Bioinformatics, Advance Access. 3. Chung, B. K., Lakshmanan, M., Klement, M., Mohanty, B. & Lee, D.-Y. (2012). Genome-scale in silico modeling and analysis for designing synthetic terpenoidproducing microbial cell factories. Chemical Engineering Science, In Press. 4. Ahn, J., Chung, B. K., Lee, D.-Y., Park, M., Karimi, I., Jung, J.-K. & Lee, H. (2011). NADPH-dependent pgi gene-knockout Escherichia coli metabolism producing shikimate on different carbon sources. FEMS Microbiology Letters, 324:10-16. 5. Lee, D.-Y., Chung, B. K., Yusufi, F.N.K. & Selvarasu, S. (2011). In silico genome-scale modeling and analysis for identifying anti-tubercular drug targets. Drug Development Research, 72:121-129. 6. Chung, B. K., Selvarasu, S., Andrea, C., Ryu, J., Lee, H., Ahn, J., Lee, H., & Lee, D.-Y. (2010). Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microbial Cell Factories, 9:50. 7. Chung, B. K. & Lee, D.-Y. (2009). Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Systems Biology, 3:117. 147 [...]... Chapter 2 Overview of systems biotechnology _ Figure 2.1 The systems biology framework An integration of information, systems and life sciences provides a holistic approach towards understanding physiological phenomena 2.2 Application of systems biology to biotechnology The scientific approach of systems biology has been widely used for the discovery of novel biomolecular... modulate cellular physiology (Butcher et al, 2004; Kitano, 2002) The translation of this scientific knowledge into state -of- the-art technologies for industrial production of value- added biochemicals is the embodiment of biotechnology A key objective in 9 Chapter 2 Overview of systems biotechnology _ biotechnology is to develop high-yield and low-cost bioprocesses through microorganism... contributions made in this thesis and highlights future perspectives of systems biotechnology research 6 Chapter 2 Overview of systems biotechnology _ Chapter 2 Overview of systems biotechnology 2.1 The advent of systems biology The variety of physiological behaviors observed in a living cell is a result of complex interactions between biomolecules These interactions can... industrial production of value- added biochemicals Among the various biochemicals, protein-based drug molecules produced by biopharmaceutical companies were considered the most lucrative products in the market The sales of protein drugs, such as Enbrel, Remicade and Avastin, accounts for almost 20% of the global biopharmaceutical market with a value of close to US$ 100 billion (Walsh, 2010) Therefore, cellular... Number of occurrence of amino acid j in the host’s selected genes j θ A,1 Number of occurrence of amino acid j in the target coding sequence j θ AA,0 Number of occurrence of amino acid pair j in the host’s selected genes j θ AA,1 Number of occurrence of amino acid pair j in the target coding sequence k θ C,0 Number of occurrence of codon k in the host’s selected genes k θ C,1 Number of occurrence of codon... follows: Chapter 2 provides an overview of developments in yeast systems biotechnology The application of systems biology to biotechnological studies is discussed with particular emphasis on the importance of in silico modeling for cellular metabolism characterization In order to provide a detailed representation of in vivo metabolic behavior, the model has to account for all possible metabolic functions... genes p1 Vector of frequencies defining codon distribution of the target coding sequence k q0 Frequency of occurrence of codon pair k in the host’s selected genes q1k Frequency of occurrence of codon pair k in the target coding sequence q0 Vector of frequencies defining codon pair distribution of the host’s selected genes xiii q1 Vector of frequencies defining codon pair distribution of the target coding... analysis profiles Only the profiles of potential targets capable of achieving at least 10% of maximum theoretical succinate yield are shown 70  Figure 4.11 Mixed acid fermentation pathways 72  Figure 4.12 Effects of pyruvate flux-sum attenuation In glycolysis, pyruvate kinase is the key producer of ATP while glyceraldehyde-3-phosphate dehydrogenase is the key consumer of NAD The production of acetate,... arbitrary large value n Number of amino acids/codons in the target coding sequence n′ Number of amino acids/codons among the host’s selected genes H Oij Observed number of codon i encoding amino acid j in high expression genes k p0 Frequency of occurrence of codon k in the host p1k Frequency of occurrence of codon k in the target coding sequence p0 Vector of frequencies defining codon distribution of the host’s... Stoichiometric coefficient of metabolite i in reaction j t Time (hr) vj Metabolic flux of reaction j (mmol/gDCW-hr) v max j Upper limit for the metabolic flux of reaction j (mmol/gDCW-hr) v min j Lower limit for the metabolic flux of reaction j (mmol/gDCW-hr) 2 Χ1, j Chi-squared statistic for testing codon (pair) distribution bias of amino acid j in high expression genes with respect to the uniform distribution . YEAST SYSTEMS BIOTECHNOLOGY FOR PRODUCTION OF VALUE- ADDED BIOCHEMICALS CHUNG KAI SHENG, BEVAN (B. Eng. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. 2 1.3. Scope of thesis 3 1.4. Organization of thesis 4 Chapter 2. Overview of systems biotechnology 7 2.1. The advent of systems biology 7 2.2. Application of systems biology to biotechnology. culture broth. Indeed, yeasts are one of the oldest microorganisms being exploited by humankind for industrial production of fermented products. Earliest records of yeast biotechnology date back

Ngày đăng: 09/09/2015, 10:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN