Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 212 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
212
Dung lượng
16,69 MB
Nội dung
! INVESTIGATION OF PHYTOPLANKTON AS AN OVERLOOKED MARINE SOURCE OF NATURAL ENDOCRINE DISRUPTING CHEMICALS ! ! ! ! ! ! ! ! ! ! ! WANG XIAOCHONG ! ! ! ! ! ! ! ! NATIONAL UNIVERSITY OF SINGAPORE 2014 ! ! INVESTIGATION OF PHYTOPLANKTON AS AN OVERLOOKED MARINE SOURCE OF NATURAL ENDOCRINE DISRUPTING CHEMICALS ! ! ! ! ! WANG XIAOCHONG (MSc., TECHNISCHE UNIVERSITÄT MÜNCHEN) ! ! ! ! ! A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF OBSTETRICS & GYNAECOLOGY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2014 ! DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information that have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ! Wang!Xiaochong! 25!August!2014! ! ! ! ! ! ! ! ! ! ! ! I! ! ACKNOWLEDGEMENTS First and foremost, I would like to express my gratitude to my supervisors, Dr. Gong Yinhan for providing me the opportunity to embark on this valuable research experience and nurturing me over the years. I appreciate the unfailing support from Dr. Gong, and the tremendous amount of patience and guidance he has shown to me during the whole project. Next, I would like to thank all those people, especially to my lab mates who have helped in one way or another during the whole project. I would like to acknowledge the National University of Singapore (NUS) for financial support of this work, and I am grateful for the award of a research scholarship by the NUS. Last, but not least, I am especially grateful to my husband and my family for their encouragement, care, and support. ! II! ! TABLE!OF!CONTENTS! DECLARATION! .!I! ACKNOWLEDGEMENTS! .!II! SUMMARY! .!IX! LIST!OF!TABLES! !XIII! LIST!OF!FIGURES! .!XIV! LIST!OF!ABBREVIATION! .!XVII! CHAPTER!1! INTRODUCTION! 1.1! ENDOCRINEIDISRUPTING!CHEMICALS!(EDCS)! .!1! 1.1.1! Estrogenic!EndocrineIdisrupting!Chemicals! .!6! 1.1.2! Androgenic!EndocrineIdisrupting!Chemicals! .!10! 1.2! SEAWATER!ACTIVITY!OF!POLLUTANTS!AND!PHYTOPLANKTON! !11! 1.2.1! Measurements!of!Bioactivity!of!Seawaters! !11! 1.2.1.1! Individual!Measurement!of!Bioactivity!of!Seawaters!Samples! !13! 1.2.1.2! Total!Assays!of!Bioactivity!of!Seawaters!Samples! .!16! 1.2.2! Unexpected!High!Bioactivity!in!Singapore!Seawaters! .!19! 1.2.3! Phytoplankton! .!20! 1.3! CORRELATION!OF!WATERS!PARAMETERS!WITH!BIOACTIVITY! !23! 1.4! HYPOTHESIS!AND!GENERAL!OBJECTIVES! .!25! CHAPTER!2! INVESTIGATION!OF!THE!CORRELATION!BETWEEN!PHYTOPLANKTON!AND!SEX! HORMONE!RECEPTOR!BIOACTIVITIES!OF!THE!SINGAPORE!SEAWATERS!! 2.1! INTRODUCTION! .!27! 2.2! EXPERIMENTAL! .!28! 2.2.1! Materials!and!Apparatus! !28! 2.2.1.1! Chemical!and!Materials! .!28! 2.2.1.2! Apparatus!used!for!LCIMS!Analysis! .!30! 2.2.1.3! Apparatus!used!for!Bioassay!(Luciferase!activity)! .!31! 2.2.2! Human!CellIbased!Bioassays!(ERα,!ERβ!and!AR)!for!Measurement!of! Estrogen/Androgen!Receptor!Bioactivities!of!Phytoplankton!Extract! !31! 2.2.3! Seawater!Collection!(Sampling)! !33! 2.2.4! Phytoplankton!Culture!Medium!Preparation! !34! ! VIII! 2.2.4.1! Nature!Seawater!Culture!Medium!Preparation! !34! 2.2.4.2! Artificial!Seawater!Culture!Media!Preparation! !36! 2.2.5! Phytoplankton!Culture! !38! 2.2.5.1! Laboratory!Phytoplankton!Culture!Conditions! !38! 2.2.5.2! UpIscaling!of!Phytoplankton!Culture! !39! 2.2.5.3! Stock!Culture!Maintaining! .!39! 2.2.5.4! LargeIscale!Cultivation!of!Phytoplankton! .!41! 2.2.6! Phytoplankton!Growth!and!Bioactivity!Monitoring! .!42! 2.2.7! Harvest!of!the!Phytoplankton!Culture!Samples! .!43! 2.2.7.1! SPE!Extraction!of!Phytoplankton!Cultures! .!43! 2.2.7.2! Phytoplankton!Cell!Extraction! .!45! 2.2.8! LCIMS!Method!for!Phytoplankton!Crude!Media!Extracts! !47! 2.2.8.1! LCIMS!Method!for!Chat!M1!Extracts! .!48! 2.2.8.2! LCIMS!Method!for!PB3!Extracts! !49! 2.2.9! Statistics! .!50! 2.3! Results!and!discussion! !50! 2.3.1! Optimization!of!the!Phytoplankton!Culturing!Conditions! .!50! 2.3.1.1! Optimization!of!Culture!Materials! !50! 2.3.1.2! Cleaning!and!Sterilization!of!Culture!Materials!and!Media! .!51! 2.3.1.3! Phytoplankton!Culturing!Conditions! !53! 2.3.1.4! Water!Sources!for!Phytoplankton!Culture! !55! 2.3.2! Effect!of!Salinity!of!Culture!Medium!on!the!Growth!of!Phytoplankton! !55! 2.3.3! DoesIresponse!Assessment!of!E2!and!DHT! !60! 2.3.4! Optimization!of!Extraction!Methods!for!Bioactive!Compounds!(Secreted!by! Phytoplankton)! .!64! 2.3.5! Phytoplankton!Growth!Monitoring!(PB3)! !69! 2.3.6! Batches!of!Phytoplankton!MassIculture!Under!the!Optimized!Conditions!71! 2.3.7! Phytoplankton!Levels!Demonstrate!a!Positive!Correlation!with!AR!and!ERα! Bioactivities!in!Seawater!Samples! !77! 2.3.8! Identification!of!Phytoplankton!Species!Related!to!Estrogenic!and! Androgenic!Bioactivity! !84! 2.3.9! Growth!and!Bioactivity!Growth!Profiling!of!Phytoplankton!Isolates! .!87! 2.3.10! ERα!Bioactivities!of!Media!Extracts!of!Chat!M1!Cultures!Grown!under! Natural!and!Artificial!Seawater!Yield!Similar!Results.! .!93! 2.3.11! Discussion! .!95! ! IX! Endocrinol., 355 (2012), pp. 231-239. 38 Ghosal S., Rogers M., and Wray A., The Effects of Turbulence on Phytoplankton. Aerospace Technology Enterprise. NTRS. Retrieved 16 June 2011. 39 Gin K.Y.H., Lin X.H., and Zhang S., 2000. Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J. Plankton Res., 22(2000), pp. 1465-1484. 40 Goh B.P.L., and Chou L.M., Heavy metals in marine sediments of Singapore, Environ. Monit. Assess, 44 (1997), pp. 67-80. 41 Gong Y.H., Chin H.S., Lim L.S., Loy C.J., Obbard J.P., and Yong E.L., Clustering of sex hormone disruptors in singapore's marine environment. Environ. Health Perspect., 111 (2003), pp. 1448-1453. 42 Hallagraeff G.M., A review of harmful algal blooms and their apparent global increase. Phycologia, 32 (1993), pp. 79-99. 43 Harrison P.J., Waters R.E., and Taylor F.J.R., A broad-spectrum artificial seawater medium for coastal and open ocean phytoplankton. J. Phycol., 16 (1980), pp. 28-35. 44 Hein M., and Sand-Jensen K., CO2 increase oceanic primary production. Nature, 388 (1997), pp. 526-527. 45 Heisler J., Glibert P. M., Burkholder J. M., Anderson D. M., Cochlan W., Dennison W. C., Dortch Q., Gobler C. J., Heil C. A., Humphries E., Lewitus A., Magnien R., Marshall H. G., Sellner K., Stockwell D. A., Stoecker D. K., and Suddleson M., 2008. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae. 8(2008), pp. 3-13. 46 Hibberd A., Maskaoui K., Zhang Z., and Zhou J.L., An improved method for the simultaneous analysis of phenolic and steroidal estrogens in water and sediment. Talanta, 77 (2009), p. 1315-1321. 47 Hold H.C., The cultivation of algae. Bot. Rew. (1942), pp. 69-138. 48 Holmes M.J, Bolch C.J.S., Green D.H., Cembella A., and Teo S.L.M., Sinagpore isolates of the dinoflagellate Gymnodinium catenatum (Dinophyceae) produce a unique profile of paralytic shellfish poisoning toxins. J. Phycol., 38 (2002), pp. 96-106. ! 171! 49 Holmes M.J., Gambierdiscus yasumotoi sp. nov. (Dinophyceae), a toxic benthic dinoflagellate from southeastern Asia. J. Phycol., 34 (1998), pp. 661-668. 50 Hong X., Wang X.C., Yong E.L., and Gong Y.H., Determination of breviflavone A and B in Epimedium herbs with liquid chromatography– tandem mass spectrometry. J. Pharm. Biomed. Anal.49 (2009), pp. 853857. 51 Hotchkiss A.K., Ostby J.S., Vandenburgh J.G., and Gray L.E., Androgens and environmental antiandrogens affect reproductive development and play behavior in the Sprague-Dawley rat. Environ. Health Perspect., 110 (2002), pp. 435–439. 52 Hu S.S., Wu K.B., Yi H.C., and Cui D.F., Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Anal. Chim. Acta., 464 (2002), pp. 209-216. 53 Hu W., and Jianying, Effects of endocrine disrupting chemicals on China’s rivers and coastal waters. Frontiers in the Ecology and the Environment. (2006). 54 Ianora A., Bentley M.G., Caldwell G.S., Casotti R., Cembella A. D., Engström-Öst J., Halsband C., Sonnenschein E., Legrand C., Llewellyn C.A., Paldavičienë A., Pilkaityte R., Pohnert G., Razinkovas A., Romano G., Tillmann U., and Vaiciute D., The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field. Mar. Drugs, (2011), pp. 1625-1648. 55 Inoue K., Yoshie Y., Kondo S., Yoshimura Y., and Nakazawa H., Determination of phenolic xenoestrogens in water by liquid chromatography with coulometric-array detection. J. Chromatogr. A, 946 (2002), pp. 291-294. 56 International programme on chemical safety (IPCS), WHO. Global assessment of the state-of-the-science of endocrine disruptors. 2002. Available: http://www.who.int.libproxy1.nus.edu.sg/ipcs/publications/new_issues/e ! 172! ndocrine_disruptors/en/ 57 Ishihara K., and Nakajima N., Improvement of marine environmental pollution using eco-system: decomposition and recovery of endocrine disrupting chemicals by marine phyto- and zooplanktons. J. Mol. Catal. B-Enzym., 23 (2003), pp. 419-424. 58 Ji L., Wang X., Qin L., Luo S., and Wang L., Predicting the androgenicity of structurally diverse compounds from molecular structure using different classifiers. QSAR Comb. Sci. 28 (2009), pp. 542-550. 59 Jiao B.W., Yeung E.K.C., Chan C.B., and Cheng C.H.K., Establishment of a transgenic yeast screening system for estrogenicity and identification of the anti-estrogenic activity of malachite green. J. Cell Biochem., 2008 (105), pp. 1399-1409. 60 Jobling S., Williams R., Johnson A., Taylor A., Gross-Sorokin M., Nolan M., Tyler C.R., Aerle R., Santos E., and Brighty G., Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ. Health Perspect., 114 (2006), pp. 32-39. 61 Jobling S., Williams R., Johnson A., Taylor A., Gross-Sorokin M., Nolan M., Tyler C.R., Aerle R., Santos E., and Brighty G., Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ. Health Perspect., 114 (2006), pp. 32-39. 62 Keith T.L., Snyder S.A., Naylor C.G., Staples C.A., Summer C., and Kannan K., et al., Identification and quantitation of nonylphenol ethoxylates and nonylphenol in fish tissues from Michigan. Environ. Sci. Technol., 35 (2001), pp.10-13. 63 Kester D., Duedall I., Connors D., and Pytkowicz R., Preparation of artificial seawater. Limnol. Oceanogr., 12 (1967), pp. 176-179. 64 Kim S.M., Jung E.M., An B.S., Hwang I., Vo T.T., Kim S.R., Lee S.M., Cho K.C., and Jeung E.B., Additional effects of bisphenol A and paraben on the induction of calbindin-D9K and progensterone receptor ! 173! via an estrogen receptor pathway in rat pituitary GH3 cells. J. Physiol. Pharmacol., 63(2012), pp. 445-455. 65 Kinani S., Bouchonnet S., Creusot N., Bourcier S., Balaguer P., Porcher J.M., and Ait-Aissa S. (2010) Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers. Environ. Pollut. 158:74-83. 66 Kinani S., Bouchonnet S., Creusot N., Bourcier S., Balaguer P., Porcher J.M., and Ait-Aissa S., Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers. Environ. Pollut. 158 (2010), pp. 74-83. 67 Kitts D.D., Yuan Y.V., Wijewickreme A.N., and Thompson L.U., Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol. Cell. Biochem., 202 (1999), pp. 91-100. 68 Komesli O.T., Bakırdere S., Bayören C., and Gökçay C.F., Simultaneous determination of selected endocrine disrupter compounds in wastewater samples in ultra trace levels using HPLC-ES-MS/MS. Environ. Monit. Assess., 184 (2012), pp. 5215-5224. 69 Kudela R.M., and Gobler C.J., Harmful dinoflagellate blooms caused by Cochlodinium sp.: Global expansion and ecological strategies facilitating bloom formation. Harmful Algae, February 14 (2012), pp. 71-86. 70 Kuiper G.G., Carlsson B., Grandien K., Enmark E., Haggblad J., Nilsson S., and Gustafsson J.A., Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology, 138 (1999), pp. 863-870. 71 Landsberg J.H., The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci., 10 (2002), pp. 113-390. 72 Lange A., Paull G.C., Hamilton P.B., Iguchi T., and Tyler C.R., Implications of persistent exposure to treated wastewater effluent for breeding in wild roach (Rutilus rutilus) populations. Environ. Sci. Tech., 45 (2011), pp. 1673-1679. ! 174! 73 Legler J., Leonards P., Spenkelink A., and Murk A.J., In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity. Ecotoxicology., 12 (2003), pp. 239-249. 74 Lephart E.D., Lund T.D., Horvath T.L., Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res. Rev., 37 (2001), pp. 25-37. 75 Lewis M.A., Weber D.E., Stanley R.S. and Moore J.C., Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton. Environ. Pollut. 115 (2001), pp. 161-171. 76 Li J., Gong Y.H., Shen P., Wong S.P., Wise S.D., and Yong E.L., Bioassays for Estrogenic Activity: Development and Validation of Estrogen Receptor (ERα/ERβ) and Breast Cancer Proliferation Bioassays to Measure Serum Estrogenic Activity in Clinical Studies. ASSAY Drug Dev. Techn., (2009), pp. 80-89. 77 Li N., and Lee H.K., Solid-phase extraction of polycyclic aromatic hydrocarbons in surface water: negative effect of humic acid. J Chromatogr A. 921 (2001), pp. 255-263. 78 Linford N.J., and Dorsa D.M., 17beta-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids, 67 (2002), pp. 1029-1040. 79 Lintelmann J., Katayama A., Kurihara N., Shore L. and Wenzel A., Endocrine disruptors in the environment (IUPAC Technical Report). Pure Appl. Chem., 75 (2003), pp. 631-681. 80 Liu H.X., Yao X.J., and Gramatica P., The Applications of machine learning algorithms in the modeling of estrogen-like chemicals. Comb. Chem. High Throughput Screen, 12 (2009), pp. 490-496(7). 81 Majors R.E., LCxLC: Comprehensive two-dimensional liquid chromatography. LC-GC N. AM., 26 (2008), pp. 600-608. 82 Makela S., Santti R., Salo L., and McLachlan J.A., Phytoestrogens are partial estrogen agonists in the adult male mouse. Environ. Health ! 175! Perspect., (1995), pp. 123-127 83 Makela S.I., Pylkkanen L.H., Santti R.S., and Adlercreutz H., Dietary soybean may be antiestrogenic in male mice. J. Nutr., 125 (1995), pp. 437-445. 84 Manthey J.A., Buslig B.S., and Baker M.E., Flavonoids in cell function. Adv. Exp. Med. Biol., 505 (2002), pp. 1-7. 85 Mantovani A., Risk assessment of endocrine disrupters: the role of toxicological studies. Ann N Y Acad. Sci. 1076 (2006), pp. 239-252. 86 Mark C. and Goh K.C., Environment and development in the Straits of Malacca. 2000, New York: Routledge. 87 Matsumoto T., Shiina H., Kawano H., Sato T., and Kato S., Androgen receptor functions in male and female physiology. J. Steroid Biochem. Mol. Biol., 109 (2008), pp. 236-241. 88 Matsumura S., Ghosh, Pope G.S., and Darbre P.D., Comparative study of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. J. Steroid Biochem. Mol. Biol., 94 (2005), pp. 431-443. 89 Matter A.L., Paralytic shellfish poisoning, toxin accumulation in the marine food web, with emphasis on predatory snails. US Environmental Protection Agency, 1994, EPA 910/R-94-005. 90 Mekenyan O., Kamenska V., Serafimova R., Poellinger L., Brouwer A., and Walker J., Development and validation of an average mammalian estrogen receptor-based QSAR model. SAR QSAR Environ. Res. 13 (2002), pp. 579-595. 91 Metzler M., and Pfeiffer E., Chemistry of natural and anthropogenic endocrine active compounds. Endocrine Disruption-Part I (2001). 92 Minh S.D., Below S., Muller C., and Hildebrandt J.P., Novel! mammalian!cell! lines!expressing!reporter! genes!for! the! detection! of! environmental! chemicals! activating! endogenous! aryl! hydrocarbon!receptors!(ArhR)! or! estrogen!receptors!(ER). Toxicol. in Vitro., 22 (2008), pp. 1935-1947. 93 Morris J.G., and Pfiesteria, “the cell from hell” and other toxic algal nightmares. Clin. Infect. Dis., 28 (1999), pp. 1191-1198. ! 176! 94 Morrison W., Thessen A.E., SteidingerK., RichardsonB., MoncreiffC.A., PennockJ.R., Cynthia A. Moncreiff C.A., and Pennock J.R., Effect of salinity on the distribution, growth, and toxicity of Karenia spp. Harmful Algae,5 (2006), pp. 199-212. 95 Morrissey C., and Watson R.W., Phytoestrogens and prostate cancer. Curr. Drug Targets, (2003), pp. 231-241. 96 Murk A.J., Legler J., Van Lipzig M.M.H., Meerman J.H.N., Belfroid A.C., and Spenkelink A., Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environ. Toxicol. Chem., 2002 (21), pp. 16-23. 97 Naassner M., Mergler M., Wolf K., and Schuphon I., Determination of the xenoestrogens 4-nonylphenol and bisphenol A by high-performance liquid chromatography and fluorescence detection after derivatisation with dansyl chloride. J. Chromatogr. A, 945 (2002), pp.133-138. 98 NASA Aquarius and World Ocean Atlas, 2005. . 99 Nie Y.F., Qiang Z.M., Zhang H.Q., and Adams C., Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry, J. Chromatogr. A, 1216 (2009), pp. 7071-7081. 100 Nishikubo, T., Kameyama, A., Tsutsui, K., and Iyo, M., Synthesis and photochemical reaction of novel p-alkylcalix[n]arene derivatives containing cationically polymerizable groups. J. Polym. Sci. Part A Polym. Chem., 37(1999), pp. 1805-1814. 101 Ooi B.H., Zeng H., yue K.P., Kurniawati H., Sundarambal P., Dao M.H., Roopsekhar K.A.P., Wei J., Cho W., Tkalich P., and Malanotte-Rizzoli P., Patrikalakis NM (2010) Case study of phytoplankton blooms in Serangoon harbour of Singapore. OCEANS'10 IEEE Sydney (need remainer of citation). 102 Ososki A.L., and Kennelly E.J., Phytoestrogens: a review of the present state of research. Phytother. Res., 17 (2003), pp. 845-869. 103 Patisaul H.B., Dindo M., Whitten P.L., and Young L.J., Soy isoflavone ! 177! supplements antagonize reproductive behavior and estrogen receptor alpha- and beta-dependent gene expression in the brain. Endocrinology, 142 (2001), pp. 2946-2952. 104 Patisaul H.B., Melby M., Whitten P.L., and Young L.J., Genistein affects ER beta- but not ER alpha-dependent gene expression in the hypothalamus, Endocrinology, 143 (2002), pp. 2189-2197. 105 Patisaul H.B., Phytoestrogen action in the adult and developing brain. J. Neuroendocrinol., 17 (2005), pp. 57-64. 106 Petersen D.N., Tkalcevic G.T., Koza-Taylor P.H., Turi T.G., and Brown T.A., Identification of estrogen receptor β2, a functional variant of estrogen receptor β expressed in normal rat tissues. Endocrinology 139 (1998), pp. 1082-1092. 107 Pollingher U., and Zemel E., In situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cinctum forma westii (Lemm). Lefe`vre Phycol J. 16 (1981), pp. 281-287. 108 Price N. M., Harrison P., Landry M.R., Azam F., and Hall K., Toxic effects of latex and Tygon tubing on marine phytoplankton, zooplankton and bacteria. Mar. Ecol. Prog. Ser., 34(1986), pp. 41-49. 109 Proper C., Integr. The Study of Endocrine-Disrupting Compounds: Past Approaches and New Directions. Comp. Biol. 45 (2005) 194-200. 110 Provasoli L., McLaughlin [sic] J.J.A., and Droop M.R., The development of artificial media for marine algae. Arch. Mikrobiol. 25 (1957), pp. 392-428. 111 Purvis I.J., Chotai D., Dykes S.W., Lubahn D.B., French F.S., Wilson E.M., and Hobden A.N., An androgen-inducible expression system for Saccharomyces cerevisiae. Gene, 106 (1991), pp: 35-42. 112 Raecker T., Thiele B., Boehme R.M., and Guenther K., Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies. Chemosphere, 82 (2011), pp. 1533-1540. 113 Rassi C.M., Lieberherr M., Chaumaz G., Pointillart A., and Cournot G., Down-regulation of osteoclast differentiation by daidzein via caspase 3. ! 178! J. Bone Miner. Res., 17 (2002), pp. 630-638. 114 Rawson C.A., Lim R.P., and Warne M.S., Skeletal morphology and maturation of male Gambusia holbrooki exposed to sewage treatment plant effluent. Ecotoxicol. Environ. Saf., 70 (2008), pp. 453-461. 115 Rhind, S.M., Evans, N.P., Bellingham, M., Sharpe, R.M., Cotinot, C., Mandon-Pepin, B., Loup, B., Sinclair, K.D., Lea, R.G., Pocar, P., Fischer, B., van der Zalm, E., Hart, K., Schmidt, J.S., Amezaga, M.R., and Fowler, P.A., Effects of environmental pollutants on the reproduction and welfare of ruminants. Animal (2010), 4:7, pp.1227- 1239. 116 Rice S., and Mason H.D., WhiteheadS.A., Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J. Steroid Biochem. Molec. Biol., 101 (2006), pp. 216-225. 117 Riebesell U., Wolfgladrow D.A., and Smetacek V., Carbon dioxide limitation of marine phytoplankton growth rates. Nature., 361 (1993), pp. 249-251. 118 Robert A., and Andersen, Algal culturing techniques, 2005, pp. 21-31. 119 Roncaglioni A., Piclin N., Pintore M., and Benfenati E., Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ. Res. 19(2008), pp. 697-733. 120 Routledge E.J., and Sumpter J.P., Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem., 15 (1996), pp: 241-248. 121 Ruiz-Larrea M.B., Mohan A.R., Paganga G., Miller N.J., Bolwell G.P., and Rice-Evans C.A., Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res., 26 (1997), pp. 63-70. 122 Safe S., Connor K., Ramamoorthy K., Gaido K., and Maness S., Human exposure to endocrine-active chemicals: hazard assessment problems. Regul. Toxicol. Pharmacol., 26 (1997), pp. 52-58. 123 Santti R., Makela S., Strauss L., Korkman J., and Kostian M.L., Phytoestrogens: potential endocrine disruptors in males. Toxicol. Ind. ! 179! Health, 14 (1998), pp. 223-237. 124 Scholz B., and Liebezeit G., Chemical Screening for Bioactive Substances in Culture Media of Microalgae and Cyanobacteria from Marine and Brackish Water Habitats: First Results. Pharm. Biol., 44 (2006), pp. 544-549. 125 Setchell K.D., Zimmer N.L., Cai J., and Heubi J.E., Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr., 68 (1998), pp. 1453S-1461S. 126 Shumway S.E., A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquaculture Soc., 21(1990), pp. 65-104. 127 Shumway S.E., Marine birds and harmful algal blooms: sporadic victims or under-reported events? Harmful Algae, (2003), pp. 1-17. 128 Shumway S.E., Phycotoxin-related shellfish poisoning, bivalve molluscs are not the only vectors. Rev. Fish. Sci., (1995), pp. 1-31. 129 Sin Y.M., Wong M.K., Chou L.M., and Alias N.B., A study of the heavy metal concentrations of the Singapore River. Environ. Monit. Assess, 19 (1991), pp. 481–494. 130 Smayda T., Novel and nuisance phytoplankton blooms in the sea, evidence for a global epidemic. In: Granéli, E., Sundström, B., Edler, L., Anderson, D.M. (Eds.). Toxic Marine Phytoplankton. Elsevier, New York, 1990, pp. 29-40. 131 Soto A.M, and Sonnenschein C., Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat Rev Endocrinol., (2010), pp. 363-370. 132 Stara J. F., Kello D., and Durkin P., Human health hazards associated with chemical contamination of aquatic environment. Environ. Health Perspect., 340 (1980), pp. 145-158. 133 Stepankova T., Ambrozova L., Blaha L., Giesy J. P., and Hilscherova K., In vitro modulation ofintracellular receptor signaling and cytotoxicity induced by extracts of cyanobacteria, complex waterblooms and their fractions. Aquat Toxicol. 105 (2011), pp. 497-507. 134 Strauss L., Santti R., Saarinen N., Streng T., Joshi S., Makela S., and ! 180! Dietary phytoestrogens and their role in hormonally dependent disease. Toxicol. Lett., 103 (1998), pp. 349-354. 135 Streets S., Endocrine Disrupting Compounds: A Report to the Minnesota Legislature. Minnesota Pollution Control Agency, 1998. 136 Subramantan P., and Amutha C., Sewage-induced alterations in the sex of Oreochronis mossambicus; a plausible cue of endocrine disruption. Toxicol. Environ. Chem., (2006), pp. 515–526 137 Sunda W.G., and Huntsman S.A., Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnol. Oceanorg., 50 (2005), pp. 1181-1192. 138 Sundarambal P., and Tkalich P., Eutrophication Modelling For Singapore Waters. Proceedings of International Conference on Port and Maritime R&D and Technology. 10-12 Sept 2003, Singapore, V. 2, pp 51-58. 139 Sychrova E., Stepankova T., Novakova K., Blaha L., Giesy J. P., and Hilscherova K., Estrogenicactivity in extracts and exudates of cyanobacteria and green algae. Environ. Int. 39 (2012), pp.134-140. 140 Takao T., Nanamiya W., Nagano I., Asaba K., Kawabata K., and Hashimoto K., Exposure with the environmental estrogen bisphenol A disrupts the male reproductive tract in young mice. Life Sci. 65(1999), pp. 2351-2357. 141 Takeyoshi M., Yamasaki K., Sawaki M., Nakai M., Noda S., and Takatsuki M., The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor ligand interactions. Toxicol Lett., 126 (2002), pp. 91-98. 142 Tamura H., Ishimoto Y., Fujikawa T., Aoyama H., Yoshikawa H., and Akamatsu M., Structural basis for androgen receptor agonists and antagonists: Interaction of SPEED 98-listedchemicals and related compounds with the androgen receptor based on an in vitro reporter geneassay and 3D-QSAR. Bioorg. Med. Chem. 14 (2006), pp. 71607174. 143 Tan H.M., Wang X.C., Soh S.F., Tan S., Zhao J., Yong E. L., Lee H.K., ! 181! and Gong Y.H., Preparation and application of mixed octadecysilyl- and (3-(C-methylcalix[4]resorcinarene)-2-hydroxypropoxy)-propylsilylappended silica particles as stationary phase for high-performance liquid chromatography. Instrumentation Science & Technology, 40 (2012), pp. 100-111. 144 Tan K.S., Imposex in Thais gradata and Chicoreus capucinus (Mollusca, Neogastropoda, Muricidae) from the Straits of Johor: A case study using penis length, area and weight as measures of imposex severity. Marine Pollution Bulletin, 39 (1999), pp. 295-303. 145 Tanabe S., Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Mar. Pollut. Bull., 45 (2002), pp. 69-77. 146 Tang S.M., Orlic I., Tang S.M., Makjanic J., Wu X.K., and Ng T.H., A survey of levels of metallic and organic pollutants in Singapore coastal waters and marine sediments. G. Vigers, K.S. Ong, C. McPherson, N. Millson, I. Watson, A. Tang (Eds.), Proceedings of the ASEAN–Canada Technical Conference on Marine Science, EVS Environment Consultants, North Vancouver and Department of Fisheries, Malaysia (1997), p. II51, II60. 147 Tang Y.Z., Kong L., and Holmes M.J., Dinoflagellate Alexandrium leei (Dinophyceae) from Singapore coastal waters produes a water-soluble ichthyotoxin. Mar. Biol., 150 (2007), pp. 541-549. 148 Thamarai Chelvi S.K., Yong E.L., and Gong Y.H. Preparation and evaluation of calix[4]arene-capped b-cyclodextrin-bonded silica particles as chiral stationary phase for high-performance liquid chromatography. J. Chromatogr. A, 1203 (2008), pp.54-58. 149 Thomas R.Z., Environmental chemicals targeting thyroid, Hormones, (2010), pp. 28-40. 150 Tortell P.D., DiTullio G.R., Sigman D.M., and Morel F.M.M., CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar. Ecol. Prog. Ser., 236 (2002), pp. 37–43. ! 182! 151 Tully D.B., Cox V.T., Mumtaz M.M., Davis V.L., and Chapin R.E., Six high-priority organochlorine pesticides, either singly or combination, are nonestrogenic in transfected HeLa cells. Reprod. Toxicol. 14 (2000), pp. 95-102. 152 Twiner M.J., Dixon S.J., and Trick C.G., Extracellular organics from specific cultures of Heterosigmaakashiwo (Raphidophyceae) irreversibly alter respiratory activity in mammalian cells. Harmful Algae, (2004), pp. 173-182. 153 Tyler C. R., Filby A. L., Bickley L.K., Cumming R.I., Gibson R., Labadie P., Katsu Y., Liney K.E., Shears J.A., Silva-Castro V., Urushitani H., Lange A., Winter M.J., Iguchi T., and Hill E.M., Environmental health impacts of equine estrogens derived from hormone replacement therapy. Environ. Sci. Technol., 43 (2009), pp. 3897–3904. 154 Vaya J., and Tamir S., The relation between the chemical structure of flavonoids and their estrogen-like activities. Curr. Med. Chem., 11 (2004), pp. 333-1143. 155 Villar-Navarro M., Ramos-Payán M., Fernández-Torres R., CallejónMochón M., and Bello-López M.Á., A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), noctylphenol and n-nonylphenol, in environmental waters. Sci. Total Environ., 443 (2013), PP. 1-6. 156 Wall T.M. and Hammer R.W.J., Biological testing to control toxic water pollutants. J. Water Pollut. Control Fed. 59 (1987), pp. 7-16. 157 Wang B., Huang B., Jin W., Zhao S., Li F., Hu P., and Pan X., Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environ Sci. Pollut. Res. Int. 20 (2013), pp. 3185-3194. 158 Wang Q., Lu J., and Yong E.L., Ligand- and coactivator-mediated transactivation function (af2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J. Biol. Chem. 276 (2001), pp.7493-7499. ! 183! 159 Wang Y.Y., He S., Cheng X.C., Lu Y.X., Zou Y.P., and Zhang Q.L., UPLC–Q-TOF–MS/MS fingerprinting of Traditional Chinese Formula SiJunZiTang. J. Pharm. Biomed. Anal., 80 (2013), pp. 24-33. 160 Wei H., Saladi R., Lu Y., Wang Y., Palep S.R., Moore J., Phelps R., Shyong E., and Lebwohl M.G., Isoflavone genistein: photoprotection and clinical implications in dermatology. J. Nutr., 133 (2003), pp. 3811S-3819S 161 Whitten P.L., and Patisaul H.B., Cross-species and interassay comparisons of phytoestrogen action. Environ. Health Persp, 109 (Suppl) (2001), pp. 5-20. 162 Wilson V.S., Bobseine K., Lambright C.R., and Gray L.E.J., A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists. Toxicol. Sci., 66 (2002), pp. 69-81. 163 Wong S.P., Li J., Shen P., Gong Y.H., Yap S.P., and Yong E.L., Ultrasensitive cell-based bioassay for the measurement of global estrogenic activity of flavonoid mixtures revealing additive, restrictive, and enhanced actions in binary and higher order combinations. Assay Drug Dev. Technol., (2007), pp. 355-362. 164 Woodruff T.K., and Walker C.L., Fetal and early postnatal environmental exposures and reproductive health effects in the female. Fertil. Steril. 89 (2008), pp. e47-e51. 165 Word J.Q., Hardy J.T., Crecelius E.A., and Kiesser S.L., A laboratory study of the accumulation and toxicity of contaminants at the sea surface sediments proposed for dredging. Mar. Environ. Res. 23 (1987), pp. 325338. 166 Wuttke W., Jarry H., Becker T., Schultens A., Christoffel V., Gorkow C., and Seidlova-Wuttke D., Phytoestrogens: endocrine disrupters or replacement for hormone replacement therapy? Maturitas, 44 (Suppl. 1) (2003), pp. S9-S20. 167 Xie Y.P., Fang Z.Q., Hou L.P., and Ying G.G., Altered development and reproduction in western mosquitofish (Gambusia affinis) found in the ! 184! Hanxi River, southern China. Environ. Toxicol Chem., 29 (2010), pp. 2607-2615. 168 Yan G.L., Sun H., Sun W.J., Zhao L., Meng X.C., and Wang X.J., Rapid and global detection and characterization of aconitum alkaloids in Yin Chen Si Ni Tang, a traditional Chinese medical formula, by ultraperformance liquid chromatography–high resolution mass spectrometry and automated data analysis. J. Pharm. Biomed. Anal., 53 (2010), pp. 421-431. 169 Yang W.D., Wu M.Y., Liu J.S., Peng X.C., and Li H.Y., Reporter Gene Assay for Detection of Shellfish Toxins. Biomed. Environ. Sci., 22 (2009), pp. Pages: 419-422. 170 Yap S.P., Shen P., Li J., Lee L.S., and Yong E.L., Molecular and pharmacodynamic properties of estrogenic extracts from the traditional Chinese medicinal herb, Epimedium, J. of Ethnopharm., 113(2007), 218. 171 Yazdanyar A., Essmann M., and Larsen B., Genistein effects on growth and cell cycle of Candida albicans. J. Biomed. Sci., (2001), pp. 153159 172 Ye A. , Yang Y., Zhang J., Liu M., Hou L., and Zhou J.L., Simultaneous determination of steroidal and phenolic endocrine disrupting chemicals in fish by ultra-high-performance liquid chromatography–mass spectrometry/mass spectrometry. J. Chromatogr. A., 1278 (2013), pp.126-132. 173 Zhang S., You J., Sun Z., Song C., Ning S., Zhao C., and Suo Y., A sensitive method for extraction and determination of endocrinedisrupting compounds from wastewater using 10-ethyl-acridone-2sulfonyl chloride as pre-column labeling reagent by high-performance liquid chromatography with fluorescence detection. Microchem. J. 103 (2012), pp.90-96. 174 Zhu M., Zhu G., Li W., Zhang Y., Zhao L., and Zhao G. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ. Pollut., 173 (2013), pp. 216-223. ! 185! 175 Zirbel M., Veron F., and Latz M., The reversible effect of flow on the morphology of Ceratocorys horrida (Peridiniales, Dinophyta). J. Phycol. 36 (2000), pp. 46-58. ! ! ! 186! [...]... Journal papers: 1 Gong Y.H., Wang X.C * (joint first author), Indran I.R., Zhang S.J., Lv Z., Li J., Holmes M., Tang Y.Z., and Yong E.L., Phytoplankton blooms: an overlooked marine source of natural endocrine disrupting chemicals, Ecotox Environ Safe., 107 (2014), pp 126-132 2 Indran I.R., Zhang S., Zhang Z., Sun F., Gong Y.H., Wang X.C., Li J., Erdelmeier C.A., Koch E., and Yong E.L., Selective estrogen... (around the mainland of Singapore) and a large amount of phytoplankton cultures were successfully cultivated in our research laboratory under controlled conditions The phytoplankton cells and culture media were extracted and screened for estrogenic and androgenic activities via human cell-based bioassays The extracts of phytoplankton cultures were purified and fractionated by a series of chromatographic... C.L., 2008; Tanabe S., 2002; Andrea C.G., 2008), e.g placental and ovarian function An endocrine- disrupting chemical is defined by the World Health Organization (2002) as an exogenous substance or mixture that alters function(s) of the endocrine system and consequently produces adverse health effects in an intact organism, or its progeny, or (sub) populations” Pollutants including pesticides, natural products,... suggest that phytoplankton can secrete some estrogenic/androgenic endocrine disrupting chemicals (EDCs) into marine environment However, the chemical and biological properties of the secreted chemicals are still unknown In order to investigate the properties of the secreted compounds, five species of phytoplankton, Gymnodinium catenatum, Prorocentrum minimum, Alexandrium leei, Chattonella marina, and Fibrocapsa... filtration! system! in! Tropical Marine Science Institute (TMSI) Figure 2.2 Schematic of stock phytoplankton cells maintaining Figure 2.3 EGS incubator for maintaining stocks of phytoplankton Figure 2.4 EGS incubator used for mass culture of phytoplankton Figure 2.5 Procedure of Solid Phase Extraction (SPE) Figure 2.6 Procedure of Phytoplankton cell extract Figure 2.7 Comparison of PB3 growth in two different... batch of seawater samples from the same sample sites (AR bioactivity) Figure 2.17 Bioactivity of different phytoplankton culture extracts Figure 2.18 Growth curves and bioactivity profiling of Singapore phytoplankton isolates C marina (Chat M1) Figure 2.19 Growth curves and bioactivity profiling of Singapore phytoplankton isolates P minimum (PB3) Figure 2.20 Growth curves and bioactivity profiling of. .. phytoplankton are one of natural marine sources of endocrinedisrupting chemicals (EDCs) The harmful nature of EDCs may be largely due to their bioaccumulation in the aquatic food chain As such, these findings indicated that EDCs from phytoplankton sources needed to be thoroughly investigated as they may have significant impact on the food chain, especially our food sources from the sea ! X! ! LIST !OF! PUBLICATIONS!ARISING!FROM!THIS!THESIS!... High estrogenic and androgenic activities for seawater samples were previously reported in the confined clusters close to the mainland of Singapore Further investigations revealed a hitherto unsuspected link between estrogenic/androgenic activity and phytoplankton Phytoplankton is a type of microscopic organism in the marine environment, which forms the foundation of the food chain in the marine ecological... effects of Epimedium extracts on breast cancer and uterine growth in nude mice, Planta Medi., 80 (2014), pp 22-28 3 Tan H.M., Wang X.C.* (joint first author), Soh S.F., Tan S., Zhao J Yong E L., Lee H.K., and Gong Y.H., Preparation and application of mixed octadecysilyl- and (3-(C-methylcalix[4]resorcinarene)-2- hydroxypropoxy)-propylsilyl-appended silica particles as stationary phase for high-performance... germination and stress signalling (Ruiz-Larrea M.B et al., 1997; Wei H et al., 2003; Manthey J.A et al., 2002) Phytoestrogens not only can be detected in certain plant or plantderived products, but are also found in water as a result of plant decomposition They are represented by hundreds of different types of molecules and can be divided into three main classes based on their ! 7! chromone backbones and hydroxylation . ! INVESTIGATION OF PHYTOPLANKTON AS AN OVERLOOKED MARINE SOURCE OF NATURAL ENDOCRINE DISRUPTING CHEMICALS ! ! ! ! ! ! ! ! ! ! ! WANG XIAOCHONG ! ! ! ! ! ! ! ! NATIONAL UNIVERSITY OF. OF SINGAPORE 2014 ! ! INVESTIGATION OF PHYTOPLANKTON AS AN OVERLOOKED MARINE SOURCE OF NATURAL ENDOCRINE DISRUPTING CHEMICALS ! ! ! ! ! WANG XIAOCHONG (MSc., TECHNISCHE UNIVERSITÄT. Yong E.L., Phytoplankton blooms: an overlooked marine source of natural endocrine disrupting chemicals, Ecotox. Environ. Safe., 107 (2014), pp. 126-132. 2. Indran I.R., Zhang S., Zhang Z.,