Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 171 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
171
Dung lượng
7,11 MB
Nội dung
THE MECHANISTIC STUDIES OF THE ANTICANCER POTENTIAL OF ARTESUNATE IN HUMAN CANCER CELLS YANG NAIDI (M.Sc. Zhejiang University, P.R. China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2014 ACKNOWLEDGEMENTS I would like to express my most sincere and deepest gratitude to my supervisor, A/Prof. Shen Han-Ming for his professional and enthusiastic guidance throughout the past four years. This study would not have been possible without his excellent guidance, great supports and continuous encouragements. His enthusiasm and dedication to science have impressed and inspired me deeply. I have indeed gained fruitful experience for the ropes of biological research. What I have learned from him will not only benefit my future career but also my life. I would like to take this opportunity to delicate my sincere thanks to my thesis advisory committee members: A/Prof. Kevin, Tan Shyong Wei, and A/Prof. Reshma Taneja for their instructive suggestions and continuous supports on my study. I would also like to extend my gratefulness to the following people for providing materials for this study: Dr. N Mizushima (Tokyo Medical and Dental University, Japan) for providing the HeLa cells with stable expression of GFP-LC3; Dr. A Ballabio (Telethon Institute of Genetics and Medicine, Italy) for providing the TFEB-luciferase construct; Dr. DJ Kwiatkowski (Harvard University, USA) for providing the pair of Tsc2 WT and KO MEFs; Dr. Huang Jingxiang (National University Hospital, Singapore) for providing the pair of TSC2 WT and shTSC2 HeLa cells; Dr. TW Soong (National University of Singapore, Singapore) for providing Flag-FTH plasmid. iii It has been a great honor and fortune for me to work in such a warm and harmonious laboratory. I would like to specially thank Dr. Ng Shukie for her immense help in my study as well as daily life and also Dr. Tan Shi Hao for his helpful suggestions to my research. Special thanks also go to Mr. Ong Yeong Bing and Ms Su Jin for their logistical help. I would also like to express my deep appreciation to other lab members: Dr. Zhou Jing, Dr. Cui Jianzhou, Dr. Chen Bo, Ms Zhang Yin, Ms Shi Yin, Mr. Zhang Jianbin and Ms Mo Xiaofan for their supports and the friendship. Also, thank all other staffs in Saw Swee Hock School of Public Health and Department of Physiology, Yong Loo Lin School of Medicine. Especially, I would like to thank Dr. Tai Yee Kit (Department of Physiology, NUS) for the insightful discussions on my research project. Finally, I would like to extend my deep appreciation to my parents, younger sister for their endless love. Also numerous thanks to my husband Dr. Jiang Bo for his continuous love, support and understanding. iv PUBLICATIONS AND PRESENTATIONS AT CONFERENCES PUBLICATIONS 1. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan K SW, Wong WS F, Shen HM. (2014). Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem 289, 33425-33441. 2. Zhang J, Ng S, Wang J, Tan SH, Zhou J, Yang ND, Lin Q, Xia D, Shen HM. (In press). Histone Deacetylase Inhibitors Induce Autophagy through FoxO1-Dependent Pathways. Autophagy. 3. Shi Y, Tan SH, Ng S, Yang ND, Zhou J, McMahon KA, Del Pozo MA, Hill MM, Parton RG, Kim YS, Shen HM. (In press). Caveolin-1 and lipid rafts in modulation of lysosomal function and autophagy in breast cancer cells. Autophagy. 4. Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, Xue Y, Codogno P, and Shen HM. (2013). Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosomelysosome fusion. Cell Res 23, 508-523. 5. Zhang Y, Yang ND, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu XQ, and Shen HM. (2012). (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One 7, e46749. v PRESENTATIONS AT CONFERENCES Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Shen HM. Artesunate induces cancer cell death via enhancing the lysosomal degradation of ferritin. Gordon Research Conference, Autophagy in Stress, Development & Disease 16 – 21 Mar 2014, Renaissance Tuscany Il Ciocco Resort in Lucca (Barga) Italy. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Shen HM. Artesunate induces cancer cell death via enhancing the lysosomal degradation of ferritin. 7th Asia Pacific Organization of Cell Biology (APOCB) Congress & American Society for Cell Biology (ASCB) Workshops. 24 -27 Feb 2014, Biopolis, Singapore. Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Shen HM. Artesunate induces cancer cell death via enhancing the lysosomal degradation of ferritin. International Conference on Natural Products and Health. 5-7 Sep 2013, Nanyang Technological University, Singapore. (Silver Best Poster Award) vi THE MECHANISTIC STUDIES OF THE ANTICANCER POTENTIAL OF ARTESUNATE IN HUMAN CANCER CELLS Table of Contents DECLARATION .ii ACKNOWLEDGEMENTS . iii PUBLICATION AND PRESENTATIONS AT CONFERENCES v PUBLICATIONS v PRESENTATIONS AT CONFERENCES vi SUMMARY xi LIST OF TABLES . xiii LIST OF FIGURES . xiii LIST OF ABBREVIATIONS . xvi CHAPTER 1. 1.1. INTRODUCTION . ARTESUNATE . 1.1.1 Overview of artemisinin and artesunate 1.1.2 Pharmacological effects of artesunate . 1.1.3 Molecular mechanisms underlying ART-mediated cell death in cancer cells . 14 1.2. AUTOPHAGY 19 1.2.1 Overview of autophagy 19 1.2.2 Stages of autophagy . 20 1.2.3 Biological functions of autophagy . 25 1.2.4 Implications of autophagy in human diseases . 29 1.3. REGULATION OF AUTOPHAGY BY MTORC1 AND LYSOSOMES . 34 vii 1.3.1 Regulation of autophagy by mTOR1 . 34 1.3.2 Regulation of autophagy by lysosomes . 37 1.3.3 Regulation of lysosomal function 38 1.4. IRON 42 1.4.1 Overview the role of iron in human body and cells . 42 1.4.2 Iron uptake regulated by TfR1 . 43 1.4.3 Iron storage protein ferritin 44 1.4.4 Iron responsive protein (IRP)/Iron responsive element (IRE) system 46 1.5. GAP OF KNOWLEDGE AND OBJECTIVES . 48 CHAPTER 2. MATERIAL AND METHODS . 50 2.1. CELL CULTURE . 51 2.2. CHEMICALS, REAGENTS, AND ANTIBODIES . 51 2.3. WESTERN BLOTTING 52 2.4. CONFOCAL IMAGING 53 2.5. CELL COLLECTION FOR FLOW CYTOMETRY 54 2.6. DETECTION OF CELL DEATH . 54 2.7. DETECTION OF THE INTRACELLULAR LOCALIZATION OF ART 54 2.8. LYSOTRACKER RED (LTR), LYSOTRACKER GREEN (LTG) AND MITOTRACKER RED (MTR) STAINING 55 2.9. MAGIC RED CATHEPSIN B AND L ACTIVITY ASSAY 55 2.10. DETERMINATION STAINING 56 2.11. IMMUNOFLUORESCENCE STAINING 56 OF PROTEIN PROTEOLYSIS USING viii DQ RED BSA 2.12. USE OF IN SITU PROXIMITY LIGATION ASSAY (PLA) ASSAY TO CHECK THE INTERACTION BETWEEN V1 AND V0 IN SITU . 57 2.13. SMALL INTERFERING RNA (SIRNA) AND TRANSIENT TRANSFECTION 57 2.14. MEASUREMENT OF ROS PRODUCTION . 58 2.15. LUCIFERASE ASSAYS 59 2.16. REVERSE TRANSCRIPTION AND QUANTITATIVE REAL-TIME PCR 60 2.17. STATISTICAL ANALYSIS 60 CHAPTER 3. ARTESUNATE INDUCES AUTOPHAGY AND ACTIVATES LYSOSOMAL FUNCTION . 61 3.1. INTRODUCTION 62 3.2. RESULTS 63 3.2.1 ART induces autophagy . 63 3.2.2 ART inhibits mTORC1 activity via the PI3K-Akt-TSC pathway 65 3.2.3 Accumulation of ART in the lysosomes is independent of lysosomal pH . 69 3.2.4 Artesunate activates lysosomal function 73 3.2.5 ART treatment does not increase lysosomal number 79 3.2.6 Mechanisms of lysosomal activation by ART . 81 CHAPTER 4. FERRITIN DEGRADATION IS REQUIRED FOR ART-INDUCED CANCER CELL DEATH . 89 4.1. INTRODUCTION 90 4.2. RESULTS 92 ix 4.2.1 ART inhibits cell proliferation and induces cell death in human cancer cells . 92 4.2.2 ART induces apoptotic cell death in human cancer cells 95 4.2.3 ART induces oxidative stress . 98 4.2.4 Lysosomes functions as the upstream of mitochondrial ROS production 100 4.2.5 Lysosomal activation, ROS production and cell death induced by ART is dependent on lysosomal iron 104 4.2.6 ART promotes ferritin degradation in the lysosomes 107 4.2.7 Overexpression of FTH reduces ART-induced cell death . 112 4.2.8 Autophagy plays a marginal role in ART-induced cell death 114 4.2.9 Lysosomal delivery and degradation of ferritin is required for ART-induced cell death . 116 CHAPTER 5. GENERAL DISCUSSION AND CONCLUSIONS 118 5.1. THE EFFECT OF ART ON AUTOPHAGY 119 5.2. THE EFFECT OF ART ON LYSOSOMES . 121 5.3. THE IMPORTANCE OF ROS IN ART-INDUCED CELL DEATH 122 5.4. THE ROLE OF IRON IN ART-INDUCED LYSOSOMAL ACTIVATION 123 5.5. THE ROLE OF LYSOSOME, FERRITIN AND AUTOPHAGY IN ART- INDUCED LYSOSOMAL ACTIVATION AND CELL DEATH . 125 5.6. CONCLUSIONS 127 Reference. 129 x Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13, 132-141. Kimmelman, A.C. (2011). The dynamic nature of autophagy in cancer. Genes Dev 25, 1999-2010. Klaunig, J.E., and Kamendulis, L.M. (2004). The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44, 239-267. Klausner, R.D., Rouault, T.A., and Harford, J.B. (1993). Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19-28. Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, B.A., Ballabio, A., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175. Klonis, N., Creek, D.J., and Tilley, L. (2013). Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434. Korolchuk, V.I., Saiki, S., Lichtenberg, M., Siddiqi, F.H., Roberts, E.A., Imarisio, S., Jahreiss, L., Sarkar, S., Futter, M., Menzies, F.M., et al. (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13, 453-460. Krishna, S., Uhlemann, A.C., and Haynes, R.K. (2004). Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updat 7, 233244. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036. Kuma, A., and Mizushima, N. (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol 21, 683-690. Kurz, T., Leake, A., Von Zglinicki, T., and Brunk, U.T. (2004). Relocalized redox-active lysosomal iron is an important mediator of oxidative-stressinduced DNA damage. Biochem J 378, 1039-1045. 139 Kwok, J.C., and Richardson, D.R. (2004). Examination of the mechanism(s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents. Mol Pharmacol 65, 181-195. Lai, H.C., Singh, N.P., and Sasaki, T. (2013). Development of artemisinin compounds for cancer treatment. Invest New Drugs 31, 230-246. Laplante, M., and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293. LaVaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S.K., Miller, G., Abu-Asab, M., Tsokos, M., et al. (2001). Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27, 209214. Lawen, A., and Lane, D.J. (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 18, 2473-2507. Lawrence, T., Gilroy, D.W., Colville-Nash, P.R., and Willoughby, D.A. (2001). Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 7, 1291-1297. Lee, E.J., and Tournier, C. (2011). The requirement of uncoordinated 51-like kinase (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7, 689695. Lee, I.S., Ryu, D.K., Lim, J., Cho, S., Kang, B.Y., and Choi, H.J. (2012). Artesunate activates Nrf2 pathway-driven anti-inflammatory potential through ERK signaling in microglial BV2 cells. Neurosci Lett 509, 17-21. Levi, S., Corsi, B., Bosisio, M., Invernizzi, R., Volz, A., Sanford, D., Arosio, P., and Drysdale, J. (2001). A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276, 24437-24440. Li, J., Hou, N., Faried, A., Tsutsumi, S., and Kuwano, H. (2010). Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer 46, 1900-1909. Li, L.N., Zhang, H.D., Yuan, S.J., Tian, Z.Y., Wang, L., and Sun, Z.X. (2007). Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/beta-catenin pathway. Int J Cancer 121, 1360-1365. Li, S., Xue, F., Cheng, Z., Yang, X., Wang, S., Geng, F., and Pan, L. (2009). Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFkappaB p65. Int J Hematol 90, 513521. Li, S.C., and Kane, P.M. (2009). The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793, 650-663. 140 Li, W.D., Dong, Y.J., Tu, Y.Y., and Lin, Z.B. (2006). Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNFalpha and blocking the signaling pathway NF-kappa B translocation. Int Immunopharmacol 6, 1243-1250. Li, Y., Wang, S., Wang, Y., Zhou, C., Chen, G., Shen, W., Li, C., Lin, W., Lin, S., Huang, H., et al. (2013). Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Transl Res 161, 8998. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H., and Jung, J.U. (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8, 688-699. Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10, 776-787. Liang, J., Shao, S.H., Xu, Z.X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D.J., Gutterman, J.U., Walker, C.L., et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9, 218224. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676. Liang, Y., Zhou, Y., and Shen, P. (2004). NF-kappaB and its regulation on the immune system. Cell Mol Immunol 1, 343-350. Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795. Lloyd, J.B., Cable, H., and Rice-Evans, C. (1991). Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem Pharmacol 41, 1361-1363. Longxi, P., Buwu, F., Yuan, W., and Sinan, G. (2011). Expression of p53 in the effects of artesunate on induction of apoptosis and inhibition of proliferation in rat primary hepatic stellate cells. PLoS One 6, e26500. Lum, J.J., Bauer, D.E., Kong, M., Harris, M.H., Li, C., Lindsten, T., and Thompson, C.B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248. Luo, J., Zhu, W., Tang, Y., Cao, H., Zhou, Y., Ji, R., Zhou, X., Lu, Z., Yang, H., Zhang, S., et al. (2014). Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo. Radiat Oncol 9, 84. 141 Mahalingam, D., Mita, M., Sarantopoulos, J., Wood, L., Amaravadi, R.K., Davis, L.E., Mita, A.C., Curiel, T.J., Espitia, C.M., Nawrocki, S.T., et al. (2014). Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403-1414. Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752. Malek, M., Guillaumot, P., Huber, A.L., Lebeau, J., Petrilli, V., Kfoury, A., Mikaelian, I., Renno, T., and Manie, S.N. (2012). LAMTOR1 depletion induces p53-dependent apoptosis via aberrant lysosomal activation. Cell Death Dis 3, e300. Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, P., Burden, S.J., Di Lisi, R., Sandri, C., Zhao, J., et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6, 458-471. Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., and Kimmelman, A.C. (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., and Cantley, L.C. (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10, 151-162. Marino, G., Salvador-Montoliu, N., Fueyo, A., Knecht, E., Mizushima, N., and Lopez-Otin, C. (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282, 18573-18583. Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914. Martina, J.A., Diab, H.I., Lishu, L., Jeong, A.L., Patange, S., Raben, N., and Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 7, ra9. Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396. McCubrey, J.A., Lahair, M.M., and Franklin, R.A. (2006). Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8, 1775-1789. 142 Mehrpour, M., Esclatine, A., Beau, I., and Codogno, P. (2010). Overview of macroautophagy regulation in mammalian cells. Cell Res 20, 748-762. Meijer, A.J., and Codogno, P. (2009). Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46, 210-240. Mercer, A.E., Copple, I.M., Maggs, J.L., O'Neill, P.M., and Park, B.K. (2011). The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286, 987-996. Mercer, A.E., Maggs, J.L., Sun, X.M., Cohen, G.M., Chadwick, J., O'Neill, P.M., and Park, B.K. (2007). Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J Biol Chem 282, 9372-9382. Meshnick, S.R. (2002). Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32, 1655-1660. Meshnick, S.R., Yang, Y.Z., Lima, V., Kuypers, F., Kamchonwongpaisan, S., and Yuthavong, Y. (1993). Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37, 1108-1114. Meyron-Holtz, E.G., Ghosh, M.C., Iwai, K., LaVaute, T., Brazzolotto, X., Berger, U.V., Land, W., Ollivierre-Wilson, H., Grinberg, A., Love, P., et al. (2004). Genetic ablations of iron regulatory proteins and reveal why iron regulatory protein dominates iron homeostasis. Embo J 23, 386-395. Michaelis, M., Kleinschmidt, M.C., Barth, S., Rothweiler, F., Geiler, J., Breitling, R., Mayer, B., Deubzer, H., Witt, O., Kreuter, J., et al. (2010). Anticancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79, 130-136. Mijaljica, D., Prescott, M., and Devenish, R.J. (2011). Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673-682. Mindell, J.A. (2012). Lysosomal acidification mechanisms. Annu Rev Physiol 74, 69-86. Mizushima, N. (2005). The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12 Suppl 2, 1535-1541. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741. Mizushima, N., Sugita, H., Yoshimori, T., and Ohsumi, Y. (1998). A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273, 33889-33892. 143 Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152, 657-668. Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27, 107-132. Mousavi, S.A., Kjeken, R., Berg, T.O., Seglen, P.O., Berg, T., and Brech, A. (2001). Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. Biochim Biophys Acta 1510, 243-257. Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Hasko, G., and Pacher, P. (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358, 203-208. Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178. Nezis, I.P., Shravage, B.V., Sagona, A.P., Lamark, T., Bjorkoy, G., Johansen, T., Rusten, T.E., Brech, A., Baehrecke, E.H., and Stenmark, H. (2010). Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 190, 523-531. Ng, S., Wu, Y.T., Chen, B., Zhou, J., and Shen, H.M. (2011). Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 7, 1173-1186. Ni, H.M., Bockus, A., Wozniak, A.L., Jones, K., Weinman, S., Yin, X.M., and Ding, W.X. (2011). Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188-204. Nishi, T., and Forgac, M. (2002). The vacuolar (H+)-ATPases--nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3, 94-103. Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J., and Otsu, K. (2009). The role of autophagy in the heart. Cell Death Differ 16, 31-38. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220-9231. Ohgami, R.S., Campagna, D.R., McDonald, A., and Fleming, M.D. (2006). The Steap proteins are metalloreductases. Blood 108, 1388-1394. 144 Ollinger, K., and Brunk, U.T. (1995). Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med 19, 565574. Onodera, J., and Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280, 31582-31586. Paeshuyse, J., Coelmont, L., Vliegen, I., Van hemel, J., Vandenkerckhove, J., Peys, E., Sas, B., De Clercq, E., and Neyts, J. (2006). Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem Biophys Res Commun 348, 139-144. Palmieri, M., Impey, S., Kang, H., di Ronza, A., Pelz, C., Sardiello, M., and Ballabio, A. (2011). Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20, 38523866. Pandey, A.V., Tekwani, B.L., Singh, R.L., and Chauhan, V.S. (1999). Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274, 19383-19388. Pantopoulos, K. (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012, 1-13. Pena-Llopis, S., Vega-Rubin-de-Celis, S., Schwartz, J.C., Wolff, N.C., Tran, T.A., Zou, L., Xie, X.J., Corey, D.R., and Brugarolas, J. (2011). Regulation of TFEB and V-ATPases by mTORC1. Embo J 30, 3242-3258. Pierce, G.B., Parchment, R.E., and Lewellyn, A.L. (1991). Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46, 181-186. Poole, B., and Ohkuma, S. (1981). Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol 90, 665-669. Potter, C.J., Pedraza, L.G., and Xu, T. (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4, 658-665. Punnonen, E.L., and Reunanen, H. (1990). Effects of vinblastine, leucine, and histidine, and 3-methyladenine on autophagy in Ehrlich ascites cells. Exp Mol Pathol 52, 87-97. Qiang, L., Wu, C., Ming, M., Viollet, B., and He, Y.Y. (2013). Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem 288, 1603-1611. Qu, X., Zou, Z., Sun, Q., Luby-Phelps, K., Cheng, P., Hogan, R.N., Gilpin, C., and Levine, B. (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931-946. 145 Rangwala, R., Chang, Y.C., Hu, J., Algazy, K.M., Evans, T.L., Fecher, L.A., Schuchter, L.M., Torigian, D.A., Panosian, J.T., Troxel, A.B., et al. (2014a). Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391-1402. Rangwala, R., Leone, R., Chang, Y.C., Fecher, L.A., Schuchter, L.M., Kramer, A., Tan, K.S., Heitjan, D.F., Rodgers, G., Gallagher, M., et al. (2014b). Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10, 1369-1379. Rasheed, S.A., Efferth, T., Asangani, I.A., and Allgayer, H. (2010). First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 127, 1475-1485. Ravikumar, B., Duden, R., and Rubinsztein, D.C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11, 1107-1117. Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5, ra42. Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53, 167-178. Romero, M.R., Efferth, T., Serrano, M.A., Castano, B., Macias, R.I., Briz, O., and Marin, J.J. (2005). Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an "in vitro" replicative system. Antiviral Res 68, 75-83. Rong, Y., McPhee, C.K., Deng, S., Huang, L., Chen, L., Liu, M., Tracy, K., Baehrecke, E.H., Yu, L., and Lenardo, M.J. (2011). Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A 108, 7826-7831. Rosenfeld, M.R., Ye, X., Supko, J.G., Desideri, S., Grossman, S.A., Brem, S., Mikkelson, T., Wang, D., Chang, Y.C., Hu, J., et al. (2014). A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359-1368. Rouault, T.A. (2006). The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2, 406-414. Rouault, T.A. (2013). Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14, 551-564. 146 Rubinsztein, D.C., Codogno, P., and Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11, 709-730. Saftig, P., and Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623-635. Saggu, S., Hung, H.I., Quiogue, G., Lemasters, J.J., and Nieminen, A.L. (2012). Lysosomal signaling enhances mitochondria-mediated photodynamic therapy in A431 cancer cells: role of iron. Photochem Photobiol 88, 461-468. Samaddar, J.S., Gaddy, V.T., Duplantier, J., Thandavan, S.P., Shah, M., Smith, M.J., Browning, D., Rawson, J., Smith, S.B., Barrett, J.T., et al. (2008). A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 7, 2977-2987. Samaniego, F., Chin, J., Iwai, K., Rouault, T.A., and Klausner, R.D. (1994). Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation. J Biol Chem 269, 30904-30910. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., BarPeled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501. Sardiello, M., Palmieri, M., di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science 325, 473-477. Sauer, H., Wartenberg, M., and Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11, 173-186. Sautin, Y.Y., Lu, M., Gaugler, A., Zhang, L., and Gluck, S.L. (2005). Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25, 575-589. Scarlatti, F., Granata, R., Meijer, A.J., and Codogno, P. (2009). Does autophagy have a license to kill mammalian cells? Cell Death Differ 16, 12-20. Schotte, P., Declercq, W., Van Huffel, S., Vandenabeele, P., and Beyaert, R. (1999). Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442, 117-121. 147 Schulze-Bergkamen, H., and Krammer, P.H. (2004). Apoptosis in cancer-implications for therapy. Semin Oncol 31, 90-119. Scott, R.C., Juhasz, G., and Neufeld, T.P. (2007). Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17, 1-11. Scott, R.C., Schuldiner, O., and Neufeld, T.P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7, 167-178. Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. Settembre, C., Fraldi, A., Medina, D.L., and Ballabio, A. (2013). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14, 283-296. Settembre, C., Zoncu, R., Medina, D.L., Vetrini, F., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M.C., Facchinetti, V., et al. (2012). A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. Embo J 31, 1095-1108. Shapira, M.Y., Resnick, I.B., Chou, S., Neumann, A.U., Lurain, N.S., Stamminger, T., Caplan, O., Saleh, N., Efferth, T., Marschall, M., et al. (2008). Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin Infect Dis 46, 1455-1457. Shen, H.M., and Codogno, P. (2011). Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7, 457-465. Shen, H.M., and Liu, Z.G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40, 928-939. Shen, H.M., and Mizushima, N. (2014). At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39, 61-71. Shen, M., Ge, H.L., He, Y.X., Song, Q.L., and Zhang, H.Z. (1984). Immunosuppressive action of Qinghaosu. Sci Sin B 27, 398-406. Shen, S., Kepp, O., and Kroemer, G. (2012). The end of autophagic cell death? Autophagy 8, 1-3. Shi, J.Q., Zhang, C.C., Sun, X.L., Cheng, X.X., Wang, J.B., Zhang, Y.D., Xu, J., and Zou, H.Q. (2013). Antimalarial drug artemisinin extenuates amyloidogenesis and neuroinflammation in APPswe/PS1dE9 transgenic mice 148 via inhibition of nuclear factor-kappaB and NLRP3 inflammasome activation. CNS Neurosci Ther 19, 262-268. Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C.B., and Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6, 1221-1228. Simon, H.U., Haj-Yehia, A., and Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. Sinha, K., Das, J., Pal, P.B., and Sil, P.C. (2013). Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87, 1157-1180. Sou, Y.S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., et al. (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19, 4762-4775. Stocks, P.A., Bray, P.G., Barton, V.E., Al-Helal, M., Jones, M., Araujo, N.C., Gibbons, P., Ward, S.A., Hughes, R.H., Biagini, G.A., et al. (2007). Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew Chem Int Ed Engl 46, 6278-6283. Strohecker, A.M., Guo, J.Y., Karsli-Uzunbas, G., Price, S.M., Chen, G.J., Mathew, R., McMahon, M., and White, E. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3, 1272-1285. Strohecker, A.M., and White, E. (2014). Autophagy promotes BrafV600Edriven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10, 384-385. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. Embo J 20, 5971-5981. Tak, P.P., and Firestein, G.S. (2001). NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107, 7-11. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., et al. (2007). Bif-1 interacts with Beclin through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9, 1142-1151. 149 Terman, A., and Kurz, T. (2013). Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18, 888-898. Thanaketpaisarn, O., Waiwut, P., Sakurai, H., and Saiki, I. (2011). Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-kappaB and PI3K/Akt signaling pathways. Int J Oncol 39, 279-285. Torti, S.V., and Torti, F.M. (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer 13, 342-355. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M., and Mellman, I. (2003). Activation of lysosomal function during dendritic cell maturation. Science 299, 1400-1403. Truty, J., Malpe, R., and Linder, M.C. (2001). Iron prevents ferritin turnover in hepatic cells. J Biol Chem 276, 48775-48780. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174. Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. Embo J 20, 4629-4633. Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552, 335-344. Uchiyama, A., Kim, J.S., Kon, K., Jaeschke, H., Ikejima, K., Watanabe, S., and Lemasters, J.J. (2008). Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48, 1644-1654. Vaiopoulos, A.G., Athanasoula, K., and Papavassiliou, A.G. (2013). NFkappaB in colorectal cancer. J Mol Med (Berl) 91, 1029-1037. Vanhaesebroeck, B., Leevers, S.J., Panayotou, G., and Waterfield, M.D. (1997). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22, 267-272. Vazquez, C.L., and Colombo, M.I. (2009). Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 452, 85-95. Vogl, D.T., Stadtmauer, E.A., Tan, K.S., Heitjan, D.F., Davis, L.E., Pontiggia, L., Rangwala, R., Piao, S., Chang, Y.C., Scott, E.C., et al. (2014). Combined autophagy and proteasome inhibition: A phase trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10, 1380-1390. 150 Wang, Z., Hu, W., Zhang, J.L., Wu, X.H., and Zhou, H.J. (2012). Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2, 103-112. Wang, Z., Qiu, J., Guo, T.B., Liu, A., Wang, Y., Li, Y., and Zhang, J.Z. (2007). Anti-inflammatory properties and regulatory mechanism of a novel derivative of artemisinin in experimental autoimmune encephalomyelitis. J Immunol 179, 5958-5965. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N., and Rubinsztein, D.C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278, 25009-25013. Wei, H., Wang, C., Croce, C.M., and Guan, J.L. (2014). p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev 28, 12041216. Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., and Guan, J.L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25, 1510-1527. Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. Embo J 29, 1792-1802. Weis, S.M., and Cheresh, D.A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359-1370. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12, 401-410. White, E., and DiPaola, R.S. (2009). The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15, 5308-5316. Winterbourn, C.C., and Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27, 322-328. Woerdenbag, H.J., Moskal, T.A., Pras, N., Malingre, T.M., el-Feraly, F.S., Kampinga, H.H., and Konings, A.W. (1993). Cytotoxicity of artemisininrelated endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56, 849-856. Wu, K.J., Polack, A., and Dalla-Favera, R. (1999). Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676-679. Wu, Y.T., Tan, H.L., Huang, Q., Kim, Y.S., Pan, N., Ong, W.Y., Liu, Z.G., Ong, C.N., and Shen, H.M. (2008). Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4, 457-466. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109. 151 Xu, H., He, Y., Yang, X., Liang, L., Zhan, Z., Ye, Y., Lian, F., and Sun, L. (2007). Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 46, 920-926. Xu, Q., Li, Z.X., Peng, H.Q., Sun, Z.W., Cheng, R.L., Ye, Z.M., and Li, W.X. (2011). Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ Sci B 12, 247-255. Yamada, Y., Suzuki, N.N., Hanada, T., Ichimura, Y., Kumeta, H., Fujioka, Y., Ohsumi, Y., and Inagaki, F. (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282, 8036-8043. Yamamoto, Y., and Gaynor, R.B. (2001). Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107, 135-142. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell'antonio, G., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev 25, 717-729. Yang, Z., Ding, J., Yang, C., Gao, Y., Li, X., Chen, X., Peng, Y., Fang, J., and Xiao, S. (2012). Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Curr Med Chem 19, 4541-4551. Yang, Z., Huang, J., Geng, J., Nair, U., and Klionsky, D.J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17, 5094-5104. Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991). Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266, 17707-17712. Young, I.S., and Woodside, J.V. (2001). Antioxidants in health and disease. J Clin Pathol 54, 176-186. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., and Simon, H.U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8, 1124-1132. Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., and Lenardo, M. (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A 103, 4952-4957. 152 Yu, W.H., Cuervo, A.M., Kumar, A., Peterhoff, C.M., Schmidt, S.D., Lee, J.H., Mohan, P.S., Mercken, M., Farmery, M.R., Tjernberg, L.O., et al. (2005). Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 171, 87-98. Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 1507715082. Zhang, D.L., Ghosh, M.C., and Rouault, T.A. (2014a). The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 5, 124. Zhang, H., Cicchetti, G., Onda, H., Koon, H.B., Asrican, K., Bajraszewski, N., Vazquez, F., Carpenter, C.L., and Kwiatkowski, D.J. (2003a). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112, 1223-1233. Zhang, S., and Gerhard, G.S. (2009). Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One 4, e7472. Zhang, Y., Gao, X., Saucedo, L.J., Ru, B., Edgar, B.A., and Pan, D. (2003b). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5, 578-581. Zhang, Y., Nicholatos, J., Dreier, J.R., Ricoult, S.J., Widenmaier, S.B., Hotamisligil, G.S., Kwiatkowski, D.J., and Manning, B.D. (2014b). Coordinated regulation of protein synthesis and degradation by mTORC1. Nature. Zhao, Y., Jiang, W., Li, B., Yao, Q., Dong, J., Cen, Y., Pan, X., Li, J., Zheng, J., Pang, X., et al. (2011). Artesunate enhances radiosensitivity of human nonsmall cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol 11, 2039-2046. Zhou, C., Pan, W., Wang, X.P., and Chen, T.S. (2012). Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol 227, 3778-3786. Zhou, H.J., Wang, W.Q., Wu, G.D., Lee, J., and Li, A. (2007). Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol 47, 131-138. Zhou, J., Tan, S.H., Codogno, P., and Shen, H.M. (2013a). Dual suppressive effect of MTORC1 on autophagy: tame the dragon by shackling both the head and the tail. Autophagy 9, 803-805. Zhou, J., Tan, S.H., Nicolas, V., Bauvy, C., Yang, N.D., Zhang, J., Xue, Y., Codogno, P., and Shen, H.M. (2013b). Activation of lysosomal function in the 153 course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res 23, 508-523. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D.M. (2011a). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011b). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21-35. 154 [...]... of malaria (Sinclair et al., 2011) There are also several other derivatives of artemisinin including artemether, arteether and dihydroartemisinin (DHA) are also wildly used as anti-malaria drugs The endoperoxide bridges of artemisinins are believed to be responsible for the mechanism of action The successful identification of artemisinin and development of ART as the first-line drug for treatment of. .. responses of eosinophils, T and B lymphocytes, and mast cells, Cheng et al investigated the antiinflammatory effect of ART in ovalbumin (OVA)-induced inflammatory mice as well as in house dust mite induced mouse asthma model (Cheng et al., 2011) They found that ART inhibited the OVA-induced phosphorylation of Akt They further made use of primary human bronchial epithelial cells and found that EGF-induced... ovalbumin phagophore assembly site phosphate buffer saline phosphoinositide-dependent kinase phosphatidylethanolamine paraformaldehyde phosphoinositide 3- kinase protein kinase B protein kinase C proximity ligation assay quantitative real-time PCR regulatory-associated protein of mTOR rapamycin-insensitive companion of mTOR reactive oxygen species Beclin-1 interacting and cystein-rich containing S6 kinase... one clinical trial ongoing using ART in metastatic breast cancer (http://clinicaltrials.gov/ct2/show/NCT00764036) and the results are still pending Figure 1.2 Anti -cancer effects of ART 8 (i) Arrest of cell cycle and inhibition of cell proliferation One hallmark of cancer is its sustaining proliferative signaling (Hanahan and Weinberg, 2011) There are a number of studies showing the cell cycle arrest... of the endoperoxide bridge of artemisinins by ferrous iron results in carbon-centered free radicals production, which is essential for their anti-malarial activity (Eckstein-Ludwig et al., 2003; Klonis et al., 2013) The underlying mechanisms of the anti-malaria function of artemisinins have been extensively studied, including: (i) inhibition the PfATP6 of Plasmodium falciparum in Xenopus oocytes, the. .. endothelial growth factor xvii CHAPTER 1 INTRODUCTION 1 1.1 ARTESUNATE 1.1.1 Overview of artemisinin and artesunate Artemisinin, an active ingredient of a traditional Chinese medicinal plant Artemisia annua L (qinhao), has been widely used for treatment of fever and chills caused by malaria infections (Klayman, 1985) Artesunate (ART), a water soluble derivate of artemisinin, was found to be one of the. .. 2008), antiinflammatory (Wang et al., 2007; Xu et al., 2007), anti-allergic and asthmatic activities (Cheng et al., 2011) There are continuous efforts and increasing interests in uncovering the underlying mechanisms of the above functions 1.1.2.1 Anti-malaria As shown in Figure 1.1, the basic structure of artemisinin and its monomers including ART is a sesquiterpene lactone All of them contain an 3 endoperoxide... is the only mechanism that involves in 9 executing the cell death without any signature of apoptosis or necrosis, which will be discussed in detail later (Scarlatti et al., 2009) Generally, there are two main pathways initiating apoptosis: the extrinsic death pathway which initiates by binding of death receptor ligands to specific death receptors on the cell surface and the intrinsic pathway which initiates... suggesting the anti -cancer function of artemisinins, especially ART and DHA (Ho et al., 2014) Here we focus on the anti -cancer function of ART Up to date, the anti -cancer function of ART is mainly based on the following observations: (i) induction of cell cycle arrest (Longxi et al., 2011; Zhao et al., 2011), (ii) induction of cell death and sensitization to tumor necrosis factorrelated apoptosis-inducing... Gaynor, 2001) Therefore, inactivation of NF-κB leads to the repression of production of key proinflammatory cytokines of such as TNF-α, IL-1, IL-6, IL-12, reduction of the expression of enzymes such as nitric oxide synthase and inhibition of the activation of immunocompetent cells (Lawrence et al., 2001) It has been suggested that ART is capable of suppressing TNF-α induced production of IL-1, IL-6 . THE MECHANISTIC STUDIES OF THE ANTICANCER POTENTIAL OF ARTESUNATE IN HUMAN CANCER CELLS YANG NAIDI (M.Sc. Zhejiang University, P.R. China) A THESIS SUBMITTED FOR THE DEGREE OF. Singapore. (Silver Best Poster Award) vii THE MECHANISTIC STUDIES OF THE ANTICANCER POTENTIAL OF ARTESUNATE IN HUMAN CANCER CELLS Table of Contents DECLARATION ii ACKNOWLEDGEMENTS iii PUBLICATION. ART induced autophagy in human cervical cancer HeLa cells evidenced by the increase of autophagic flux. In the search of the mechanisms for ART-induced autophagy, we found that ART inhibits mechanistic/ mammalian