1. Trang chủ
  2. » Luận Văn - Báo Cáo

Cellulose ester based membranes for osmotic processes

206 588 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 206
Dung lượng 3,98 MB

Nội dung

CELLULOSE ESTER BASED MEMBRANES FOR OSMOTIC PROCESSES ONG RUI CHIN NATIONAL UNIVERSITY OF SINGAPORE 2014 CELLULOSE ESTER BASED MEMBRANES FOR OSMOTIC PROCESSES ONG RUI CHIN (B. Eng.) National University of Singapore A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2014 Declaration I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ____________________________ Ong Rui Chin March 2014 i ACKNOWLEDGEMENT First of all, I would like to extend my utmost gratitude and appreciation to my supervisor, Professor Chung Tai-Shung from the Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS). His continuous encouragement, patience and guidance have been the very essential throughout my PhD journey. He is never hesitant in sharing knowledge and always inspires me with his enthusiasm and passion towards membrane research. I would also like to sincerely thank my PhD thesis advisory committee members, Professor Ting Yen Peng and Professor Chen Shing Bor for their valuable suggestions on the areas for improvement throughout my candidature in NUS. I would also like to thank Professor Donald R. Paul, for sharing his professional knowledge on the fundamental polymer science and membrane transport. Thanks are also due to Professor Y. C. Jean and Dr. H. Chen for sharing their knowledge in PALS analyses for polymeric membranes which are very essential in most of my work. I would like express my gratitude towards Eastman Chemical Company for the research funding through the project titled “Investigation of Novel Materials for the Forward Osmosis Process” (grant number R-279-000-315-597) and synthesizing the cellulose esters which are the core of my PhD work. Special thanks are due to Dr. Bradley Helmer and Dr. Jos de Wit for their kind advice in my research work. Thanks are also due to the Singapore National Research Foundation (NRF) (grant number R-279-000-336-281 and R-279-000-339-281) for the financial support. ii I would also like to convey my personal appreciation to all former and current members of our membrane research group, especially Dr. Wang Kaiyu, Dr. Teoh May May, Dr. Wang Yan, Dr. Zhang Sui, Dr. Li Xue and Dr. Natalia Widjojo for sharing their valuable knowledge without any reservation. Special thanks are due to Ms. Zhong Peishan and Ms. Fu Xiu Zhu for their valuable comments on my PhD dissertation. I would also like to thank Ms. Nguyen Thi Mai Thao, Ms. Li Xiaoman, Mr. Khoo Yong Seng, Tony, Ms. Liang Jiayue and Ms. Lin Xiaochen for the assistance given to me. My sincere thanks are due to all staff members in the Department of Chemical and Biomolecular Engineering, especially Mr. Ng Kim Poi, Mr. Chia Pai Ann and Mr. Liu Zhicheng. My gratitude is also extended to Mr. Lim Poh Chong at Institute of Material Research and Engineering (IMRE) for his help on XRD analysis. Last but not least, I would like to thank my parents, sisters and husband for their unconditional love and support. iii TABLE OF CONTENTS ACKNOWLEDGEMENT ii TABLE OF CONTENTS iv SUMMARY ix LIST OF TABLES . xiv LIST OF FIGURES . xvi NOMENCLATURE . xxi Chapter Introduction . 1.1 An Overview of Osmosis and Osmotic Pressure 1.2 Classifications of Osmotic Processes . 1.3 The Development and Applications of Forward Osmosis . 1.3.1 Desalination . 1.3.2 Liquid food concentration and pharmaceutical applications . 1.3.3 Other applications 1.4 Challenges in Forward Osmosis 11 1.4.1 Concentration polarization . 11 1.4.2 Reverse solute diffusion . 13 1.4.3 Development of draw solutes . 14 1.5 Membranes for Forward Osmosis . 18 1.5.1 Asymmetric membranes with integrally-grown selective layer by phase inversion . 21 1.5.2 Composite membranes . 25 iv 1.6 Cellulose Esters . 34 1.7 Mass Transport in Forward Osmosis . 37 1.7.1 External concentration polarization . 38 1.7.2 Internal concentration polarization 40 1.7.3 Solute reverse flux . 43 1.8 Research Objectives and Thesis Organization . 43 Chapter Formation of Cellulose Triacetate Forward Osmosis Membranes 47 2.1 Introduction . 47 2.2 Experimental . 48 2.2.1 Materials 48 2.2.2 Membrane fabrication 49 2.2.3 Positron annihilation lifetime spectroscopy (PALS) . 50 2.2.4 Molecular simulations by Material Studio . 51 2.2.5 Fourier transform infrared spectroscopy (FTIR) analysis . 52 2.2.6 Mean pore size and pore size distribution 52 2.2.7 Forward osmosis tests and salt rejection tests 53 2.3 Results and Discussion 55 2.3.1 Morphology of CTA membranes . 55 2.3.2 Membrane morphology characterized by PAS 57 2.3.3 Effects on solvent systems on the CTA membrane morphology . 62 2.3.4 Mean pore size and pore size distribution 69 2.4 Conclusions 77 Chapter Novel Cellulose Esters for Forward Osmosis Membranes . 79 v 3.1 Introduction . 79 3.2 Experimental . 82 3.2.1 Materials 82 3.2.2 Membrane preparation . 85 3.2.3 Morphological studies 86 3.2.4 Fractional free volume calculations and density determination 86 3.2.5 Pure water permeability, salt rejection and salt permeability tests 87 3.2.6 Forward osmosis tests 87 3.3 Results and Discussion 88 3.3.1 Viscosity curves and critical concentration evaluation 88 3.3.2 Membrane morphology 90 3.3.3 Performance of cellulose ester membranes 94 3.3.4 Effects of DS and functional group on membranes’ FO performance 97 3.3.5 FO performance of CAB_M membranes at different draw solution concentrations . 105 3.4 Conclusion . 107 Chapter Free Volume, Fundamental Water and Salt transport Properties of Novel Cellulose Esters and Their Relationships to the Functional Groups . 108 4.1 Introduction . 108 4.2. Experimental 111 4.2.1. Chemicals 111 4.2.2 Dense film preparation . 112 4.2.3 Positron annihilation lifetime spectroscopy (PALS) . 113 4.2.4 Equilibrium water uptake and salt partition coefficient measurements . 115 vi 4.2.5 Pure water and salt permeability measurements 116 4.2.6 Water and salt diffusivity . 117 4.2.7 Water/salt selectivity 117 4.3 Results and discussion 118 4.3.1 Free volumes of cellulose ester films . 118 4.3.2 Equilibrium water uptake, salt partition coefficient, Ks and solubility parameters . 122 4.3.3 Permeability and diffusivity characteristics of various cellulose esters 126 4.3.4 Solubility selectivity, αK, and diffusivity selectivity, αD . 128 4.4 Conclusions 132 Chapter Novel Hydrophilic Cellulose Ester Supported Thin Film Composite Forward Osmosis Membranes . 133 5.1 Introduction . 133 5.2 Materials and Methods . 135 5.2.1 Fabrication of cellulose ester membrane supports . 135 5.2.2 Interfacial polymerization and post-treatment methods of flatsheet TFC-FO membranes 137 5.2.3 Characterizations of cellulose ester membrane supports and TFC-FO membranes 138 5.2.4 Forward osmosis tests 139 5.2.5 Determination of transport and structural parameters . 139 5.3 Results and Discussion 140 5.3.1 Characteristics of cellulose ester membrane supports . 140 5.3.2 Characteristics of TFC-FO membranes subjected to various post-treatment methods . 143 vii 5.3.3 Forward osmosis performance of TFC-FO membranes 144 5.3.4 PALS analyses . 147 5.3.5 Seawater desalination . 148 5.3.6 Performance comparisons with existing TFC-FO membranes reported in literatures . 150 5.4 Conclusions 152 Chapter Conclusions 153 REFERENCES 155 A LIST OF JOURNAL PUBLICATIONS . 182 viii [114] J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute, Journal of Membrane Science, 396 (2012) 92-100. [115] J. Su, S. Zhang, H. Chen, H. Chen, Y.C. Jean, T.-S. Chung, Effects of annealing on the microstructure and performance of cellulose acetate membranes for pressure-retarded osmosis processes, Journal of Membrane Science, 364 (2010) 344-353. [116] K.Y. Wang, T.-S. Chung, J.-J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, Journal of Membrane Science, 300 (2007) 6-12. [117] Q. Yang, K.Y. Wang, T.-S. Chung, Dual-Layer Hollow Fibers with Enhanced Flux As Novel Forward Osmosis Membranes for Water Production, Environmental science & technology, 43 (2009) 2800-2805. [118] M. Flanagan, R. Hausman, B. Digman, I. Escobar, M. Coleman, T. Chung, Surface functionalization of polybenzimidazole membranes to increase hydrophilicity and charge, Mod. Appl. Membr. Sci. Technol, 18 (2011) 303-321. [119] R. Hausman, B. Digman, I.C. Escobar, M. Coleman, T.-S. Chung, Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity, Journal of membrane science, 363 (2010) 195-203. [120] M.F. Flanagan, I.C. Escobar, Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis, Journal of Membrane Science, 434 (2013) 85-92. [121] L. Setiawan, R. Wang, K. Li, A.G. Fane, Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer, Journal of Membrane Science, 369 (2011) 196-205. 167 [122] L. Setiawan, R. Wang, L. Shi, K. Li, A.G. Fane, Novel dual-layer hollow fiber membranes applied for forward osmosis process, Journal of Membrane Science, 421-422 (2012) 238-246. [123] L. Setiawan, R. Wang, K. Li, A.G. Fane, Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer, Journal of Membrane Science, 394-395 (2012) 80-88. [124] C. Qiu, L. Setiawan, R. Wang, C.Y. Tang, A.G. Fane, High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate, Desalination, 287 (2012) 266-270. [125] P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, Journal of Polymer Science, 40 (1959) 299-327. [126] R. Beaman, P.W. Morgan, C. Koller, E.L. Wittbecker, E. Magat, Interfacial polycondensation. III. Polyamides, Journal of Polymer Science, 40 (1959) 329-336. [127] J.E. Cadotte, Reverse osmosis membrane, US Patent, 4,039,440 (1981). [128] J. Cadotte, R. Petersen, R. Larson, E. Erickson, A new thin-film composite seawater reverse osmosis membrane, Desalination, 32 (1980) 25-31. [129] J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, US Patent, 4,277,344 (1981). [130] J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, Journal of Membrane Science, 318 (2008) 458-466. [131] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environmental science & technology, 44 (2010) 3812-3818. 168 [132] R. Wang, L. Shi, C.Y. Tang, S. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes, Journal of Membrane Science, 355 (2010) 158-167. [133] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, Journal of Membrane Science, 367 (2011) 340-352. [134] P.S. Zhong, N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater, Journal of Membrane Science, 417-418 (2012) 52-60. [135] N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan, A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO), Chemical Engineering Journal, 220 (2013) 15-23. [136] G. Han, T.-S. Chung, M. Toriida, S. Tamai, Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination, Journal of Membrane Science, 423424 (2012) 543-555. [137] X. Li, K.Y. Wang, B. Helmer, T.-S. Chung, Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes, Industrial & Engineering Chemistry Research, 51 (2012) 1003910050. [138] I.L. Alsvik, K.R. Zodrow, M. Elimelech, M.-B. Hägg, Polyamide formation on a cellulose triacetate support for osmotic membranes: Effect of linking molecules on membrane performance, Desalination, 312 (2013) 2-9. 169 [139] J. Han, Y.H. Cho, H. Kong, S. Han, H.B. Park, Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications, Journal of Membrane Science, 428 (2013) 533-545. [140] P. Sukitpaneenit, T.S. Chung, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environmental science & technology, 46 (2012) 7358-7365. [141] S.P. Sun, T.S. Chung, Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation, Environmental science & technology, 47 (2013) 13167-13174. [142] N.-N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, Journal of Membrane Science, 385-386 (2011) 10-19. [143] N.N. Bui, J.R. McCutcheon, Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis, Environmental Science and Technology, 47 (2013) 1761-1769. [144] X. Song, Z. Liu, D.D. Sun, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Advanced materials, 23 (2011) 3256-3260. [145] É. Lojou, P. Bianco, Buildup of polyelectrolyte-protein multilayer assemblies on gold electrodes. Role of the hydrophobic effect, Langmuir : the ACS journal of surfaces and colloids, 20 (2004) 748-755. 170 [146] P.M. Johnson, J. Yoon, J.Y. Kelly, J.A. Howarter, C.M. Stafford, Molecular layer‐by‐ layer deposition of highly crosslinked polyamide films, Journal of Polymer Science Part B: Polymer Physics, 50 (2012) 168-173. [147] G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 277 (1997) 1232-1237. [148] C. Qiu, S. Qi, C.Y. Tang, Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes, Journal of Membrane Science, 381 (2011) 74-80. [149] Q. Saren, C.Q. Qiu, C.Y. Tang, Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly, Environmental science & technology, 45 (2011) 5201-5208. [150] Y. Li, X. Wang, J. Sun, Layer-by-layer assembly for rapid fabrication of thick polymeric films, Chemical Society Reviews, 41 (2012) 5998-6009. [151] S. Qi, C.Q. Qiu, Y. Zhao, C.Y. Tang, Double-skinned forward osmosis membranes based on layer-by-layer assembly—FO performance and fouling behavior, Journal of Membrane Science, 405-406 (2012) 20-29. [152] P.H.H. Duong, J. Zuo, T.-S. Chung, Highly crosslinked layer-by-layer polyelectrolyte FO membranes: Understanding effects of salt concentration and deposition time on FO performance, Journal of Membrane Science, 427 (2013) 411-421. [153] Y. Kaufman, A. Berman, V. Freger, Supported lipid bilayer membranes for water purification by reverse osmosis, Langmuir : the ACS journal of surfaces and colloids, 26 (2010) 7388-7395. 171 [154] J.-L. Rigaud, B. Pitard, D. Levy, Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins, Biochimica et Biophysica Acta (BBA)Bioenergetics, 1231 (1995) 223-246. [155] K.L. Weirich, J.N. Israelachvili, D.K. Fygenson, Bilayer edges catalyze supported lipid bilayer formation, Biophysical journal, 98 (2010) 85-92. [156] H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability, Macromolecules, 35 (2002) 8203-8208. [157] J. Dorn, S. Belegrinou, M. Kreiter, E.K. Sinner, W. Meier, Planar block copolymer membranes by vesicle spreading, Macromolecular bioscience, 11 (2011) 514-525. [158] E. Rakhmatullina, W. Meier, Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles, Langmuir : the ACS journal of surfaces and colloids, 24 (2008) 6254-6261. [159] K. Pszon-Bartosz, J.S. Hansen, K.B. Stibius, J.S. Groth, J. Emnéus, O. Geschke, C. HélixNielsen, Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter, Biochemical and biophysical research communications, 406 (2011) 96-100. [160] J.S. Hansen, M. Perry, J. Vogel, J.S. Groth, T. Vissing, M.S. Larsen, O. Geschke, J. Emneús, H. Bohr, C.H. Nielsen, Large scale biomimetic membrane arrays, Analytical and bioanalytical chemistry, 395 (2009) 719-727. [161] J.S. Hansen, M. Perry, J. Vogel, T. Vissing, C.R. Hansen, O. Geschke, J. Emnéus, C. Nielsen, Development of an automation technique for the establishment of functional lipid bilayer arrays, Journal of Micromechanics and Microengineering, 19 (2009) 025014. 172 [162] J. Vogel, M. Perry, J.S. Hansen, P. Bolinger, C. Nielsen, O. Geschke, A support structure for biomimetic applications, Journal of Micromechanics and Microengineering, 19 (2009) 025026. [163] M. Roerdink Lander, S. Ibragimova, C. Rein, J. Vogel, K. Stibius, O. Geschke, M. Perry, C. Hélix-Nielsen, Biomimetic membrane arrays on cast hydrogel supports, Langmuir : the ACS journal of surfaces and colloids, 27 (2011) 7002-7007. [164] P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration, Journal of Membrane Science, 407-408 (2012) 27-33. [165] X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, T. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation, Colloids and surfaces. B, Biointerfaces, 94 (2012) 333-340. [166] H. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M. Hong, W. Meier, Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z, Small, (2012) 1185-1190, 1125. [167] G. Sun, T.-S. Chung, K. Jeyaseelan, A. Armugam, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane, RSC Advances, (2013) 473. [168] Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Helix-Nielsen, R. Wang, X. Hu, A.G. Fane, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, Journal of Membrane Science, 423 (2012) 422-428. 173 [169] H.L. Wang, T.-S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, H.H.P. Duong, F. Fu, H. Seah, J. Yang, M. Hong, Mechanically robust and highly permeable AquaporinZ biomimetic membranes, Journal of Membrane Science, 434 (2013) 130-136. [170] P. Zugenmaier, Cellulose, Springer, 2008. [171] F. Aftalion, A history of the international chemical industry, Chemical Heritage Foundation, 2001. [172] D. Stoye, W. Freitag, G. Beuschel, Resins for coatings: chemistry, properties, and applications, Hanser Verlag, 1996. [173] C.J. Malm, C.R. Fordyce, H.A. Tanner, Properties of Cellulose Esters of Acetic, Propionic, and Butyric Acids, Industrial & Engineering Chemistry, 34 (1942) 430-435. [174] S. Zhang, R. Zhang, Y.C. Jean, D.R. Paul, T.-S. Chung, Cellulose esters for forward osmosis: Characterization of water and salt transport properties and free volume, Polymer, 53 (2012) 2664-2672. [175] J S. Loeb, S. Sourirajan, High flow porous membranes for separating water from saline solutions, US Patent 3,133,132 (1964). [176] Q. Ge, J. Su, T. S. Chung, G. Amy, Hydrophilic superparamagenetic nanoparticles: Synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res. 50 (2011) 382 – 388. [177] J. R. McCutcheon, R. L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination 174 (2005) – 11. [178] J. R. McCutcheon, R. L. McGinnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance, J. Membr. Sci. 278 (2006) 114 – 123. 174 [179] R. L. McGinnis, M. Elimelech, Energy requirements of ammonia-carbon dioxide forward osmosis desalination, Desalination 207 (2007) 370 – 382 [180] S. Zhang, K. Y. Wang, T. S. Chung, Y. C. Jean, H. Chen, Molecular design of cellulose ester-based forward osmosis membrane for desalination, Chem. Eng. Sci. 66 (2011) 2008 – 2018. [181] H. Chen, W. S. Hung, C. H. Lo, S. H. Huang, M. L. Cheng, G. Liu, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y. C. Jean, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules 40 (2007) 7542 – 7577. [182] H. Chen, W. S. Hung, C. H. Lo, S. H. Huang, M. L. Cheng, G. Liu, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, R. Suzuki, T. Ohdaira, N. Oshima, Y. C. Jean, Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization, Macromolecules 40 (2007) 7542 – 7577. [183] Y. C. Jean, W. S. Hung, C. H. Lo, H. Chen, G. Liu, L. Chakka, M. L. Cheng, D. Nanda, K. L. Tung, S. H. Huang, K. R. Lee, J. Y. Lai, Y. M. Sun, C. C. Hu, C. C. Yu, Desalination 234 (2008), 89 – 98. [184] K. L. Tung, Y. C. Jean, D. Nanda, K. R. Lee, W. S. Hung, C. H. Lo, J. Y. Lai, Characterization of multilayer nanofiltration membranes using positron annihilation spectroscopy, J. Membr. Sci. 343 (2009) 147 – 156. [185] C. H. Lo, J. K. Huang, W. S. Hung, S. H. Huang, M. D. Guzman, V. Rouessac, C. L. Li, C. C. Hu, K. R. Lee, J. Y. Lai, Investigation on the variation in the fine structure of plasmapolymerized composite membrane by positron annihilation spectroscopy, J. Membr. Sci. 337 (2009) 297 – 303. 175 [186] Y. C. Jean, Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers, Microchem. J. 42 (1990), 72 – 102. [187] Y. C. Jean, P. E. Mallon, D. M. Schrader, yester and applications of positron and positronium chemistry, World Sci. Publishing (2003), Singapore. [188] S. J. Tao, Positronium annihilation in molecular substances, J. Chem. Phys. 56 (1972), 5499 – 5510. [189] K.Y. Wang, T. S. Chung, The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin, J. Membr. Sci. 247 (2005), 37 – 50. [190] Q. Yang, T. S. Chung, M. Weber, Microscopic behavior of polyvinylpyrrolidone hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration, J. Membr. Sci. 326 (2009), 322 – 331. [191] C. R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. (1955) 264 – 270. [192] F. M. Barton, CRC handbook of solubility parameters and other cohesion parameters, CRC Press, Baca Raton, FL, 1983. [193] T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Baca Raton, FL, 1993. [194] R. E. Kesting, A. K. Fritzsche, M. K. Murphy, C. A. Cruse, A. C. Handermann, R. F. Malon et al., The second-generation polysulfone gas-separation membrane. I. The use of Lewis acid: base complexes as transient templates to increase free volume, J. Appl. Polym. Sci. 40 (1990) 1557 – 1574. [195] E. Lutskii, N. N. Ivanova, Molecular Kerr constants and structures of complexes of carboxylic acids, J. Struct. Chem. (1968) 266 – 267. 176 [196] J. W. Anthonsen, Raman investigations of charge-transfer complexes of dioxane with iodine, bromine, chlorine, iodine bromide, iodine chloride and bromine chloride, Spec. Acta AMol. Biomol. Spec. 32 (1976) 963 – 970. [197] Y. K. Sze, D. E. Irish, Vibrational spectral studies of ion-ion and ion-solvent interactions. II. Zinc nitrate in water/dioxane mixtures, J. Solution Chem. (1978) 417 – 432. [198] S.E. Skilhagen, J.E. Dugstad, R.J. Aaberg, Osmotic power — power production based on the osmotic pressure difference between waters with varying salt gradients, Desalination, 220 (2008) 476-482. [199] K. Gerstandt, K.V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, 224 (2008) 64-70. [200] J. Kessler, C. Moody, Drinking water from sea water by forward osmosis, Desalination, 18 (1976) 297-306. [201] R. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile, (1954). [202] R.S. Norman, Water salination: a source of energy, Science, 186 (1974) 350-352. [203] O. Levenspiel, N. de Nevers, The Osmotic Pump In principle, but probably not in practice, fresh water can be extracted from our oceans for no expenditure of energy, Science, 183 (1974) 157-160. [204] S. Loeb, F. Van Hessen, J. Levi, M. Ventura, The Osmotic power plant, in: 11th Intersociety Energy Conversion Engineering Conference, 1976, pp. 51-57. [205] W. Fang, R. Wang, S. Chou, L. Setiawan, A.G. Fane, Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane 177 properties of anti-scaling and anti-internal concentration polarization, Journal of Membrane Science, 394-395 (2012) 140-150. [206] J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flatsheet thin film composite forward osmosis membranes, Journal of Membrane Science, 372 (2011) 292-302. [207] N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis, Journal of Membrane Science, 405-406 (2012) 149-157. [208] A. Sagle, B. Freeman, Fundamentals of membranes for water treatment, the future of desalination in Texas, (2004) 137-154. [209] T.S. Chung, S.K. Teoh, X. Hu, Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes, Journal of membrane science, 133 (1997) 161-175. [210] J. Park, D. Paul, Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method, Journal of Membrane Science, 125 (1997) 23-39. [211] E. Saljoughi, M. Sadrzadeh, T. Mohammadi, Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes, Journal of Membrane Science, 326 (2009) 627-634. [212] H. Yasuda, A. Peterlin, C.K. Colton, K.A. Smith, E.W. Merrill, Permeability of Solutes through Hydrated Polymer Membranes. Part 3. Theoretical Background for the Selectivity of Dialysis Membranes, Die Makromolekulare Chemie, 126 (1969) 177-186. [213] S. Rosenbaum, H.I. Mahon, O. Cotton, Permeation of Water and Sodium Chloride through Cellulose Acetate, Journal of Applied Polymer Science, 11 (1967) 2041-2065. 178 [214] D.F. Stamatialis, C.R. Dias, M.N. de Pinho, Structure and Permeation Properties of Cellulose Esters Asymmetric Membranes, Biomacromolecules, (2000) 564-570. [215] S. Zhang, R. Zhang, Y.C. Jean, D.R. Paul, T.-S. Chung, Cellulose esters for forward osmosis: Characterization of water and salt transport properties and free volume, Polymer, 53 (2012) 2664-2672. [216] R. Hodge, T. Bastow, G. Edward, G. Simon, A. Hill, Free volume and the mechanism of plasticization in water-swollen poly (vinyl alcohol), Macromolecules, 29 (1996) 8137-8143. [217] Edgar KJ. In: Mark HF, editor. Encyclopedia of Polymer Science and Technology 4th ed, vol. 9. Wiley. pp. 129. [218] C. Trotzig, S. Abrahmsén-Alami, F.H. Maurer, Structure and mobility in water plasticized poly (ethylene oxide), Polymer, 48 (2007) 3294-3305. [219] M. Han, D. Bhattacharyya, Characterization of reverse osmosis cellulose acetate membranes by gas adsorption method: effect of casting variables and chlorine damage, Journal of membrane science, 62 (1991) 325-346. [220] M.-J. Han, D. Bhattacharyya, Thermal annealing effect on cellulose acetate reverse osmosis membrane structure, Desalination, 101 (1995) 195-200. [221] H.K. Lonsdale, U. Merten, R.L. Riley, Transport Properties of Cellulose Acetate Osmotic Membranes, Journal of Applied Polymer Science, (1965) 1341-&. [222] M.E. Heyde, C.R. Peters, J.E. Anderson, Factors Influencing Reverse-Osmosis Rejection of Inorganic Solutes from Aqueous-Solution, Journal of colloid and interface science, 50 (1975) 467-487. [223] J.E. Anderson, S.J. Hoffman, C.R. Peters, Factors Influencing Reverse-Osmosis Rejection of Organic Solutes from Aqueous-Solution, Journal of Physical Chemistry, 76 (1972) 4006-4011. 179 [224] W. Xie, H. Ju, G.M. Geise, B.D. Freeman, J.I. Mardel, A.J. Hill, J.E. McGrath, Effect of Free Volume on Water and Salt Transport Properties in Directly Copolymerized Disulfonated Poly(arylene ether sulfone) Random Copolymers, Macromolecules, 44 (2011) 4428-4438. [225] R.A. Pethrick, Positron annihilation—a probe for nanoscale voids and free volume?, Progress in Polymer Science, 22 (1997) 1-47. [226] G.M. Shi, H. Chen, Y. Jean, T.S. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54 (2013) 774-783. [227] J. Wijmans, R. Baker, The solution-diffusion model: a review, Journal of membrane science, 107 (1995) 1-21. [228] U. Merten, H.K. Lonsdale, R.L. Riley, K.D. Vos, Performance of cellulose acetate membranes in sea water desalination, Desalination, (1967) 353-358. [229] L. Shi, S.R. Chou, R. Wang, W.X. Fang, C.Y. Tang, A.G. Fane, Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes, Journal of Membrane Science, 382 (2011) 116-123. [230] P. Zhong, X. Fu, T.S. Chung, M. Weber, C. Maletzko, Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates, Environmental science & technology, 47 (2013) 7430-7436. [231] X. Li, T.-S. Chung, Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation, Applied Energy, 114 (2014) 600-610. [232] M.A. Kuehne, R.Q. Song, N.N. Li, R.J. Petersen, Flux enhancement in TFC RO membranes, Environmental Progress, 20 (2001) 23-26. 180 [233] A. Tiraferri, N.Y. Yip, A.P. Straub, S. Romero-Vargas Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, Journal of Membrane Science, 444 (2013) 523-538. [234] S. Zhao, L. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, Journal of Membrane Science, 379 (2011) 459-467. [235] J. Ren, J.R. McCutcheon, A new commercial thin film composite membrane for forward osmosis, Desalination, (2013). [236] N.K. Saha, S.V. Joshi, Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type, Journal of Membrane Science, 342 (2009) 60-69. [237] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, Journal of Membrane Science, 367 (2011) 340-352. 181 A LIST OF JOURNAL PUBLICATIONS 1. K.Y. Wang, R.C. Ong, T.S. Chung, Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer, Ind. Eng. Chem. Res. 49 (2010) 4824 – 4831. 2. R.C. Ong, T.-S. Chung, Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis, Journal of Membrane Science, 394-395 (2012) 230-240. 3. R.C. Ong, T.-S. Chung, B.J. Helmer, J.S. de Wit, Novel cellulose esters for forward osmosis membranes, Industrial & Engineering Chemistry Research, 51 (2012) 16135-16145. 4. R.C. Ong, T.-S. Chung, B.J. Helmer, J.S. de Wit, Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters, Polymer, 54 (2013) 4560-4569. 5. R.C. Ong, T.-S. Chung, J.S. de Wit, B.J. Helmer, High performance thin film composite (TFC) forward osmosis (FO) membranes supported on highly porous novel cellulose ester substrates, submitted. 6. J. Su, J. Su, R.C. Ong, P. Wang, T.-S. Chung, B.J. Helmer, J.S. de Wit, Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO-MD hybrid system, AIChE Journal, 59 (2013) 1245-1254. 7. T.-S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Current Opinion in Chemical Engineering, (2012) 246-257. 182 [...]... especially for seawater desalination due to the high osmotic pressure of seawater In this chapter, the osmotic processes and the invention of various membranes for these processes will be introduced In addition, an overview of cellulose esters as materials for osmotic membranes will also be summarized in this chapter 1.2 Classifications of Osmotic Processes The concept of osmotic processes for water... this work, a hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was chosen to fabricate highly porous membrane supports for flat-sheet thin film composite FO (TFC-FO) membranes The polyamide selective layer is formed by interfacial polymerization The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester groups clearly surpasses... decades ago [8-12] In osmotic processes, membranes serve as the core that enables the separation of water from solution mixtures by the rejection of solutes Membrane based osmotic processes can be categorized into three categories: (1) Reverse Osmosis (RO), (2) Forward Osmosis (FO), and (3) Pressure Retarded Osmosis (PRO) Among these processes, RO and FO are studied extensively for their applications... permeation Highly hydrophobic cellulose esters are unable to form selective layers without defects under normal casting conditions due to rapid phase inversion For further understanding on the fundamental properties of various cellulose esters, transport properties including salt and water partition coefficients, permeability and diffusivity of various newly synthesized cellulose esters were evaluated in... butyryl (Bu) functional groups of cellulose esters used in this study 83 Table 3.2 Critical concentrations of cellulose esters in NMP and compositions of casting solutions 89 Table 3.3 Pure water permeability, A (LMH bar-1), salt permeability, B (LMH), salt rejection, Rs at 10 bar 94 Table 3.4 FO performance of cellulose ester membranes 96 xiv Table 3.5... PWP of Cellulose Ester Membrane Supports 141 Table 5.2 PRO and FO Performance of TFC-FO Membranes using 1.0 M NaCl Draw Solution 144 Table 5.3 The transport parameters A, B and the structural parameter S of TFC-O-II membranes, calculated by the Excel -based error minimization algorithm developed by Tiraferri et al [233] The related coefficients of determination, R2 for both... indicates bottom layer facing draw solution 76 xvii Figure 3.1 Map of design strategy for novel cellulose esters as a function of hydrophilic DS(OH) vs the ratio of hydrophobic DS(Pr) for CAP or DS(Bu) for CAB to the total DS of bulky side groups 84 Figure 3.2 Viscosity curves of cellulose esters as a function of polymer concentration 88 in NMP solutions at a shear rate of 10... (MWCO) of CTA membranes 70 Table 2.6 FO performance of CTA membranes before annealing Draw solution: 2M NaCl, feed: DI water 72 Table 2.7 FO performance of CTA membranes after annealing Both top layer faces draw solution (DS) and bottom layer faces DS orientations were tested Draw solution: 2M NaCl, feed: DI water 74 Table 2.8 Annealed CTA membranes rejections... that leads to significant differences in the as-cast membrane morphology x Subsequently, a wide range of cellulose esters were newly synthesized and studied for their potential as FO membrane materials Synthesis and evaluation of novel cellulose esters with a range of chemical compositions targeted for forward osmosis (FO) membrane fabrication have been carried out Preliminary studies on the effects of... recently for its potential to harvest energy over the salinity gradient between fresh and sea water Among these osmotic processes, FO for water separations will be the subject of interest for this dissertation This is due to the fact that the current state-of-art RO membranes and process have achieved a matured state where the energy consumption is approaching the theoretical minimum [13] Whereas for FO, . CELLULOSE ESTER BASED MEMBRANES FOR OSMOTIC PROCESSES ONG RUI CHIN NATIONAL UNIVERSITY OF SINGAPORE 2014 CELLULOSE ESTER BASED MEMBRANES FOR OSMOTIC PROCESSES. Characteristics of cellulose ester membrane supports 140 5.3.2 Characteristics of TFC-FO membranes subjected to various post-treatment methods 143 viii 5.3.3 Forward osmosis performance of TFC-FO membranes. cut off (MWCO) of CTA membranes 70 Table 2.6 FO performance of CTA membranes before annealing. Draw solution: 2M NaCl, feed: DI water. 72 Table 2.7 FO performance of CTA membranes after annealing.

Ngày đăng: 09/09/2015, 08:13

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w