1. Trang chủ
  2. » Luận Văn - Báo Cáo

TÓM TẮT LUẬN VĂN THẠC SĨ KỸ THUẬT ỨNG DỤNG MẠNG NƠ RON ĐIỀU KHIỂN CÁNH TAY MÁY

14 538 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,04 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP ***** NGUYỄN XUÂN QUANG ĐỀ TÀI ỨNG DỤNG MẠNG NƠ RON ĐIỀU KHIỂN CÁNH TAY MÁY Chuyên ngành: Kỹ thuật điều khiển và Tự động hóa TÓM TẮT LUẬN VĂN THẠC SĨ KỸ THUẬT Thái Nguyên – 2014 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP ***** NGUYỄN XUÂN QUANG ĐỀ TÀI ỨNG DỤNG MẠNG NƠ RON ĐIỀU KHIỂN CÁNH TAY MÁY Chuyên ngành: Kỹ thuật điều khiển và Tự động hóa Mã số: 6052 0216 TÓM TẮT LUẬN VĂN THẠC SĨ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC TS. NGUYỄN HOÀI NAM Thái Nguyên - 2014 Nhận xét: - Hệ thống ổn định. - Sai số xác lập nhỏ hơn 5%. - Bộ điều khiển hoạt động tốt trong phạm vi -50 0 đến 50 0 . KẾT LUẬN – KIẾN NGHỊ Kết luận: Nhận dạng được mô hình cánh tay máy một bậc tự do trong phòng thí nghiệm bằng mạng nơ-ron. Thiết kế bộ điều khiển nơ-ron theo mô hình mẫu cho cánh tay máy một bậc tự do. Viết được chương trình mô phỏng 2 chiều cho cánh tay máy một bậc tự do trong Matlab. Thiết kế và chế tạo thử nghiệm thành công cánh tay máy một bậc tự do, có thể làm mô hình thực nghiệm cho các phương pháp điều khiển khác. Chưa cài đặt được bộ điều khiển dùng mạng nơ-ron cho thiết bị thực trong Simulink (máy tính, Card Arduino 823). Đã cài đặt được bộ điều khiển PID cho thiết bị thực trong Simulink và thực hiện điều khiển thời gian thực cho cánh tay máy một bậc tự do cho kết quả kiểm chứng đạt chất lượng điều khiển khá tốt. Hệ thống mô hình làm việc được. Kiến nghị: Do quá trình nghiên cứu chế tạo mô hình thử nghiệm cánh tay máy một bậc tự do chiếm nhiều thời gian nên công việc ứng dụng bộ điều khiển chạy thử nghiệm trên mô hình thực đạt kết quả chưa cao. Định hướng nghiên cứu trong thời gian tới tiếp tục cài đặt hệ thống kết nối mạng nơ-ron trong hệ thống Simulink. Nâng cao chất lượng của bộ điều khiển nơ-ron cho cánh tay máy một bậc tự do. 21 3.2.8. Điều khiển thực cho cánh tay máy một bậc tự do Sử dụng PID trong Matlab Simulink kết hợp với Card Arduino để điều khiển cánh tay máy. Hình 3.8. Sơ đồ bộ điều khiển cánh tay máy một bậc tự do. Kết quả điều khiển thực thu được như sau: - Tín hiệu màu đỏ là tín hiệu góc đặt cho cánh tay. - Tín hiệu màu xanh là tín hiệu góc thực được đo từ cánh tay máy như hình 3.9. Hình 3.9. Đồ thị kết quả điều khiển cánh tay một bậc tự do thực nghiệm. PHẦN MỞ ĐẦU Tổng quan về phương pháp điều khiển nơ-ron Mạng nơ-ron nhân tạo (Artificial Neural Networks) được xây dựng dựa trên những hiểu biết về bộ não của con người, giúp ta đưa ra một phương pháp mới trong lĩnh vực tiếp cận hệ thống thông tin. Mạng nơ-ron nhân tạo có thể được dùng để giải quyết bài toán nhận dạng mẫu (Recognition), tối ưu, nhận dạng (Identification) và điều khiển cho các đối trong trường hợp ta không biết mô hình toán của nó và chỉ biết thông tin vào và ra của đối tượng. Từ năm 1943, Mc. Culloch Pitts đã đưa ra một số liên kết cơ bản của mạng nơ-ron. Những năm sau đó đã có nhiều công trình nghiên cứu đề xuất và phát triển các cấu trúc, luật học cho nhiều loại mạng nơ-ron truyền thẳng và hồi quy mới có tính hiệu quả hơn. Trong công nghiệp chế biến, lắp ráp và các loại rô bốt khác nhau, cánh tay máy được sử dụng rất nhiều. Hiện tại có nhiều phương pháp điều khiển khác nhau được áp dụng để điều khiển cánh tay máy. Nhưng việc áp dụng mạng nơ-ron vào điều khiển hệ thống này còn rất hạn chế. Với những mạng nơ-ron hồi qui thông thường hay gặp phải vấn đề tối ưu cục bộ, tốc độ huấn luyện mạng chậm, khả năng thích nghi kém. Để kiểm tra tính khả thi của mạng nơ-ron trong nhận dạng và điều khiển cánh tay máy, chúng tôi sẽ thiết kế và chế tạo thử nghiệm cánh tay máy một bậc tự do và thử nghiệm các thuật toán điều khiển trong thời gian thực. Song song với phương pháp điều khiển bằng mạng nơ-ron còn có những phương pháp điều khiển khác có tính hiệu quả cao như phương pháp điều khiển kinh điển PID (Proportional Integral Derivative), phương pháp điều khiển thích nghi bền vững Điều khiển bám ổn định tốc độ động cơ, cơ cấu chấp hành là nhiệm vụ hàng đầu đang được đặt ra cho bài toán điều khiển hệ thống. 1 20 Để thực hiện được bài toán điều khiển ta cần xây dựng mô hình toán mô tả tính chất động lực học của nó với đầy đủ những yếu tố kết cấu cơ khí, vật liệu của nó. Từ mô hình toán cụ thể mới có thể phân tích được và lựa chọn phương pháp điều khiển thích hợp. Nhìn chung, nhiệm vụ điều khiển bám ổn định hay quỹ đạo góc của chuyển động là một bài toán rất phức tạp. Mục tiêu nghiên cứu Ứng dụng mạng nơ-ron nhận dạng và điều khiển cánh tay máy một bậc tự do. Thiết kế và chế tạo thử nghiệm cánh tay máy một bậc tự do. Đối tượng và phạm vi nghiên cứu Chạy thử nghiệm chương trình trên Matlab. Thực nghiệm trên mô hình vật lý để kiểm nghiệm, hoàn thiện cấu trúc và tham số bộ điều khiển. Ý nghĩa khoa học và thực tiễn đề tài Với phương pháp nhận dạng và điều khiển bằng mạng nơ-ron, chúng ta không cần phải sử dụng mô hình toán của đối tượng mà chỉ cần quan tâm tới tập tín hiệu mẫu vào và ra của đối tượng cũng như mô hình mẫu. Do đó sẽ tránh được quá trình xây dựng mô hình toán rất là phức tạp và mất nhiều thời gian và công sức. Phương pháp nghiên cứu Nghiên cứu lý thuyết: - Nghiên cứu mạng nơ-ron hồi qui, mạng RCN (Reservoir Computing Networks) và các phương pháp huấn luyện mạng. - Nghiên cứu các thuật toán điều khiển cánh tay máy. - So sánh chất lượng của hệ thống điều khiển cánh tay máy với các phương pháp điều khiển khác nhau. Nghiên cứu thực nghiệm: - Chạy thử nghiệm chương trình trên Matlab. - Thực nghiệm trên mô hình vật lý để kiểm nghiệm, hoàn thiện cấu trúc và tham số bộ điều khiển. 3.2.4. IC L298N IC L298N là một mạch bán dẫn tích hợp trong một khối, có 15 chân. Nó có thể kiểm soát không chỉ một mà là hai động cơ. Với điện áp ra lớn, sai số tín hiệu ra nhỏ và tản nhiệt tốt Do đó chúng tôi lựa chọn IC L298N cho mô hình thí nghiệm. 3.2.5. IC SN74HC08N 3.2.6. Giới thiệu Card Arduino 3.2.7. Thiết kế và chế tạo bo mạch điều khiển Sơ đồ mạch: Hình 3.2. Cấu trúc sơ đồ mạch. 2 19 3.2.1. Động cơ DC Động cơ Encoder V2 chạy được với điện áp nguồn DC tối đa 31V, tích hợp đĩa Encoder 334 xung, cho 2 kênh ra A và B cùng tần số nhưng lệch pha 90 độ. 3.2.2. Thuật toán đo tốc độ động cơ Gọi số xung xuất ra từ kênh A (kênh B) trong 1s là: n. Số xung của đĩa Encoder là: Ne (khi động cơ quay được 1 vòng thì trên kênh A hoặc B sẽ xuất ra Ne xung). Suy ra tốc độ động cơ: n v Ne = (vòng/giây). Vậy để đo được tốc độ động cơ, bạn chỉ cần đếm được số xung xuất ra từ 1 trong 2 kênh A và B trong thời gian 1s hay nói cách khác đó chính là tần số của xung Encoder. Thời gian 1s này còn được gọi là thời gian lấy mẫu, tuy nhiên nếu chọn thời gian lấy mẫu quá lớn (1s) sẽ dẫn đến sai số trong việc đếm số xung, làm mất thời gian thực thi của vi điều khiển và làm cho quá trình hiệu chỉnh tốc độ (nếu có) không được liên tục vì vậy việc chọn thời gian lấy mẫu rất quan trọng, không được quá lớn và không được quá bé. Gọi thời gian lấy mẫu là: Ts. Gọi số xung Encoder xuất ra trong thời gian Ts là ns. Tốc độ động cơ: .1000 . ns v NeTs = Kinh nghiệm lấy mẫu sao cho thương 1000 .NeTs chẵn là tốt nhất, dễ cho việc xử lý số liệu hơn. INT0: Khi có cạnh xuống của tín hiệu Encoder thì biến Count Encoder tăng lên 1, đây là biến lưu số xung Encoder trong thời gian Ts. 3.2.3. Điều khiển tốc độ và chiều quay của động cơ Để điều khiển tốc độ và chiều của động cơ chúng tôi sử dụng phương pháp băm xung PWM (Pulse Width Modulation) cùng phần cứng là IC L298N. Chương 1 CƠ SỞ LÝ THUYẾT MẠNG NƠ-RON 1.1. Giới thiệu mạng nơ-ron 1.1.1. Mạng nơ-ron nhân tạo Để xây dựng một mạng nơ-ron nhân tạo giống như hệ nơ-ron con người, vào năm 1943 Mc. Culloch và Pitts đề ra cấu trúc cơ bản của một nơ-ron thứ i trong mô hình của mạng nơ-ron nhân tạo như hình 1.1. Trong đó: - x j (k): Tín hiệu vào thứ j ở thời điểm k. - y i (k): Tín hiệu ra thứ i ở thời điểm k. - a(.): Hàm truyền: Quan hệ vào ra của nơ ron thứ i như sau: ij 1 ( ) ( w ( ) ) m i j i j y k a x k θ = = − ∑ y i Σ a(.) θ i x 1 w i1 w i2 x 2 x m w im PE i Hình 1.1. Mô hình nơ-ron của Mc. Culloch và Pitts. 3 18 Trong đó, w ij biểu diễn cường độ kết nối giữa đầu vào thứ j và nơ-ron thứ i. 1.1.2. Các thành phần cơ bản của mạng nơ-ron nhân tạo Mạng nơ-ron nhân tạo được đặc trưng bởi 3 yếu tố: phần tử xử lý, cấu trúc và ghép nối của các phần tử xử lý, phương pháp huấn luyện để cập nhập các trọng số w ij . 1.1.2.1. Nơ-ron Mỗi nơ-ron có nhiều đầu vào và một đầu ra như hình 1.2. Hàm tác động a(f) tạo tín hiệu ra. Hình 1.2. Mô hình nơ-ron thứ i. x j : Tín hiệu đầu vào thứ j. w ij : Trọng số để kết nối giữa x j nơ-ron thứ j. b i : Bias. a(.): Hàm truyền. 1.1.2.2. Hàm truyền Một số hàm thông dụng: Hàm bước nhảy đơn vị: Chương 3 THIẾT KẾ, CHẾ TẠO MÔ HÌNH CÁNH TAY MÁY MỘT BẬC TỰ DO TRONG PHÒNG THÍ NGHIỆM 3.1 Thiết kế và chế tạo mô hình cánh tay máy một bậc tự do trong phòng thí nghiệm. 3.2. Mô hình thí nghiệm cánh tay máy một bậc tự do Cấu trúc mô hình bàn thí nghiệm cánh tay máy một bậc tự do với bốn phần cơ bản gồm: - Máy tính xách tay: Core i3, 1,8Hz, Ram 4G – Phần mềm Matlab 2013a. - Card điều khiển Arduino. - Động cơ DC Encoder 334 xung. - IC L298N. - IC SN74HC08N. - Bo mạch đa năng. - Tay máy: kích thước 250 mm x 25 mm x 0,2mm và khối lượng 0,1 gam. Hình 3.1. Sơ đồ khối mô hình thí nghiệm. x 1 x i x m b i a(.) y i w im w i j w i 1 v i Σ Card Arduino Computer Matlab Động cơ DC Encoder, Cánh tay máy Nguồn vào, IC L298N, IC SN74HC08N Bo mạch Vị trí đặt 1 nếu f ≥ 0 a(f) = 0 nếu f < 0 4 17 Nhận xét: Tín hiệu ra của mạng nơ-ron đối tượng bám được theo tín hiệu ra của mô hình mẫu. Do đó chúng ta có thể sử dụng bộ điều khiển là mạng nơ-ron đã được huấn luyện ở trên làm bộ điều khiển cho mô hình cánh tay máy một bậc tự do thực. Ở chương tiếp theo chúng tôi sẽ trình bày quá thiết kế, chế tạo mô hình cánh tay máy thực trong phòng thí nghiệm và hệ thống vi xử lý arduino 328 kết nối với máy tính. Hàm dấu: Hàm dốc: Hàm tuyến tính: ( )a f net f = = Hàm logsig: 1 ( ) , 0 1 f a f e λ λ − = > + Hàm tansig: 1 ( ) 1, 0 1 f a f e λ λ − = − > + 1.1.2. Cấu trúc và ghép nối của các nơ-ron Mô hình ghép nối của các mạng nơ-ron nhân tạo có thể chia ra làm 2 loại: Mạng truyền thẳng (Feedforward Network) và mạng hồi tiếp (Feedback Network). 1.1.3. Phân loại mạng nơ-ron Phân loại theo cấu trúc liên kết gồm có mạng truyền thẳng và mạng hồi tiếp. Phân loại theo số lớp gồm có mạng đơn và mạng đa lớp. Phân loại theo phương pháp học gồm có học có giám sát, học tăng cường và học không có giám sát. 1.2. Trình tự thiết kế mạng nơ-ron ứng dụng 1.2.1. Xác định bài toán Tùy theo yêu cầu bài toán cần giải quyết cụ thể mà có thể xác định thuộc bài toán phân lớp dữ liệu hoặc nhận dạng đối tượng 1.2.2. Xác định các biến vào ra 1 nếu f ≥ 0 a(f) = -1 nếu f < 0 16 0 nếu f < 0 a(f) = f nếu 0 ≤ f ≤ 1 1 nếu f > 0 Xác định các biến vào/ra và miền giá trị của các biến đó. 5 1.2.3. Thu thập dữ liệu Thu thập một lượng lớn các mẫu dữ liệu đảm bảo nguyên tắc ngẫu nhiên, khách quan và phủ toàn bộ không gian đầu vào. Đối với các dữ liệu biến động kiểu chuỗi thời gian thì cần đảm bảo trình tự các sự kiện sao cho tạo ra các thông tin cốt lõi về đối tượng. Đối với các dữ liệu ngẫu nhiên có dạng hoàn toàn độc lập nhau thì phải bảo đảm đã quét hết các dạng cần thiết. 1.2.4. Tiền xử lý dữ liệu Thông thường tập dữ liệu thu thập được cần phải xử lý để đảm bảo các yêu cầu: Dữ liệu mẫu phân bố đồng đều, đủ đại diện cho tất cả các dạng trong một phân hoạch không gian nào đó, dữ liệu được thu gọn trong mô hình mạng nơ-ron phù hợp. 1.2.5. Lựa chọn mô hình mạng nơ-ron Tùy theo bản chất xử lý dữ liệu của bài toán mà ta lựa chọn mạng nơ-ron phù hợp. 1.2.6. Huấn luyện mạng Các thao tác thực hiện bao gồm: - Phần dữ liệu mẫu thành ba tập con: tập mẫu học, tập kiểm soát (để xác định khi nào dừng quá trình học) và tập kiểm thử (để kiểm tra khả năng đón nhận, dự đoán mạng). Trong đó tập mẫu học phải mang tính đại diện, còn tập kiểm thử gắn với dáng điệu thực của môi trường đang xét. - Xác định luật học - Xác định cơ chế cập nhật trọng số các nơ-ron trong quá trình huấn luyện. - Khởi tạo các tham số (các loại mạng khác nhau tương ứng có các tham số khác nhau. Các trọng số, tham số ban đầu xác định ngẫu nhiên hay theo kinh nghiệm). - Tốc độ học. - Tiêu chuẩn dừng học. 1.2.7. Tinh chỉnh mạng Muốn nâng cao hiệu quả sử dụng mạng cần phải cập nhật mẫu học, cải tiến cơ chế huấn luyện, tinh chỉnh cấu trúc và tham số mạng. 2.3.2. Huấn luyện mạng kín Sau khi huấn luyện mạng kín ta thu được kết quả như hình 2.9 và hình 2.10. Hình 2.9. Network Output, Target và Error. Hình 2.10. MSE của mạng kín. 6 15 Hình 2.7. Network Output, Target và Error. Hình 2.8. MSE của mạng hở. Ta nhận thấy sai số là nhỏ và chấp nhận được, do đó ta sẽ sử dụng bộ trọng số của mạng hở sau khi huấn luyện là bộ trọng số ban đầu để huấn luyện mạng kín. Trong trường hợp mạng tuy đã huấn luyện tốt nhưng kết quả không đáp ứng yêu cầu với các dữ liệu kiểm thử (hiện tượng học quá khít) thì tiến hành: - Tăng số liệu mẫu và huấn luyện lại mạng. - Xem xét lại tập dữ liệu mẫu với sự tư vấn của chuyên gia. 14 7 [...]... chọn cấu trúc mạng nơ- ron cho bộ điều khiển Với đối tượng là cánh tay máy một bậc tự do, chúng tôi chọn mạng nơ- ron cho bộ điều khiển có cấu trúc giống như mạng nơ- ron cho đối tượng Mạng này bao gồm hai lớp, lớp 1 có 6 nơ- ron Mạng này kết hợp với mạng nơ- ron của đối tượng tạo thành một mạng kín có 4 lớp Mạng kín này có 4 lớp, trong đó hai lớp đầu là bộ điều khiển và 2 lớp sau là mạng nơ- ron của đối tượng... tượng cho mô hình cánh tay máy một bậc tự do thực Chúng tôi sẽ sử dụng mạng nơ- ron này để huấn luyện mạng nơ- ron cho bộ điều khiển theo mô hình mẫu 2.2 Mô phỏng cánh tay máy một bậc tự do trong không gian hai chiều Để tiện cho việc mô phỏng, thử nghiệm và nghiên cứu về cánh tay máy một bậc tự do chúng tôi viết một chương trình mô phỏng cánh tay máy một bậc tự do trong không gian hai chiều trong môi trường... 2 ỨNG DỤNG MẠNG NƠ -RON NHẬN DẠNG VÀ ĐIỀU KHIỂN CÁNH TAY MÁY MỘT BẬC TỰ DO Để có thể nhận dạng được đối tượng bằng mạng nơ- ron chúng ta cần phải có một tập mẫu vào ra để huấn luyện mạng Chúng tôi đã sử dụng hệ vi xử lý arduino 328 để kết nối giữa máy tính và cánh tay máy Card arduino này sẽ thu thập giá trị góc từ encorder và đưa về máy tính, đồng thời phát tín hiệu điện áp đưa ra động cơ để điều khiển. .. trình này được cài đặt cho một khối S-function Đầu vào của khối là giá trị góc của cánh tay máy ở thời điểm hiện tại, đầu ra sẽ là hình vẽ của cánh tay máy ở thời điểm hiện tại 2.3 Ứng dụng mạng nơ- ron diều khiển cánh tay máy một bậc tự do theo mô hình mẫu Trong phần này chúng tôi sẽ dùng một mạng nơ- ron làm bộ điều khiển theo mô hình mẫu Mô hình mẫu được chọn là một hệ thống động học tuyến tính bậc... Ts = 0.05 giây 2.1 Ứng dụng mạng nơ- ron nhận dạng mô hình cánh tay máy một bậc tự do thực Để nhận dạng mô hình cánh tay máy một bậc tự do thực, chúng tôi chọn mạng nơ- ron có cấu trúc với 6 nơ- ron ở lớp thứ nhất Quá trình huấn luyện mạng sẽ bao gồm 2 giai đoạn Giai đoạn thứ nhất sẽ huấn luyện vòng hở Ở giai đoạn này, mạng nơ- ron sẽ bị cắt đường phản hồi từ đầu ra của mạng trở về lớp 1, đầu vào thứ 2... bộ trọng số và bias của mạng hở Các giá trị này được sử dụng như là các giá trị ban đầu cho mạng kín Sau khi huấn luyện mạng kín ta thu được các kết quả như hình 2.3 và hình 2.4 Hình 2.3 Network Output, Target và Error Hình 2.4 MSE của mạng kín 10 Nhận xét: Sau khi huấn luyên mạng nơ- ron ta nhận thấy, đầu ra của mạng nơ- ron giống với đầu ra của tín hiệu mẫu Như vậy mạng nơ- ron này có thể được dùng... khiển cánh tay máy Bộ dữ liệu mẫu sẽ được lưu lại trong một tệp có tên là quang_data.mat Chúng tôi sẽ phát một chuỗi các tín hiệu điện áp có dạng hàm bước nhẩy với biện độ ngẫu nhiền (từ -12 đến 12 V) và độ dài của hàm bước nhẩy là ngẫu nhiên tới động cơ Sau đó sẽ thu thập giá trị góc của cánh tay máy Chuỗi tín hiệu này có độ dài là 100 giây và chu kỳ lấy mẫu được chọn là Ts = 0.05 giây 2.1 Ứng dụng mạng. .. là bộ điều khiển và 2 lớp sau là mạng nơ- ron của đối tượng đã được huấn luyện ở phần 2.1 Trong quá trình huấn luyên mạng này, chỉ có mạng của bộ điều khiển (hai lớp đầu) là được cập nhật, còn hai lớp sau là giữ cố định Tập mẫu dùng để huấn luyện mạng kín sẽ gồm RI và RT 2.3.1 Huấn luyện mạng hở Sau khi huấn luyện mạng hở ta thu được các kết quả như hình vẽ 2.7 và 2.8 13 t_desired = 99; % number of samples... sẽ huấn luyện mạng kín Sau khi huấn luyện mạng hở, chúng tôi sẽ nối đầu ra của mạng hở với đầu vào thứ 2 của mạng Để huấn luyện mạng kín chúng tôi sẽ chia tập dữ liệu ban đầu là N mẫu thành các chuỗi nhỏ, mỗi chuỗi có độ dài là C mẫu Đầu tiên sẽ huẫn luyện mạng với các chuỗi có độ dài là C = 4, nếu thành công sẽ tăng lên thành C = 5, cứ tiếp tục như thế cho tới khi C = N 2.1.1 Huấn luyện mạng hở Sau... 4, nếu thành công sẽ tăng lên thành C = 5, cứ tiếp tục như thế cho tới khi C = N 2.1.1 Huấn luyện mạng hở Sau khi huấn luyện mạng nơ- ron với số nơ- ron lớp 1 là n = 6, ta thu được các kết quả như hình vẽ 2.1 và 2.2 Trong đó, Network Output, Target và Error lần lượt là đầu ra mạng hở, tín 8 Tín hiệu vào mẫu và ra mẫu sẽ được lưu lần lượt vào các biến là RI và RT Hình 2.6 biểu diễn tín hiệu vào và ra

Ngày đăng: 27/08/2015, 17:35

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w