Nhằm đáp ứng được nhu cầu cần một tài liệu lý thuyết để tham khảo lý thuyết, các công thức tính và các cách giải nhanh các bài tập vật lý trong quá trình học môn vật lý, ôn thi quốc gia
Trang 1Mục lục
CHƯƠNG I : DAO ĐỘNG CƠ 6
A LÝ THUYẾT CƠ BẢN: 6
1 Dao động điều hòa 6
2 Con lắc lò xo 6
3 Con lắc đơn 7
4 Tổng hợp dao động 8
5 Hiện tượng cộng hưởng 8
6 Phân biệt dao động cưỡng bức và dao động duy trì 9
B CÁC DẠNG BÀI TẬP CƠ BẢN 9
1 Các dạng toán dao động điều hòa 9
Dạng 1: Bài toán viết phương trình dao động 9
Dạng 2: Xác định thời gian ngắn nhất vật đi từ vị trí x1 đến vị trí x2 10
Dạng 3: Cho phương trình, tìm quãng đường vật đi được sau thời gian Δt từ t1 đến t2 11
Dạng 4: Tính tốc độ trung bình và vận tốc trung bình 12
Dạng 5: Tính quãng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 12
2 Các dạng bài tập cơ bản về con lắc lò xo 12
Dạng 6: Xác định lực đàn hồi, phục hồi 12
Dạng 7: Tính chiều dài của lò xo 13
Dạng 8: Chu kỳ, độ cứng khi cắt, ghép lò xo nối tiếp hoặc song 13
Dạng 9: Tính chu kỳ khi gắn thêm vật 13
Dạng 10: Bài toán dao động tắt dần của con lắc lò xo 13
Dạng 11: Điều kiện biên độ để con lắc lò xo dao động điều hòa 14
3 Các dạng bài tập cơ bản về con lắc đơn 15
Dạng 12: Vận tốc và lực căng dây: 15
Dạng 13: Thay đổi chu kỳ khí thay đổi chiều dài dây treo bằng cách nối hoặc cắt bớt 15
Dạng 14: Thay đổi chu kỳ của con lắc đơn theo 15
Dạng 15:Sự thay đổi chu kỳ của con lắc đơn do ngoại lực: 16
Dạng 16: Con lắc trùng phùng 17
Dạng 17: Con lắc vướng đinh 17
Dạng 18: Dao động tắt dần của con lắc đơn 18
4 Các dạng bài tập cơ bản về tổng hợp dao động 18
Dạng 19: Tổng hợp 2 dao động cùng phương cùng tần số 18
Trang 2CHƯƠNG 2: SÓNG CƠ 18
A LÝ THUYẾT 18
1 Sóng cơ học: 18
2 Giao thoa sóng 19
3 Sóng dừng 20
4 Sóng âm 20
B CÁC DẠNG TOÁN CƠ BẢN CHƯƠNG SÓNG CƠ: 21
1 Các dạng bài tập cơ bản phần phương trình sóng 21
Dạng 1: xác định các đại lượng đặc trưng của sóng 21
Dạng 2: Viết phương trình sóng, tìm độ lệch pha 22
2 Các dạng bài tập cơ bản giao thoa sóng 22
Dạng 3: Viết phương trình giao thoa sóng tại 1 điểm 22
Dạng 4: Tìm số cực đại, cực tiểu trên đoạn AB (S1S2) 22
Dạng 5: Tìm số điểm dao động cùng pha, ngược pha với nguồn trên đoạn CD (xét hai nguồn cùng pha) 23
Dạng 6: Với bài toán tìm số đường dao động cực đại và không dao động (cực tiểu) giữa hai điểm M, N cách hai nguồn lần lượt là d1M, d2M, d1N, d2N 23
Dạng 7: Tìm (MA)max, min để M là cực đại, cực tiểu 23
3 Các dạng bài tập cơ bản sóng dừng: 23
Dạng 8: Vận dụng điều kiện có sóng dừng trên sợi dây để làm các bài toán có liên quan 23
Dạng 9: Viết phương trình sóng dừng trên sợi dây AB (với đầu A cố định hoặc dao động nhỏ là nút sóng) 23
4 Các dạng bài tập cơ bản sóng âm 24
Dạng 10: Bài toán liên quan đến mức cường độ âm và cường độ âm: 24
Dạng 11: Bài toán liên quan đến tần số do nhạc cụ phát ra: 24
CHƯƠNG III DÒNG ĐIỆN XOAY CHIỀU 25
A LÝ THUYẾT 25
1 Cách tạo ra dòng điện xoay chiều 25
2 Một số chú ý 25
3 Dòng điện xoay chiều trong đoạn mạch R,L,C 26
4 Công suất tiêu thụ trên đoạn mạch RLC 27
5 Máy phát điện xoay chiều một pha 27
6 Máy phát điện xoay chiều ba pha 28
7 Máy biến áp 28
8 Công suất hao phí trong quá trình truyền tải điện năng: 29
9 Động cơ không đồng bộ ba pha 29
Trang 3B CÁC DẠNG BÀI TẬP CƠ BẢN: 30
Dạng 1:Viết biểu thức u hoặc i 30
Dạng 2: Xác định công suất của mạch 30
Dạng 3: Máy biến thế và truyền tải điện năng 30
Dạng 4: Đoạn mạch RLC chỉ có R thay đổi 31
Dạng 5: Đoạn mạch RLC có L thay đổi 31
Dạng 6: Đoạn mạch RLC có C thay đổi 32
Dạng 7: Đoạn mạch RLC mà tần số góc thay đổi 33
Dạng 8: Đoạn mạch AB gồm hai đoạn mạch mắc nối tiếp: AM gồm ba phần tử R1,L1, C1 nối tiếp và MB gồm ba phần tử R2, L2, C2 nối tiếp tức là UAB = UAM + UMB 33
Dạng 9: Hai đoạn mạch R1L1C1 và R2L2C2 cùng u hoặc cùng i có pha lệch nhau 33 CHƯƠNG IV DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ 34
A LÝ THUYẾT 34
1 Kiến thức chung 34
2 Dao động điện từ 35
3 Sự tương tự giữa dao động điện và dao động cơ 36
4 Sóng điện từ 36
5 Sơ đồ khối của máy phát và thu thanh vô tuyến đơn giản: 36
B CÁC DẠNG BÀI TẬP CƠ BẢN 37
Dạng 1: Tìm tần số, chu kỳ của mạch dao động 37
Dạng 2: Bài toán tụ điện xoay 37
Dạng 3:Cách cấp năng lượng ban đầu cho mạch dao động 37
Dạng 4: Tính tần số và chu kỳ khi ghép tụ điện 37
Dạng 5: Tính bước sóng và xác định các đại lượng L,C khi biết λ hoặc f, T 38
Dạng 6: Xác định L hoặc C khi λ hoặc f thay đổi 38
Dạng 7: Tìm năng lượng của mạch dao động 38
CHƯƠNG V SÓNG ÁNH SÁNG 39
A LÝ THUYẾT 39
1 Hiện tượng tán sắc ánh sáng 39
3 Hiện tượng giao thoa ánh sáng 40
4 Các loại quang phổ 40
5 Tia hồng ngoại , tia tử ngoại và tia X 41
6 Thang sóng điện từ: 42
B CÁC DẠNG BÀI TẬP CƠ BẢN 42
1 Các bài toán về tán sắc ánh sáng 42
2 Các bài toán về giao thoa ánh sáng 43
Trang 4Dạng 1: Giao thoa đối với ánh sáng đơn sắc 43
Dạng 2: Giao thoa hai bức xạ trở lên 44
Dạng 3: Hiện tượng giao thoa ánh sáng trắng (0,38m 0,76m) 45
Dạng 4: Sự xê dịch của hệ vân giao thoa 45
CHƯƠNG VI LƯỢNG TỬ ÁNH SÁNG 45
A LÝ THUYẾT 45
1 Hiện tượng quang điện ngoài 45
2 Thuyết lượng tử ánh sáng 46
3 Công thức vận dụng hiện tượng quang điện ngoài 46
4 Hiện tượng quang điện trong (quang dẫn) 46
5 Tiên đề Bo - Quang phổ nguyên tử Hiđrô 47
6 Sơ lược về laze: 47
B CÁC DẠNG BÀI TẬP CƠ BẢN 48
1 Các dạng toán liên quan đến hiện tượng quang điện 48
Dạng 1: Các bài toán liên quang đến thuyết lượng tử và định quang điện 48
Dạng 2: Các bài toán liên quan đến Pbx, Ibh, H, R 48
Dạng 3: Các bài toán về ống Culítgiơ phát ra tia Rơnghen (tia X) 48
2 Các dạng toán liên quan quang phổ hidro: 49
Dạng 3: Tìm bán kính quỹ đạo dừng thứ n của electron trong nguyên tử hiđrô: 49
Dạng 4: Năng lượng electron trong nguyên tử hiđrô 49
Dạng 5: Sự phát xạ ra λ khi chuyển mức năng lượng (hình vẽ) 49
Dạng 6 Lực Lorrenxơ, lực hướng tâm 49
CHƯƠNG VII VẬT LÝ HẠT NHÂN 50
A LÝ THUYẾT 50
1 Cấu tạo hạt nhân nguyên tử: 50
2 Đơn vị hay dùng trong chương hạt nhân 50
3 Hệ thức Anhxtanh, độ hụt khối, năng lượng liên kết 51
4 Phản ứng hạt nhân 51
5 Sự phóng xạ 52
6 Định luật phóng xạ 53
7 Phản ứng phân hạch, phản ứng nhiệt hạch: 54
B CÁC DẠNG BÀI TẬP CƠ BẢN 54
1 Các dạng bài tập về cấu tạo hạt nhân 54
Dạng 1: Xác định độ hụt khối khi tạo thành hạt nhân 54
Dạng 2: Xác định năng lượng liên kết và năng lượng liên kết riêng 54
2 Các dạng bài tập về phản ứng hạt nhân 54
Trang 5Dạng 3: Hoàn thành phương trình phản ứng 54
Dạng 4: Tìm năng lượng của phản ứng hạt nhân 55
Dạng 5: Bài toàn hạt nhân vỡ thành nhiều mảnh 55
3 Các dạng bài tập về phản hiện tượng phóng xạ 55
Dạng 6:Bài toán vận dụng định luật phóng xạ 55
Dạng 7: Các bài toán liên quan đến độ phóng xạ 56
Dạng 8: Bài toán tìm tuổi của mẫu vật hoặc tìm thời gian 56
Chương VIII LÝ THUYẾT VỀ SAI SỐ 56
I Định nghĩa phép tính về sai số 56
1 Các khái niệm 56
2 Phân loại sai số 56
II Phương pháp xác định sai số của phép đo trực tiếp 57
1 Phương pháp chung xác định giá trị trung bình và sai số ngẫu nhiên 57
2 Cách xác định sai số dụng cụ 57
III Phương pháp xác định sai số gián tiếp 58
1 Phương pháp chung 58
2 Cách xác định cụ thể 58
IV Cách viết kết quả 59
1 Các chữ số có nghĩa 59
2 Quy tắc làm tròn số 59
3 Cách viết kết quả 60
Trang 6LỜI NÓI ĐẦU Các em học sinh thân mến!
Nhằm đáp ứng được nhu cầu cần một tài liệu lý thuyết để tham khảo lý thuyết, các công thức tính và các cách giải nhanh các bài tập vật lý trong quá trình học môn vật lý, ôn thi quốc gia môn vật lý năm 2015 tôi đã sưu tầm từ các nguồn khác nhau và tổng hợp lại thành tập tài
liệu: “LÝ THUYẾT VÀ MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TẬP VẬT LÝ 12”
Tài liệu này được biên soạn theo chương trình vật lý 12 cơ bản kết hợp với những kiến thức nâng cao của chương trình sách giáo khoa nâng cao 12 Trong từng chương ngoài lý thuyết còn kèm theo một số phương pháp giải một số dạng bài tập thường gặp với mục đích giúp các
em học sinh có cái nhìn khái quát nhất về chương trình vật lý 12 Ngoài ra trong tài liệu bổ sung thêm các kiến thức về phần lý thuyết thực nghiệm mà các em học sinh đã học ở lớp 10 Tôi mong rằng tập tài liệu này giúp ích cho các em học sinh trong quá trình học môn vật
lý và tự tin học trong các đợt kiểm tra, các kỳ thi
Trong quá trình biên soạn không tránh những sai lầm thiếu sót ngoài ý muốn Mọi thắc mắc và các ý kiến đóng góp để tài liệu được hoàn thiện hơn theo địa chỉ sau:
Email: vly2011@gmail.com
ĐT: 01224491154
Blog: www.violet.vn/kquangvu
Xin chân thành cảm ơn và chúc các em đạt kết quả tốt trong quá trình học tập
Sưu tầm, hiệu chỉnh và biên soạn
Kiều Quang Vũ
Trang 7CHƯƠNG I : DAO ĐỘNG CƠ
A LÝ THUYẾT CƠ BẢN:
1 Dao động điều hòa
- Phương trình dao động: x A cos ( t ) hoặc x A.sin( t)
- Vận tốc tức thời trong dao động điều hoà: v x' A .sin( t )
+φ là pha ban đầu (là pha ở thời điểm t = 0), đơn vị (rad)
+ x là li độ dao động ở thời điểm t
+ (ωt + φ) là pha dao động ở thời điểm t bất kỳ
- x , v, a dao động điều hòa với cùng tần số góc , tần số f, chu kỳ T với 2 f 2
Trang 8 Chu kỳ theo độ biến dạng: 2 l cb
+ Động năng và thế năng biến đổi điều hòa với tần số góc ω’=2ω, f’ = 2f, T’ = T/2
+ Tỉ số giữa động năng, thế năng, cơ năng:
max
t đ
- Tần số f = 1
T =
12
g l
+ Với con lắc lò xo lực phục hồi không phụ thuộc khối lượng
α
t
T/4 T/8 T/2 T
0
W
Wđ
Wt
Trang 9+ Li độ góc: α = α0cos(ωt + φ0) (với s = αl, So = α0.l ) "Phương trình này thường dùng"
Để tổng hợp dao động ta có nhiều cách như sử dụng phép biến đổi lượng giác, giản đồ vecto, số phức Sau đây là các công thức thường dùng trong việc tổng hợp dao động bằng giản
+ Biên độ tổng hợp phải luôn thỏa mản điều kiện: |A1 - A2| ≤ A ≤ A1 + A2
+ Nếu Δφ = φ2 - φ1 = 2kπ (x1, x2 cùng pha) Amax = A1 + A2
+ Nếu Δφ = φ2 - φ1 = (2k+1)π (x1, x2 ngược pha) Amin = A1 -A2
5 Hiện tượng cộng hưởng
* Điều kiện xảy ra khi : f = f0 hay T = T0 hay ω = ω0
Với
+ f , T , ω: là tần số, chu kỳ, tần số góc của hệ dao động
Trang 10+ fo , To, ω0: là tần số, chu kỳ, tần số góc của ngoại lực cưỡng bức
* Một số hiện tượng công hưởng trong thực tế:
+ Con lắc treo trên toa tàu : Tch =
(ℓ: là chiều dài của mỗi bước chân, v là vận tốc của người)
6 Phân biệt dao động cưỡng bức và dao động duy trì
a Dao động cưỡng bức với dao động duy trì
• Giống nhau:
- Đều xảy ra dưới tác dụng của ngoại lực
- Dao động cưỡng bức khi cộng hưởng cũng có tần số bằng tần số riêng của vật
• Khác nhau:
* Dao động cưỡng bức
- Ngoại lực là bất kỳ, độc lập với vật
- Sau giai đoạn chuyển tiếp thì dao động cưỡng bức có tần số bằng tần số f của ngoại lực
- Biên độ của hệ phụ thuộc vào biên độ của F0 và |f – f0| (f0 là tần số dao động riêng)
* Dao động duy trì
- Lực được điều khiển bởi chính dao động ấy qua một cơ cấu nào đó
- Dao động với tần số đúng bằng tần số dao động riêng f0 của vật
- Biên độ không thay đổi
b Cộng hưởng với dao động duy trì
• Giống nhau: Cả hai đều được điều chỉnh để tần số ngoại lực bằng với tần số dao động
tự do của hệ
• Khác nhau:
* Cộng hưởng
- Ngoại lực độc lập bên ngoài
- Năng lượng hệ nhận được trong mỗi chu kì dao động do công ngoại lực truyền cho lớn hơn năng lượng mà hệ tiêu hao do ma sát trong chu kì đó
* Dao động duy trì
- Ngoại lực được điều khiển bởi chính dao động ấy qua một cơ cấu nào đó
- Năng lượng hệ nhận được trong mỗi chu kì dao động do công ngoại lực truyền cho đúng bằng năng lượngmà hệ tiêu hao do ma sát trong chu kì đó
B CÁC DẠNG BÀI TẬP CƠ BẢN
1 Các dạng toán dao động điều hòa
Dạng 1: Bài toán viết phương trình dao động
Trang 11+ Chu kỳ T (s) là khoảng thời gian để vật thực hiện một dao động toàn phần với T = t
N
(N là số dao động vật thực hiện được trong thời gian Δt)
* Tìm A cần lưu ý một số vấn đề sau:
+ Chiều dài quỹ đạo L = 2A
+ Vận tốc và gia tốc cực đại: vmax =A; amax = 2
A
+Hệ thức độc lập: x2 +
* Tìm φ: Dựa vào điều kiện ban đầu: tìm x, v, a tại t
= 0, thay vào x = Acos(ωt + φ), giải phương trình suy ra
φ Chú ý điều kiện giới hạn của φ Sau đây là một số giá
trị của φ trong một số trường hợp đặt biệt:
+ Tại t = 0, vật ở biên dương φ = 0
+ Tại t = 0, vật qua VTCB theo chiều âm φ = π/2
+ Tại t = 0, vật qua vị trí –A/2 theo chiều âm φ =2π/3
+ Tại t = 0, vật qua vị trí -A√2/2 theo chiều dương φ = - 3π/4
+ Tại t = 0, vật qua VTCB theo chiều dương φ = -π/2
+ Tại t = 0, vật qua A/2 theo chiều dương j= - π/3
Trang 12Dạng 3: Cho phương trình, tìm quãng đường vật đi được sau thời gian Δt từ t 1 đến
+ t: Để tính S2 sử dụng các lưu ý sau đây:
● Quãng đường đi trong l/4 chu kỳ khi vật đi từ VTCB đến vị trí biên hoặc ngược lại
là A
● Tính S2 bằng cách định vị trí x1, x2 và chiều chuyển động của vật trên trục Ox:
Nếu v1.v2 >0 thì S2=|x1 x2|
Chú ý các khoảng thời gian đặt biệt T/4, T/6, T/8, T/12
● Nếu thời gian nhỏ hơn T/4 ta có thể dùng công thức tính quãng đường như sau:
* Khi tính quãng đường cần lưu ý một số điểm sau:
+ Quãng đường đi trong 1 chu kỳ luôn là 4A: nếu t =T thì S= 4A
+ Quãng đường đi trong 1/2 chu kỳ là 2A: nếu t=T/2 thì S= 2A
T/6 T/6
T/12 T/4 T/3
T/8 T/6 T/8 T/6
Trang 13+ Trong một số trường hợp có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều sẽ đơn giản hơn
* Vận tốc trung bình khi vật đi từ x1 đến x2 trong khoảng thời gian Δt là: x2 x1
+ Tính S1max , S1min trong khoảng thời gian t0
+ Quãng đường cực đại và cực tiểu lần lượt là:
Smax = 4nA + 2A + S1max và Smin = 4nA + 2A + S1min
+ Luôn hướng về VTCB (cùng hướng với gia tốc)
+ Biến thiên điều hòa cùng tần số với li độ
- Lực phục hồi cực đại: Fphmax = - kA = -m 2
A
- Lực phục hồi cực tiểu: Fphmin = 0
* Lực đàn hồi
- Con lắc lò xo nằm ngang: Fđh = k.x(x: là độ biến dạng của lò xo)
+ Với con lắc lò xo nằm ngang thì lực đàn hồi và lực phục hồi là một
x A
-A nén
l
giãn O
x A A
Hình a (A < l)
Hình b (A > l)
H
H
Trang 14- Tỉ số lực đàn hồi cực đại và cực tiểu (l0>A) .max 0
dh dh
- Vật ở trên H thì lò xo nén, vật dưới H thì lò xo giãn
Dạng 7: Tính chiều dài của lò xo
+ Chiều dài của lò xo tại VTCB: l cb = l o + l cb
+ Chiều dài cực tiểu (khi vật ở vị trí cao nhất) l min = l o + l cb - A
+ Chiều dài cực đại(khi vật ở vị trí thấp nhất) l max = l o + l cb + A
l cb = (l min + l max )/2
Dạng 8: Chu kỳ, độ cứng khi cắt, ghép lò xo nối tiếp hoặc song
Một lò xo chiều dài l, độ cứng k bị cắt thành các lò xo dài l 1 , l 2 , l 3…có độ cứng k1, k2,
Dạng 9: Tính chu kỳ khi gắn thêm vật
+ Khi Gắn vào lò xo k một vật m1 thì được chu kỳ T1, vật m2 thì được chu kỳ T2
+ Chu kì của vật m = m1 + m2: T= √𝑇12+ 𝑇22,
+ Chu kì vật m4 = m1 - m2: T= √|𝑇12− 𝑇22|,
Dạng 10: Bài toán dao động tắt dần của con lắc lò xo
Một con lắc lò xo dao động tắt dần với biên độ A0, hệ số ma sát giữa vật và mặt sàn là μ
+ Số lần vật đi qua VTCB là n = 2N
+ Thời gian từ lúc thả đến lúc dừng hẳn: Δt = N.T= 0
4
A kT mg
= 2 0
A g
Trang 15* Quãng đường vật đi được:
+ Vị trí cân bằng mới: x0 = mg
k
= Δ 1
=
+ Nếu tại vị trí cân bằng được truyền một vận tốc v0 thì: s + A0
+ Nếu vật dừng tại vị trí cân bằng: s =
Dạng 11: Điều kiện biên độ để con lắc lò xo dao động điều hòa
* Trường hợp 1: Một vật có khối lư ợng m gắn vào một lò xo có độ cứng k
Đầu con lại của lò xo gắn vào sợi dây CB không dãn như hình vẽ Lò xo có độ
dài tự nhiên là l 0 Tìm điều kiện về biên độ của vật để vật luôn dao động điều
hay nói cách khác A ≤ Δl
* Trường hợp 2: Con lắc lò xo có m thực hiện dao động điều
hòa trên một trục nằm ngang Đặt m’ lên trên m, tìm điều kiện biên
độ dao động của vật m’ vẫn đứng yên trên m trong quá trình dao
* Trường hợp 3: Con lắc lò xo có khối lượng không đáng kể, treo thẳng
đứng, đầu trên treo cố định, đầu dưới gắn vật năng M Trên M đặt vật m (m
không gắn với lò xo) rồi cho hệ thực hiện dao động điều hòa Tìm điều kiện biên
độ dao động của vật M để m luôn nằm trên M trong suốt quá trình dao động
Biên độ dao động của vật phải thỏa mản điều kiện:
Trang 16treo vào một lò xo có độ cứng K bằng một sợ dây không dãn Tìm điều khối lượng
m 2 để khi cắt m 2 (nhanh và nhẹ nhàng) thì vật m 1 vẫn dao động điều hòa Lấy g =
10 m/s 2
Biên độ dao động của vật phải thỏa mản điều kiện: A ≤ g2
= Δl 1 = m g1
K
Điều kiện về khối lượng m2 ≤ m1
* Trường hợp 5: Cho cơ hệ như hình vẽ Tìm điều kiện về biên độ dao động
của vật A để vật B luôn đứng yên
Biên độ dao động của vật B phải thỏa mản điều kiện: A ≤ m g B k l
k
* Trường hợp 6: Cho cơ hệ như hình vẽ Kích thích A dao động theo phương
thẳng đứng Để vật B luôn nằm yên trên mặt sàn trong quá trình vật A dao
động thì biên độ cực đại của vật A phải có giá trị lớn nhất bằng bao nhiêu?
Biên độ dao động của vật A phải thỏa mản điều kiện:
l + mgcos hay T = mg(3cos - 2coso )
+ Tại vị trí cân bằng: TCB = mg(3 - 2cosα 0 )
+ Tại vị trí biên: Tbiên = mgcos0
Tại cùng một nơi con lắc đơn chiều dài l1 có chu kỳ T1; con lắc đơn dài l2 có chu kỳ T2
+ Khi con lắc đơn dài l 3 = l 1 + l 2 có chu kỳ T= √𝑇12+ 𝑇22,
+ Khi con lắc đơn dài l 4 =│l 1 – l 2│có chu kỳ T= √|𝑇12− 𝑇22|,
Dạng 14: Thay đổi chu kỳ của con lắc đơn theo
a) Yếu tố nhiệt độ(g =const):
Trang 17( là hệ số nở dài của dây treo)
b) Sự thay đổi của độ cao h (T= const):
Trong đó h là độ cao so với mặt đất, R=6400km là bán kính trái đất
c) Con lắc đơn có chu kỳ đúng T1 ở độ cao h1 ở nhiệt độ t1 khi đưa tới độ cao h2 ở nhiệt độ
t2 thì điều kiện về nhiệt độ và độ cao h để con lắc chạy đúng như lúc ở T1 và h1 là:
(T1 là chu kỳ của đồng hồ chạy đúng)
+ Nếu T > 0 thì sau 1 ngày đồng hồ chạy chậm đi giây và ngược lại
Dạng 15:Sự thay đổi chu kỳ của con lắc đơn do ngoại lực:
a Con lắc đơn đặt trong thang máy đang chuyển động với gia tốc a
Lên nhanh dần đều Lên chậm dần đều Xuống nhanh dần đều Xuống chậm dần
(α là góc tạo bởi dây treo và phương thẳng đứng khi vật ở
trạng thái cân bằng, với tanα = 𝑎
𝑔)
c Con lắc đơn, vật nặng tích điện q đặt trong điện trường E ; (a = F tđ q E
m m ) + E hướng theo phương thẳng đứng:
g a
Trang 18+ E hướng theo phương ngang: '
+ D là khối lượng riêng của chất lỏng hay chất khí
+ V là thể tích phần vật chiếm chổ trong chất lỏng hay khí đó
Dạng 17: Con lắc vướng đinh
* Chu kỳ con lắc đơn khi bị vướng đinh: T0 = 1
2(T + T’) Trong đó: T = 2π l
g và T’= 2π
'
l g
+ Biểu diễn T theo l1,l2: T ( l1 l2)
2
l l
A B
T T
+ Góc nhỏ:
T T
Trang 19T T
T
T
Dạng 18: Dao động tắt dần của con lắc đơn
+ Độ giảm biên độ dài sau một chu kì: ΔS = 4Fms
2 mω
+ Số dao động thực hiện được: S0
* Lưu ý: Biên độ dao động tổng hợp thỏa mản điều kiện:│A1 - A2│≤ A ≤ A1 + A2
* Ngoài ra việc tổng hợp dao động điều hòa theo phương pháp truyền thống ta có thể sử dụng máy tính theo cách nêu trên để tìm A và φ Lưu ý đối với máy Casio 570ES hoặc Vinacal 570ES ta nên chọn chế độ R (SHIFT MODE 4) để thuận tiện còn máy Casio 570MS hoặc Vinacal 570MS ta nên chọn chế độ D (MODE MODE MODE MODE 2)
Dạng 20: Tìm dao động thành phần
Áp dụng máy tính Casio 570ES hoặc Vinacal 570ES thực hiện như sau:
+ Tìm x1 ta nhập vào máy dạng: A1 φ1 = Aφ - A2 φ2
+ Tìm x2 ta nhập vào máy dạng: A2 φ2 = Aφ – A1 φ1
- Để thực hiện được tính năng này của máy tính ta chọn chế độ “mode 2” và nhập kí tự
ta bấm: SHIFT (-), hiện kết quả dạng Aφ ta bấm SHIFT 2 3 Để xem được kết quả rõ ràng bấm phím: SD
Trang 20b Các đại lượng đặc trưng của sóng
- Chu kỳ, tần số sóng: các phần tử của môi trường khi có sóng truyền qua đều dao động
với chu kỳ và tần số của nguồn
- Biên độ: biên độ của sóng tại một điểm trong không gian chính là biên độ dao động của
một phần tử môi trường tại điểm đó (thực tế càng xa nguồn thì biên độ càng giảm)
- Bước sóng: là quãng đường mà sóng truyền đi trong một chu kỳ (là khoảng cách giữa hai
điểm gần nhau nhất dao động cùng pha)
- Tốc độ sóng: là tốc độ lan truyền pha dao động v = S/t= λ/t= λ.f
- Năng lượng sóng: quá trình truyền sóng là quá trình truyền năng lương
+ đơn vị của các đại lượng x,v, phải tương ứng với nhau
+ trong sóng cơ học ngoài khái niệm tốc độ truyền sóng còn có một khái niệm khác hoàn toàn về bản chất là tốc độ dao động của phần tử môi trường kí hiệu u’(đạo hàm của li độ(độ dời) u)
2 Giao thoa sóng
- Hiện tượng giao thoa sóng là sự tổng hợp của 2
hay nhiều sóng kết hợp trong không gian, trong đó có
những chỗ biên độ sóng được tăng cường (cực đại
giao thoa) hoặc triệt tiêu (cực tiểu giao thoa), tuỳ
thuộc vào hiệu đường đi của chúng
- Điều kiện xảy ra hiện tượng giao thoa là hai sóng
phải là hai sóng kết hợp
- Hai sóng kết hợp là hai sóng được gây ra bởi hai
nguồn có cùng tần số, cùng pha hoặc lệch pha nhau
một góc không đổi
- Vị trí các điểm dao động với biên độ cực đại: d 2 – d 1 = kλ
- Vị trí các điểm dao động với biên độ cực tiểu: d 2 – d 1 = (2k + 1)λ/2
- Giao thoa của hai sóng phát ra từ hai nguồn sóng kết hợp S1, S2 cách nhau một khoảng l:
k=0
k=-1 k=-2 k= 0
k= 1
C
D
E
Trang 21+ Xét điểm M cách hai nguồn lần lượt d1, d2
+ Phương trình sóng tại 2 nguồn u1 Acos(2 ft1); u2 Acos(2 ft2)
+ Phương trình sóng tại M (cách 2 nguồn lần lượt là d1 và d2) do hai sóng từ hai nguồn
Phản xạ sóng: sóng tới và sóng phản xạ có cùng tần số, bước sóng Nếu đầu phản xạ cố
định thì sóng phản xạ ngược pha với sóng tới, nếu đầu phản xạ tự do thì sóng phản xạ cùng pha với sóng tới
* Một số chú ý
+ Đầu cố định hoặc đầu dao động nhỏ là nút sóng
+ Đầu tự do là bụng sóng
+ Hai điểm đối xứng với nhau qua nút sóng luôn dao động ngược pha
+ Hai điểm đối xứng với nhau qua bụng sóng luôn dao động cùng pha
+ Các điểm trên dây đều dao động với biên độ không đổi năng lượng không truyền đi + Khoảng thời gian giữa hai lần sợi dây căng ngang (các phần tử đi qua VTCB) là nửa chu
kỳ
+ Khoảng cách giữa hai bụng sóng liền kề là λ/2 Khoảng cách giữa hai nút sóng liền kề là
λ/2 Khoảng cách giữa một bụng sóng và một nút sóng liền kề là λ/4
+ Bề rộng của bụng sóng = 2.A = 2.2A = 4.A
* Điều kiện để có sóng dừng trên sợi dây dài l
Trang 22* Vận tốc truyền âm phụ thuộc vào tính đàn hồi, mật độ và nhiệt độ của môi trường vrắn >
* Ngưỡng đau: là giá trị cực đại của cường độ âm mà tai con người còn chịu đựng được
(thông thường ngưỡng đau là ứng với mức cường độ âm là 130db)
- Cảm giác âm to hay nhỏ không những phụ thuộc vào cường độ âm mà còn phụ thuộc vào tần số âm
* Tính chất vật lí của âm là tần số âm, cường độ âm hoặc mức cường độ âm và đồ thị
dao động của âm
= I0.10L/10 (W/m2) Với W (J), P (W) là năng lượng, công suất phát âm của nguồn
S (m2) là diện tích mặt vuông góc với phương truyền âm (với sóng cầu-nguồn âm là nguồn
âm điểm- thì S là diện tích mặt cầu, với S=4πR 2)
P = W/t = I.S Công suất âm của nguồn = lượng năng lượng mà âm truyền qua diện tích mặt cầu trong 1 đơn vị thời gian: P = I.S = I.4πR2
Nếu nguồn âm điểm phát âm qua 2 điểm A và B, thì:
R R Với I 0 = 10 -12 W/m 2 ở f = 1000Hz: cường độ âm chuẩn
* Khi giải thường áp dụng tính chất của lôgarít: loga (M.N) = logaM + logaN: loga (M/N) = logaM – logaN
* Tính chất sinh lí của âm là độ cao (gắn liền với tần số f), độ to (gắn liền với mức cường độ âm L, f) và âm sắc (gắn liền với đồ thị dao động của âm f, A)
B CÁC DẠNG TOÁN CƠ BẢN CHƯƠNG SÓNG CƠ:
1 Các dạng bài tập cơ bản phần phương trình sóng
Dạng 1: xác định các đại lượng đặc trưng của sóng
+ Khai thác từ phương trình
+ Khoảng cách giữa hai đỉnh sóng liên tiếp là λ
+ Quãng đường sóng truyền đi được trong khoảng thời gian t là s = v.t = λ.f.t
Trang 23+ Sóng truyền từ môi trường 1 có vận tốc v1 sang môi trường 2 có vận tốc v2 thì tần số không đổi 1 1 1
Dạng 2: Viết phương trình sóng, tìm độ lệch pha
- Độ lệch pha giữa hai điểm MN nằm trên cùng một phương truyền là MN 2 d
+ Hai điểm cùng pha khi Δφ = 2kπ
+ Hai điểm ngược pha khi Δφ = (2k +1)π
+ Độ lệch pha giữa hai thời điểm của cùng một điểm là Δφ = ω.Δt
- Cho hai điểm M,N trên cùng một phương truyền cách nhau là d Biết trạng thái dao động của M tại thời điểm t xác định trạng thái dao động của N tại thời điểm đó (chú ý nếu tại thời điểm t sóng chưa kịp truyền đến N thì N đứng yên) khi đó:
𝜆 )
2 Các dạng bài tập cơ bản giao thoa sóng
Dạng 3: Viết phương trình giao thoa sóng tại 1 điểm
Áp dụng phương trình sóng tổng hợp tại một điểm để viết phương trình sóng tổng hợp tại một điểm đó
* Nếu hai nguồn cùng pha thì
+ Số cực đại tính cả hai nguồn là: 2 1 2 1
* Nếu hai nguồn ngược pha thì ngược lại của hai nguồn cùng pha
+ Số cực đại tính cả hai nguồn là: 1 2
Trang 24+ Số cực tiểu tính cả hai nguồn là: 1 2
Số giá trị nguyên của k thoả mãn các biểu thức trên là số đường cần tìm
Trang 25Biên độ dao động của phần tử tại M: 2 os(2 ) 2 sin(2 )
+ Phương trình sóng tới và sóng phản xạ tại B: u1B u2B Acos2 ft
+ Phương trình sóng tới và sóng phản xạ tại M cách B một khoảng d là:
4 Các dạng bài tập cơ bản sóng âm
Dạng 10: Bài toán liên quan đến mức cường độ âm và cường độ âm:
* Mối liên hệ giữa cường độ âm tại hai điểm:
R R
Dạng 11: Bài toán liên quan đến tần số do nhạc cụ phát ra:
* Tần số do đàn phát ra (hai đầu dây cố định hai đầu là nút sóng): ( k N*)
Trang 26+ k = 1,2,3… có các hoạ âm bậc 3 (tần số 3f1), bậc 5 (tần số 5f1)…
CHƯƠNG III DÒNG ĐIỆN XOAY CHIỀU
A LÝ THUYẾT
1 Cách tạo ra dòng điện xoay chiều
Cho khung dây dẫn diện tích S, có N vòng dây, quay đều với tần số góc trong từ trường
đều B ( B trục quay) Thì trong mạch có dđ biến thiên điều hòa với tần số góc gọi là dđxc
Lưu ý: Khi khung dây quay một vòng (một chu kì) thì dòng điện chạy trong khung
đổi chiều 2 lần
Hiện tượng cảm ứng điện từ: Là hiện tượng khi có sự biến thiên của từ thông qua một khung dây kín thì trong khung xuất hiện một suất điện động cảm ứng để sinh ra một dđ cảm ứng:
e = -’t = NBSsin(t + ) = NBScos(t + - /2) = E0 cos(t + - /2)
b Biểu thức điện áp tức thời và dòng điện tức thời:
u = U0cos(t + u) và i = I0cos(t + i) Trong đó: i là giá trị cường độ dđ tại thời điểm t; I0 > 0 là giá trị cực đại của i; > 0 là tần
số góc; (t + i) là pha của i tại thời điểm t; i là pha ban đầu của dđ
u là giá trị điện áp tại thời điểm t; U0 > 0 là giá trị cực đại của u; > 0 là tần số góc; (t +
u) là pha của u tại thời điểm t; u là pha ban đầu của điện áp
Với = u – i là độ lệch pha của u so với i, có
- Điện áp hiệu dụng cũng được định nghĩa tương tự
- Giá trị hiệu dụng bằng giá trị cực đại của đại lượng chia cho 2 :
- Dòng điện xoay chiều i = I0cos(2ft + i)
* Mỗi giây dòng điện đổi chiều 2f lần
* Nếu pha ban đầu i =
- Công thức tính thời gian đèn huỳnh quang sáng trong một chu kỳ:
Khi đặt điện áp u = U0cos(t + u) vào hai đầu bóng đèn, biết đèn chỉ sáng lên khi u ≥ U1
Trang 27Mạch chỉ có tụ điện Với điện dung C (F)
Lưu ý: Tụ điện C không cho dòng điện không đổi đi qua (cản trở hoàn toàn)
- Đoạn mạch RLC không phân nhánh
R, Pmax, cosφ = 1 gọi là cộng hưởng điện
- Nếu đoạn mạch không có đủ cả 3 phần tử R, L, C thì số hạng tương ứng với phần tử thiếu trong các công thức của ĐL Ôm có giá trị bằng không
- Nếu trong mạch có cuộn dây với hệ số tự cảm L và điện trở thuần thì cuộn dây đó tương đương mạch gồm L nt R
- Luôn có ZL ZC = L
O
O
O
Trang 284 Công suất tiêu thụ trên đoạn mạch RLC
- Công suất tức thời: P = UIcos + UIcos(2t + )
- Công suất trung bình (công suất tiêu thụ): P = UIcos = I2R
- Công suất tỏa nhiệt: PR = RI2
- Hệ số công suất: cos = = R
- Chú ý:
+ với mạch LC thì cos = 0 , mạch không tiêu thụ điện: P = 0
+ Điện năng tiêu thụ: A = P.t với A tính bằng J, P tính bằng W, t tính bằng s
R và công suất tiêu thụ đạt cực đại Pmax =
* u cùng pha với i: = 0, u = i; U = U R ; U L = U C ; cos = 1 R = Z
5 Máy phát điện xoay chiều một pha
- Hoạt động dựa trên hiện tượng cảm ứng điện từ, biến cơ năng thành điện năng
- Cấu tạo gồm 3 bộ phận:
+ Bộ phận tạo ra từ trường gọi là phần cảm: Là các nam châm
+ Bộ phận tạo ra dòng điện gọi là phần ứng: Là khung dây
+ Bộ phận đưa dđ ra ngoài gọi là bộ góp: Gồm 2 vành khuyên và 2 chổi quét
- Trong các máy phát điện: Rôto là phần cảm; Stato là phần ứng
- Trong máy phát điện công suất nhỏ
Rôto (bộ phận chuyển động) là phần ứng
Stato (bộ phận đứng yên) là phần cảm
- Tần số dòng điện do máy phát phát ra:
+ f = np
+ f = np Với p là số cặp cực, n là số vòng quay của rôto/giây
- Từ thông gửi qua khung dây của máy phát điện = NBScos(t +) = 0cos(t + ) Với 0 = NBS là từ thông cực đại, N là số vòng dây, B là cảm ứng từ của từ trường, S là diện tích của vòng dây, = 2f
- Suất điện động trong khung dây:
e = - ’ = NBSsin(t +) = NSBcos(t + - π/2) = E 0 cos(t + - π/2)
Với E0 = NSB = .0 là suất điện động cực đại
Pha của e chậm hơn pha của là π/2
Trang 296 Máy phát điện xoay chiều ba pha
- Máy phát điện xc ba pha là máy tạo ra ba sđđ xc hình sin cùng tần số, cùng biên độ và lệch nhau một góc 2
3
- Cấu tạo: Phần ứng là ba cuộn dây giống nhau gắn cố định trên một đường tròn tâm 0 tại
ba vị trí đối xứng, đặt lệch nhau 1 góc 1200 Phần cảm là một nam châm có thể quay quanh trục 0 với tốc độ góc không đổi
- Hoạt động dựa trên hiện tượng cảm ứng điện từ, biến cơ năng thành điện năng Khi nam
châm quay từ thông qua mỗi cuộn dây là ba hàm số sin của thời gian, cùng tần số góc , cùng biên độ và lệch nhau 1200 Kết quả trong ba cuộn dây xuất hiện ba sđđ xc cảm ứng cùng biên
- Máy phát mắc hình tam giác: Ud = Up
- Tải tiêu thụ mắc hình sao: Id = Ip
- Tải tiêu thụ mắc hình tam giác: Id = 3 Ip
7 Máy biến áp
- Hoạt động:Dựa trên hiện tượng cảm ứng điện từ.(vì vậy nên điện 1 chiều không chạy qua
được máy biến áp)
- Cấu tạo:
+ Lõi biến áp: Là các lá sắt non pha silic ghép lại Tác dụng dẫn từ
+ Hai cuộn dây quấn:
Cuộn dây sơ cấp D1 có hai đầu nối với nguồn điện có N1 vòng
Cuộn dây thứ cấp D2 có hai đầu nối với tải tiêu thụ có N2 vòng
- Tác dụng của MBA: biến đổi điện áp của dđxc mà vẫn giữ nguyên tần số MBA không
có tác dụng biến đổi năng lượng (công)
Trang 30- Chú ý: MBA tăng điện áp bao nhiêu lần thì làm giảm dđ đi bấy nhiêu lần và ngược lại
P1 = U2I2cos2
U1I1cos1
- Ứng dụng của MBA: Trong truyền tải và sử dụng điện năng
Ví dụ: Chỉ cần tăng điện áp ở đầu đường dây tải điện lên 10 lần thì có thể giảm hao phí đi
8 Công suất hao phí trong quá trình truyền tải điện năng:
* Nắm chắc bài toán truyền tải điện năng đi xa SGK
Công suất hao phí:
2 2
- Trong đó: P: công suất
truyền đi ở nơi cung cấp; U:
điện áp ở nơi cung cấp; cos:
hệ số công suất của dây tải
điện (thông thường cos = 1);R d l
S
là điện trở tổng cộng của dây tải điện (lưu ý: dẫn điện
bằng 2 dây)
- Độ giảm điện áp trên đường dây tải điện: U = RdI = Udi – Uđến
- Hiệu suất tải điện: đên đi
đi
P R
9 Động cơ không đồng bộ ba pha
- Hoạt động : Dựa trên hiện tượng cảm ứng điện từ và từ trường quay
- Cấu tạo: Gồm hai bộ phận chính là:
+ Rôto (phần cảm): Là khung dây có thể quay dưới tác dụng của từ trường quay
+ Stato (phần ứng): Gồn 3 cuộn dây giống hệt nhau đặt tại 3 vị trí nằm trên 1 vòng tròn sao cho 3 trục của 3 cuộn dây ấy đồng qui tại tâm 0 của vòng tròn và hợp nhau những góc 1200
Nơi Tiêu Thụ
MBA Tăng
P đến