1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi chọn HSG Nam Định 2006

2 202 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 53,5 KB

Nội dung

Toán học, Học sinh giỏi tỉnh Nam Định, Lớp 12, 2006 Bài từ Thư viện Khoa học VLOS. ĐỀ THI CHỌN HỌC SINH GIỎI TOÀN TỈNH Trường học Học sinh giỏi tỉnh Nam Định Lớp học 12 Năm học 2006 Môn thi Toán học Thời gian 150 phút Thang điểm 20 Sở Giáo dục - Đào tạo tỉnh Nam Định Bài 1 (5 điểm). Cho hàm số (với m là tham số). 1. Khi m = 0, gọi (d) là tiếp tuyến của đồ thị hàm số tại tiếp điểm có hoành độ x = 0, gọi (d') là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số. Tìm cosin của góc giữa (d) và (d'). 2. Xác định m để hàm số có cực đại và cực tiểu sao cho giá trị cực đại và giá trị cực tiểu trái dấu nhau. Bài 2 (4 điểm). Trên mặt phẳng tọa độ Oxy cho đường tròn elip (E) có phương trình: và đường tròn (C) có phương trình: . Từ điểm M trên (C) ta kẻ hai tiếp tuyến đến (E) là và với tiếp điểm theo thứ tự là và . 1. Khi M có hoành độ , hãy viết phương trình các đường thẳng và . 2. Khi M thay đổi trên (C), hãy tìm giá trị lớn nhất của khoảng cách từ M đến đường thẳng . Bài 3 (3 điểm). Trong không gian tọa độ Oxyz, cho hình lăng trụ tam giác đều OBC.O'B'C', biết: C(1;0;0), O'(0;0;1) và B nằm ở góc phần tư thứ nhất của mặt phẳng tọa độ Oxy. Gọi M, N, E theo thứ tự là trung điểm các cạnh BC, CC', C'O'. 1. Xác định tọa độ của điểm P thuộc đường thẳng OO' để PM = PE. 2. Với điểm P vừa tìm được, hãy tính thể tích khối tứ diện PMNE. Bài 4 (5 điểm). 1. Giải phương trình: 2. Giải phương trình: với . Bài 5 (3 điểm). 1. Chứng minh rằng: Nếu a là số dương sao cho bất phương trình , nghiệm đúng với mọi thì . 2. Tìm tất cả các số dương a là điều kiện cần và đủ để bất phương trình: , nghiệm đúng với mọi số thực x. . sinh giỏi tỉnh Nam Định, Lớp 12, 2006 Bài từ Thư viện Khoa học VLOS. ĐỀ THI CHỌN HỌC SINH GIỎI TOÀN TỈNH Trường học Học sinh giỏi tỉnh Nam Định Lớp học 12 Năm học 2006 Môn thi Toán học. học 2006 Môn thi Toán học Thời gian 150 phút Thang điểm 20 Sở Giáo dục - Đào tạo tỉnh Nam Định Bài 1 (5 điểm). Cho hàm số (với m là tham số). 1. Khi m = 0, gọi (d) là tiếp tuyến của đồ. thẳng đi qua hai điểm cực trị của đồ thị hàm số. Tìm cosin của góc giữa (d) và (d'). 2. Xác định m để hàm số có cực đại và cực tiểu sao cho giá trị cực đại và giá trị cực tiểu trái dấu nhau. Bài

Ngày đăng: 05/08/2015, 19:52

TỪ KHÓA LIÊN QUAN

w