1. Trang chủ
  2. » Đề thi

ĐỀ 2 LUYỆN THI ĐẠI HỌC MÔN TOÁN QUẢNG NAM

2 160 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 84 KB

Nội dung

ĐỀ 2 – TOÁN 12 – TIÊN GIANG – QUẢNG NAM I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (3,0 điểm) Cho hàm số 4 2 2xy x= − + có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dùng đồ thị (C), xác định m để phương trình sau có đúng bốn nghiệm phân biệt: 4 2 2 0x x m− + = ? Câu II: (3,0 điểm) 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3 2 ( ) 2x 3x 12x + 7f x = − − trên đoạn [ ] 0;3 . 2. Giải phương trình: x x 1 2 2 log (2 1).log (2 2) 12 + − − = 3. Tính tích phân: 2 2 0 .cos= ∫ I x xdx π Câu III: (1,0 điểm) Cho hình chóp S.ABC. Gọi M là một điểm thuộc cạnh SA sao cho MS = 2MA. Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC. II – PHẦN RIÊNG (3,0 điểm) Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc phần 2) 1. Theo chương trình chuẩn Câu IV.a: (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm M(1; 1;2);− N(2;1;2); P(1;1;4); và −R(3; 2;3) . 1. Viết phương trình mặt phẳng (MNP). Suy ra MNPR là một tứ diện. 2. Viết phương trình mặt phẳng đi qua R và song song với mặt phẳng (MNP). Câu V.a: (1,0 điểm) Tính môđun của số phức: 3 z 1 4i (1 i)= + + − 2. Theo chương trình nâng cao Câu IV.b: (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ): 2x y 2z 3 0− + − = và hai đường thẳng ( d 1 ) : x 4 y 1 z 2 2 1 − − = = − , ( d 2 ) : x 3 y 5 z 7 2 3 2 + + − = = − . 1. Chứng tỏ đường thẳng ( d 1 ) song song mặt phẳng ( α ) và ( d 2 ) cắt mặt phẳng ( α ). 2. Tính khoảng cách giữa đường thẳng ( d 1 ) và ( d 2 ). 3. Viết phương trình đường thẳng ( ∆ ) song song với mặt phẳng ( α ) , cắt đường thẳng ( d 1 ) và ( d 2 ) lần lượt tại M và N sao cho MN = 3. Câu V.b: (1,0 điểm) Đề thi tham khảo TN THPT năm 2009 Cho hình phẳng (H) giới hạn bởi các đường (C) : y = 2 x và (G) : y = x . Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành . ********** HẾT ********** Thí sinh không sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: Chữ ký giám thị 1: Chữ ký giám thị 2: Đề thi tham khảo TN THPT năm 2009 . nhỏ nhất của hàm số 3 2 ( ) 2x 3x 12x + 7f x = − − trên đoạn [ ] 0;3 . 2. Giải phương trình: x x 1 2 2 log (2 1).log (2 2) 12 + − − = 3. Tính tích phân: 2 2 0 .cos= ∫ I x xdx π Câu III: (1,0. ĐỀ 2 – TOÁN 12 – TIÊN GIANG – QUẢNG NAM I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (3,0 điểm) Cho hàm số 4 2 2xy x= − + có đồ thị (C) 1. Khảo sát sự biến thi n và vẽ đồ. IV.a: (2, 0 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm M(1; 1 ;2) ;− N (2; 1 ;2) ; P(1;1;4); và −R(3; 2; 3) . 1. Viết phương trình mặt phẳng (MNP). Suy ra MNPR là một tứ diện. 2. Viết

Ngày đăng: 31/07/2015, 16:14

w