1. Trang chủ
  2. » Đề thi

đề thi tuyển sinh toán lớp 10 chuyên nguyễn du đắc lắc

1 963 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 65,5 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂK LĂK ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2012 – 2013 MÔN THI: TOÁN - CHUYÊN (Thời gian 150 phút không kể thời gian giao đề) Ngày thi: 23/6/2012 Câu 1: (3,0 điểm) 1) Giải phương trình: 2 2 2 2 4 3x x x x + = − − + 2) Chứng minh rằng: 1 1 1 1 1.2.3 2002. 1 2 3 2001 2002 P   = + + + + +  ÷   L Câu 2: (3,0 điểm) 1) Tìm nghiệm nguyên của phương trình 3 6 52 0xy x y+ + − = 2) Tìm các số thực x, y thỏa mãn: 2 2 2 4 5 1 x y y x = − + + Câu 3: (2,0 điểm) Cho đường tròn (O) đường kính AB = 2R. Gọi C là điểm bất kỳ thuộc (O) (0 < CA < CB). Qua B vẽ đường thẳng d vuông góc AB, tiếp tuyến tại C cắt đường thẳng d tại D và đường thẳng AB tại E, OC cắt đường thẳng d tại F. 1) Chứng minh tứ giác BCEF là hình thang. 2) Gọi G là giao điểm của AC và EF. Giả sử tứ giác ODCG là hình bình hành. Tính OF theo R. Câu 4: (1,0 điểm) Xác định các góc của tam giác ABC biết AC < AB, đường cao AH và đường trung tuyến AM chia góc · BAC thành ba phần bằng nhau. Câu 5: (1,0 điểm) Số thực x thay đổi và thỏa mãn điều kiện: ( ) 2 2 3 5x x+ − ≥ . Tìm giá trị nhỏ nhất của biểu thức: ( ) ( ) 4 2 4 2 3 6 3A x x x x = + − + − . . ĐÀO TẠO ĐĂK LĂK ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2012 – 2013 MÔN THI: TOÁN - CHUYÊN (Thời gian 150 phút không kể thời gian giao đề) Ngày thi: 23/6/2012 Câu

Ngày đăng: 30/07/2015, 12:57

TỪ KHÓA LIÊN QUAN

w