1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử đại học môn Toán (27)

4 126 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 249 KB

Nội dung

ĐỀỬĐẠỌĐẲ Môn thi : TOÁN (ĐỀ 166) Bài 1(2 điểm):   !"#$% & & ' '  ( ' ' y x x= + − & )$**+!,-.$$/.$01234!#567589 ( Bài 2(3 điểm):  953:-*); & &  & &  & < x y x y xy x y x y  + + =  + +   − − + + − =   x y R ∈  & 53:-*); & &  (# ! !& ( & # x x x x x+ = −  = x R ∈  > )$$!.53:-*)#6!0-9$!*-? @ AB &       ;  & & C & C&  (D- & B @D- B B E & m x m m x − − + − + − = − Bài 3(1 điểm): FG9HI!0#$-!I6J-!8KIIL#A!!!? >SA SB SC a= = =  #M E(*!?HHIDND34DO7.$P#!HPLIL#(Q.Q!1%!05 (IPR#( Bài 4(2 điểm): QQ!58;  & & E (D  x x dx + ∫ &*-$S5T-?Uxy !.$ >A(VW553:-*)3X-T-GY6#!Z ![6G3:-!!*+!\#UxyF?]^#!G9Q!#$-!]^_O( Bài 5(1 điểm): *-1J--#=9\#U`7a!3X-T-G ;    & A   & x t y t t R z t = +   = + ∈   = +  3X-T-G & D -#67!"##$S5T- ];&`b7bLE ^;&`c7c&ab@LE(\D-#.$ !"#GG & (d53:-*)3X-T-G > Y6# &A>A-X!Z#3X-T-G   G & DND34?I#!#$-!I!8K( Bài 6(1 điểm): x, y, z E≥  & & & >x y z+ + = (F-$; > > > & & & > & &    x y z y z x + + ≥ + + + ((((((((((((((((((((((((((((((((((((  Đáp Án ĐỀỬĐẠỌĐẲ Môn thi : TOÁN (ĐỀ 166) I;   .$ UG6- e.$ f0$%; & & ' '  ( ' ' y x x= + − ⇔ 7L` B g&` & c  fhe;iA D$ A D$ x x y y →−∞ →+∞ = +∞ = +∞ A > j B B A j E EA y x x y x x= − = ⇔ = = ± fII; E(&@ fe\!k-1-A!!* E(&@ fdk- E(&@ &  .$ f\ #;E Ox∈ $/1234! #567589( fe3X-T-GY6#=9%-0!1!053:-*);7L1 `g# fGD!"# 1!K195#6!0-9$; B & > &    B B x x k x a I x x k  − + = −  − =  E(&@ f0 & E    E k I A x =  ⇔  − =  S! & & B   > B  E  x x k B x ax  − =   − + =   E(&@ f/9 !K!#$U567G67ODG;7LE(dW7./1234!>5 675= !N"D9 I5!0&-9$5 `A1=`1!  ± F!D 53:-*) 5!0&-$5`1!  ±  E(&@ ^; > >   & & a a− ≠ < − ≠ >hoÆc E(&@ I&; UG6- e.$   .$ f9 & &   @  l  m < x y x y x y  − + − = ⇔  − − − + − =  (eS   u x v y = −   = −  634!9 & & @  < u v uv u v  + =  + =  E(&@ f*#34!; > ( & u v u v + =   =  Af*#34!;    & u x v y = − =   = − =  S!  &   u x v y = − =   = − =  E(@E > & x y =  ⇒  =  S! & > x y =   =  E(&@ &  .$ fe; ! Ex ≠ (] > >  ! ! & ( &!  x x x x x⇔ + = − E(&@  ! (! ( & !  Ex x x x x⇔ + − = E(&@  ! EA& ! Ex x x x⇔ + = − = E(&@  A #*!# A   B & x k x l k l Z π π π ⇔ = − + = + ∈ E(&@ >  .$ f] & C & C & (D- & @D- &  Em x m x m ⇔ − − − − − + − =  feS [ ] C & @ D- & AB A & t x x t   = − ∈ ⇒ ∈ −     E(&@ 634!5; & & @    t t m f t t t − + = = − + A & & & B B j  A j  E   t f t f t t t t − = = ⇔ = ± − + E(&@ fVW5II!"#n *? [ ] A− O7n D+!I*? [ ] A−  o >A > m   ∈ −     _#$p[( E(@E & I>;  .$ f83X-!#!"#FG9?/KHD*6-.$!"#!? E(&@ fQ34! > ( >B & S ABC a V = E(&@ fP34! ( ( & ( q S MNC S ABC V V=  E(&@ > (IP ( o o >B ( q Er S ABC a V V⇒ = = E(&@ IB;   .$ fQ  & & E (D  I x x dx = + ∫ feS & & & > & D     > x du dx u x x dv x dx v x  =   = +   + ⇒   =    =     B > & & E E  & (D   > >  x I x x dx x ⇒ = + − + ∫ E(&@ fQ   B & & & E E  & l  m (((   > B x J dx x dx x x π = = − + = = − − + + ∫ ∫  E(@E fdW7  B (D & > q < I π = + + E(&@ &  .$ f/-#!0 AEA EA  E E(P a Q b a b> > fG!05;  x y a b + = ( E(&@ GY6# >A >  >   &( &( >ab a b ab + = ⇒ ≥ ⇒ ≥ (sO6t-`7*#1!K 1 < >  & a b a b =  = ⇒  =  E(&@ f0  ( ( > & OPQ S a b ∆ = ≥ ( OPQ S ∆ _O >= 1!K1 < & a b =   =  E(&@ fdW7G!05;  < & x y + = E(&@ I@; >   .$ fG & !05;      & A  > & x t y t t R z t =   = − + ∈   = −  f)$34! AA E(&@ #!0I cAc&Ac&   Agc&  A>g&   1;I1!1!  E t t ⇒ ≠ ≠  f#$-!I!8K  l  m E & IB IC AB AC =    =   uuur uuuur ur ( E(&@   ((( & t t =  ⇔ ⇔  =  ( E(&@ f/0!05G > ; & > A   & x y t R z t =   = ∈   = +  E(&@ Bài 6:   .$ #!0;dc>L > > > & & & & & &       x y z y z x y z x + + + + + + + + E(&@ > > & & & <   B & B & &  &  x x y VT y y + ⇔ + = + + + +  > > & & &   B & &  &  y y z z z + + + + + +  > > & & &   B & &  &  z z x x x + + + + + + E(&@ < < < > > > < > > > B & < & < & < & x y z VT + ≥ + + E(&@ & & & < > > > q  & & & r & & & VT x y z⇒ + ≥ + + = < > q > q > > & & & & & & & & & VT VP⇒ ≥ − = − = = 5!$ sO6t-`7*#1!K1`L7LaL E(&@ B . ĐỀỬĐẠỌĐẲ Môn thi : TOÁN (ĐỀ 166) Bài 1(2 điểm):   !"#$% &.  x y z y z x + + ≥ + + + ((((((((((((((((((((((((((((((((((((  Đáp Án ĐỀỬĐẠỌĐẲ Môn thi : TOÁN (ĐỀ 166) I;   .$ UG6- e.$ f0$%; & & '

Ngày đăng: 29/07/2015, 19:46

w