1. Trang chủ
  2. » Đề thi

Đề thi thử Đại học môn Toán năm 2013 lần 01 trường THPT chuyên Thoại Ngọc Hầu, An Giang.PDF

1 450 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 264,2 KB

Nội dung

TRƯỜNG THPH CHUYÊN THOẠI NGỌC HẦU ĐỀ THI THỬ ĐẠI HỌC NĂM 2013 AN GIANG Môn TOÁN – Khối A Thời gian làm bài 180 phút, không kể phát đề I. PHẦN CHUNG ( Cho tất cả thí sinh ) Câu I ( 2 điểm ). Cho hàm số 2 4 1 x y x    1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2) Tìm trên đồ thị (C) hai điểm A, B đối xứng nhau qua đường thẳng MN, biết     3;0 , 1; 1 M N    . Câu II ( 2 điểm ). Giải các phương trình, bất phương trình sau 1)   2 2 2 sin cos 2sin 2 sin sin 3 1 cot 2 4 4 x x x x x x                            . 2)       2 2 4 1 2 10 1 3 2 x x x      Câu III ( 1 điểm ). Tính tích phân   5 0 cos sin I x x x dx     Câu IV ( 1 điểm ). Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi cạnh bằng a và góc  0 60 BAD  . Hai mặt chéo ( ACC'A' ) và ( BDD'B' ) cùng vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của CD, B'C', biết rằng MN vuông góc với BD'. Tính thể tích của khối hộp ABCD.A'B'C'D' . Câu V ( 1 điểm ). Gọi a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng 2 2 2 52 2 2 27 a b c abc      II. PHẦN TỰ CHỌN ( Thí sinh chỉ được làm một trong hai phần A hoặc B ) A. Theo chương trình Chuẩn Câu VIa ( 2 điểm ) 1) Trong mặt phẳng tọa độ Oxy cho tam giác ABC có đỉnh   1;5 B và phương trình đường cao : 2 2 0 AD x y    , đường phân giác góc C là ': 1 0 CC x y    . Tính tọa độ các đỉnh A và C. 2) Viết phương trình đường thằng    đi qua điểm   1;1;1 A và vuông góc với đường thẳng   / 1 1 : 1 1 2 x y z      và cách điểm   2;0;1 B một khoảng lớn nhất. Câu VIIa ( 1 điểm ) Với n là số nguyên dương, chứng minh hệ thức             2 2 2 2 2 1 2 3 1 2 2 3 1 2 n n n n n n n n n n C C C n C n C C         B. Theo chương trình Nâng cao Câu VIb ( 2 điểm ) 1) Trong mặt phẳng tọa độ Oxy cho đường tròn   2 2 3 : 2 C x y   và Parabol   2 : P y x  . Tìm trên (P) các điểm M mà từ đó kẻ được hai tiếp tuyến tới đường trỏn (C) và hai tiếp tuyến này tạo với nhau một góc bằng 60 0 . 2) Trong không gian tọa độ Oxyz cho mặt phẳng   : 2 1 0 P x y z     và đường thẳng (d) là giao tuyến của hai mặt phẳng     : 2 2 0 à : 2 2 0 Q x y v R y z       . Viết phương trình đường thẳng    đi qua giao điểm A của (d) và (P);    nằm trong (P) và góc tạo bởi hai đường thẳng    và (d) bằng 45 0 . Câu VIIb ( 1 điểm ). Người ta sử dụng 5 cuốn sách Toán, 6 cuốn sách Vật lí, 7 cuốn sách Hóa học ( các cuốn sách cùng loại giống nhau ) để làm giải thưởng cho 9 học sinh, mỗi học sinh được hai cuốn sách khác loại. Trong số 9 học sinh trên có hai bạn Ngọc và Thảo. Tìm xác suất để hai bạn Ngọc và Thảo có giải thưởng giống nhau. Cảm ơ n(saithanh@gmail.com )gửitới www.laisac.page.tl Thí sinh không được sử dụng tài liệu, giám thị coi thi không giải thích gì thêm. . TRƯỜNG THPH CHUYÊN THOẠI NGỌC HẦU ĐỀ THI THỬ ĐẠI HỌC NĂM 2013 AN GIANG Môn TOÁN – Khối A Thời gian làm bài 180 phút, không kể phát đề I. PHẦN CHUNG ( Cho tất. cuốn sách Toán, 6 cuốn sách Vật lí, 7 cuốn sách Hóa học ( các cuốn sách cùng loại giống nhau ) để làm giải thưởng cho 9 học sinh, mỗi học sinh được hai cuốn sách khác loại. Trong số 9 học sinh. bạn Ngọc và Thảo. Tìm xác suất để hai bạn Ngọc và Thảo có giải thưởng giống nhau. Cảm ơ n(saithanh@gmail.com )gửitới www.laisac.page.tl Thí sinh không được sử dụng tài liệu, giám thị coi thi

Ngày đăng: 27/07/2015, 23:50

TỪ KHÓA LIÊN QUAN