1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 114

1 364 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 48,5 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ114) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = 2x 3 – 3(2m + 1)x 2 + 6m(m + 1)x +1 có đồ thị (C m ). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( ) +∞;2 Câu II (2 điểm) 1. Giải phương trình: 1)12cos2(3cos2 =+xx 2. Giải phương trình : 3 2 3 512)13( 22 −+=−+ xxxx Câu III (1 điểm) Tính tích phân ∫ + = 2ln3 0 2 3 )2( x e dx I Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính thể tích khối lăng trụ ABC.A’B’C’ biết khoảng cách giữa AA’ và BC là a 3 4 Câu V (1 điểm) Cho x,y,z thoả mãn là các số thực: 1 22 =+− yxyx .Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức 1 1 22 44 ++ ++ = yx yx P II. PHẦN TỰ CHỌN (3,0 điểm) Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa: (2 điểm) 1. Cho hình tam giác ABC có diện tích bằng 2. Biết A(1;0), B(0;2) và trung điểm I của AC nằm trên đường thẳng y = x. Tìm toạ độ đỉnh C. 2. Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Câu VIIa (1 điểm) Giải phương trình: 10)2)(3)(( 2 =++− zzzz , ∈z C. B. Theo chương trình Nâng cao Câu VIb (2 điểm) 1. Trong mp(Oxy) ,cho điểm A(-1 ;0), B(1 ;2) và đường thẳng (d): x - y - 1 = 0. Lập phương trình đường tròn đi qua 2 điểm A, B và tiếp xúc với đường thẳng (d). 2. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: 2 5 1 1 3 4 : 1 − + = − − = − zyx d 13 3 1 2 : 2 zyx d = + = − Viết phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng d 1 và d 2 Câu VIIb (1 điểm) Giải bất phương trình: 2log9)2log3( 22 −>− xxx Hết . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (Đ 114) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = 2x 3 – 3(2m + 1)x 2 +. 3(2m + 1)x 2 + 6m(m + 1)x +1 có đồ thị (C m ). 1. Khảo sát sự biến thi n và vẽ đồ thị của hàm số khi m = 0. 2. Tìm m để hàm số đồng biến trên khoảng ( ) +∞;2 Câu II (2 điểm) 1. Giải phương. ∫ + = 2ln3 0 2 3 )2( x e dx I Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên măt phẳng (ABC) trùng với tâm O của tam giác ABC. Tính

Ngày đăng: 26/07/2015, 09:08

w