1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 161

2 119 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 118 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 161- k) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số 2 1 1 x y x + = + (C) 1.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu II (2 điểm) 1.Giải phương trình sau: ( ) 6 6 8 sin 3 3sin 4 3 3 2 9sin 2 11x cos x x cos x x + + = − + . 2. Giải hệ phương trình: 2 2 3 3 2 1 2 2 y x x y y x  − =   − = −   . Câu III (1 điểm) Tính tích phân: I =. 2 1 1 1 xdx x+ − ∫ . Câu IV(1 điểm) Cho tứ diện ABCD có AC = AD = , BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng . Tính góc giữa (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng . Câu V (1 điểm) Cho x, y t/m: ( ) 2 2 2 1x y xy+ = + . Tìm GTLN-GTNN: 4 4 2 1 x y P xy + = + . II. PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần 1.Theo chương trình Chuẩn Câu VIa.( 2 điểm) 1. Trong mp với hệ tọa độ Oxy cho đường tròn : x 2 +y 2 - 2x +6y -15=0 (C ). Viết PT đường thẳng (Δ) vuông góc với đường thẳng: 4x-3y+2 =0 và cắt đường tròn (C) tại A;B sao cho AB = 6. 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: d 1 : 2 1 4 6 8 x y z− + = = − − và d 2 : 7 2 6 9 12 x y z − − = = − . Xét vị trí tương đối của d 1 và d 2 . Cho hai điểm A(1;-1;2) và B(3 ;- 4;-2), Tìm tọa độ điểm I trên đường thẳng d 1 sao cho IA + IB đạt giá trị nhỏ nhất. Câu VII.a (1 điểm) Giải phương trình sau trên tập hợp số phức: z 4 – z 3 +6z 2 – 8z – 16 = 0 . 2. Theo chương trình Nâng cao. Câu VIb.(2điểm) 1.Trong mặt phẳng Oxy cho elip (E): 2 2 1 4 3 x y + = và đường thẳng ∆ :3x + 4y =12. Từ điểm M bất kì trên ∆ kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định. 2.Trong không gian với hệ tọa độ Oxyz , cho M(1;2;3).Lập phương trình mặt phẳng đi qua M cắt ba tia Ox tại A, Oy tại B, Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất. Câu VIIb. (1 điểm) Giải phương trình: == HÕt == Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định. Hết . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 161- k) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số 2 1 1 x y x + = + (C) 1.Khảo sát sự biến thi n và vẽ. I (2 điểm) Cho hàm số 2 1 1 x y x + = + (C) 1.Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số đã cho. 2.Tìm trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu. d 1 sao cho IA + IB đạt giá trị nhỏ nhất. Câu VII.a (1 điểm) Giải phương trình sau trên tập hợp số phức: z 4 – z 3 +6z 2 – 8z – 16 = 0 . 2. Theo chương trình Nâng cao. Câu VIb.(2điểm) 1.Trong

Ngày đăng: 26/07/2015, 07:55

TỪ KHÓA LIÊN QUAN

w