1. Trang chủ
  2. » Đề thi

Đề thi thử đại học năm 2013 lần 3

1 116 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 83,91 KB

Nội dung

Tham gia trọn vẹn khóa LTĐH và Luyện giải đề để đạt 8 điểm Toán trở lên! www.moon.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THAM KHẢO ĐỀ THI THỬ ĐẠI HỌC NĂM 2013 Môn thi: TOÁN; khối A và khối A1, lần 3 Thời gian làm bài: 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số 2 2 = + x y x có đồ th ị là (C). a) Kh ả o sát và v ẽ đồ th ị hàm s ố đ ã cho. b) Tìm hai đ i ể m A, B trên (C) sao cho các ti ế p tuy ế n c ủ a (C) t ạ i A và B song song v ớ i nhau đồ ng th ờ i kho ả ng cách gi ữ a hai ti ế p tuy ế n đ ó đạ t giá tr ị l ớ n nh ấ t. Câu 2 (1,0 điểm). Gi ả i ph ươ ng trình sin cos 2tan 2 cos2 0. sin cos + + + = − x x x x x x Câu 3 (1,0 điểm). Gi ả i h ệ ph ươ ng trình 2 2 2 2 1 1 1  + + = + −   + − =   x x y y x y xy Câu 4 (1,0 điểm). Tính tích phân π 3 2 2 0 sin cos . 1 cos 2 = + ∫ x x I dx x Câu 5 (1,0 điểm). Cho hình chóp S.ABC có các m ặ t ph ẳ ng (SBC) và (ABC) vuông góc v ớ i nhau, các c ạ nh . = = = = AB AC SA SB a Tìm độ dài c ạ nh SC sao cho kh ố i chóp S.ABC có th ể tích b ằ ng 3 2 . 12 a Khi đ ó tính kho ả ng cách gi ữ a hai đườ ng th ẳ ng AB và SC theo a. Câu 6 (1,0 điểm). Tìm m để h ệ ph ươ ng trình sau có nghi ệ m ? ( ) ( ) 3 32 4 2 3 3 3 3 8 2 2 4 4 1 1 ( 1) 2 .  + + + =    + + + + − =  m x x x xy m x x x m x y x II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho hình thang cân ABCD với CD = 2AB, phương trình hai đường chéo của hình thang là ( ): 4 0;( ): 2 0. + − = − − = AC x y BD x y Biết rằng tọa độ hai điểm A, B đều dương và hình thang có diện tích bằng 36. Tìm tọa độ các đỉnh của hình thang. Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 0), I(1; 1; 1). Gọi (P) là mặt phẳng chứa đường thẳng AI và cắt các tia Oy, Oz tại các điểm B(0; b; 0), C(0; 0; c) Chứng minh rằng 2 + = bc b c và tìm b, c sao cho diện tích tam giác ABC đạt giá trị nhỏ nhất. Câu 9.a (1,0 điểm). Giải bất phương trình ( ) ( ) ( ) 2 2 2 3 3 3 2log 4 3 log 2 log 2 4. − + + − − ≤ x x x B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho điểm C(3; 0) và elip (E): 2 2 1 9 1 + = x y . Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A, B đối xứng với nhau qua trục hoành và tam giác ABC là tam giác đều. Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho các điểm (1;5;0), (3;3;6) A B và đường thẳng 1 1 : . 2 1 2 + − = = − x y z d Tìm điểm C trên đường thẳng d sao cho diện tích tam giác ABC đạt giá trị nhỏ nhất. Tính giá tr ị nhỏ nhất của diện tích tam giác ABC. Câu 9.b (1,0 điểm). Giải phương trình 2 2 2 4 2 3 4 2 4 1 2 2 2 1 log ( 1) log ( 1) log ( 1) log 1. 3 + + − − + = + + + − + x x x x x x x x . LTĐH và Luyện giải đề để đạt 8 điểm Toán trở lên! www.moon.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THAM KHẢO ĐỀ THI THỬ ĐẠI HỌC NĂM 20 13 Môn thi: TOÁN; khối A và khối A1, lần 3 Thời gian làm bài:. b ằ ng 3 2 . 12 a Khi đ ó tính kho ả ng cách gi ữ a hai đườ ng th ẳ ng AB và SC theo a. Câu 6 (1,0 điểm). Tìm m để h ệ ph ươ ng trình sau có nghi ệ m ? ( ) ( ) 3 32 4 2 3 3 3 3 8 2 2. trình ( ) ( ) ( ) 2 2 2 3 3 3 2log 4 3 log 2 log 2 4. − + + − − ≤ x x x B. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy cho điểm C (3; 0) và elip (E): 2 2 1 9

Ngày đăng: 24/07/2015, 19:43

w