1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Phương pháp giải toán hình học theo chuyên đề (p1)

23 618 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 16,09 MB

Nội dung

Phucntg phap giai ToAn Ilinh hoc theo chuycn lic- Nguyen Pliii Khanh, Nguyen Tat Thii 3 T u E-6;3 ve hai tie'p tuye'n EA, EB A, B la tie'p diem den C.. Tu dp suy ra I, G, H thang hang;

Trang 1

T R U N G T A M L U Y C N T H I D A I H O C V I N H V I £ N S A I G O N

Tdng chu bi§n: PHAM H 6 N G D A N H NGUYEN PHU KHANH - NGUYIN TAT THU NGUYEN TAN SIENG - TRAN VAN TOAN - NGUYEN ANH TRUCfNG

(Nhdm giao vien chuyen luyen thi B^i hpc)

PHUONG PHAP GIAI TOAN

HtNH HOC

Trang 2

Chiu trdch nhiem xuat ban

Gidm doc - Tong bi&n tap : TS P H A M THj T R A M

Bien tap : N G Q C L A M

Che ban : C O N G TY K H A N G V I E T

Trinh bay bia : C O N G TY K H A N G V I E T

Tong phdt hanh va doi tdc lien ket xuat ban:

I Tpa dp trong mat phang

• Cho u ( x p y j ) ; v(x2;y2) va k e R K h i do:

1) u + v = (xi + X 2 ; y i + y 2 ) 2) u - v = ( x i - X 2 ; y i - y 2 )

3) k u = ( k x i ; k y i ) 4) Z=Jx\+y\) u=vc ^r^ "''""''^

6) U V = X]X2 + y ] y 2 = > u l v < ; : > u v = 0<=> \-^\2 + y ] y 2 = 0

• H a i v e c t a u ( x j , y j ) ; v ( x 2 ; y 2 ) ciing phirang v a i nhau <=>

• Goc giija hai vec to u ( x j , y j ) ; v ( x 2 ; y 2 ) :

U V X i X 2 + y i y 2

c o s ( u , v ) =

u V Cho A ( x ^ ; y ^ ) ; B(xB;yB) K h i do :

• Cho tarn giac A B C v o i A{x^;y^), B(xB;yB), C{x^;y^) K h i do trong tarn

G ( x( , ; y g ) ciia tarn giac A B C la :

V _ X A + X B + X C

X G - ^

II PhirotTg trinh duong thang ,, ,^,

1 'Phuang trinh duong thdng 1.1 Vec to chi phucmg (VTCP), vec to phdp tuyen (VTPT) cua duong thang:

Cho d u o n g thang d

• n = (a;b) ?t 0 goi la vec to phap tuyen cua d neu gia ciia no v u o n g v o i d

Trang 3

• u = ( u j; u 2 ) ^ 0 goi la vec ta chi phuong cua d ne'u gia cua no trung hoac

song song voi duong thang d

Mot duong thang c6 v6 so VTPT va v6 so VTCP ( Cac vec to nay luon cung

phuong voi nhau)

• Moi quan he giua VTPT va VTCP: n.u = 0

• Ne'u n = (a; b) la mpt VTPT cua duong thang d thi u = (b; -a) la mot VTCP

cua duong thang d

• Duong thang AB c6 AB la VTCP

1.2 Phuwig trinh dumig thang

1.2.1 Phuatig trinh tong qudt cua duong thang:

Cho duong thMng d d i qua diem A(xQ;yQ) va c6 n = (a;b) la VTPT, khi do

phuong trinh tong quat ciia d c6 dang: a(x - X Q ) + b(y - yp) = 0

1.2.2 Phuovg trinh tham so cua duong thang:

Cho duong thSng d di qua diem A(xo;yo) va c6 u = (a;b) la VTCP, khi do

X = X Q + at phuong trinh tham so cua duong thang d la: , t G R

[y = y ( , + b t

2 Vi tri tuang doi giua hai duang thdng

Cho hai duong thcing dj : a^x + bjy + c^ = 0; d2 : a2X + b2y + C2 = 0 Khi do vi tri

|a,x + b,y + Cj = 0 tuong doi giua chung phu thuoc vao so nghiem cua h^ : < , (I)

[a2X + b2y+ C2 =0

• Neu (I) v6 nghiem thi d^ / /d2

• Ne'u (I) v6 so nghiem thi d^ = d j

• Ne'u (I) CO nghiem duy nha't thi dj va d2 cat nhau va nghiem ciia he la toa

do giao diem '

3 Goc giua hai dijcang thdng

Cho hai duong thang dj : a j X + b^y+ Cj =0; d2 :a2X + b2y + C2 = 0 Goi a

la goc nhon tao boi hai duong thang dj va d2

Ta CO : cosa = aja2 + bjb2

^/a^Tb^ ^/af+b

4 JChodng each tit mot diem den ducrng thdng

Cho duong th5ng A : ax + by + c = 0 va diem M ( X Q ; y ^ ) Khi do khoang each

tu M den A dugc tinh boi cong thuc:

Cty TNHH MTV DWH Khang Viet

d(M,(A)): axp + byp + c

Va^+b^

5 (phuong trinh duang phdn gidc cua goc tao boi hai duang thdng

Cho hai duong thang d^ : a^x + b^y + c^ = 0 va d2 : ajX + b2y + Cj = 0

Phuong trinh phan giac ciia goc tao boi hai duong thang la: - , v , •

a j X + b^y + Cj a2X + b2y + C2

+ ^ / a ^ ^ b [ • , i c - i ; ;

1 <Phuang trinh duang tron:

Cho duong tron (C) tam I(a; b ) , ban kinh R, khi do phuang trinh ciia (C) la: ( x - a) 2 + ( y - b ) 2 = R 2

Ngoai ra phuong trinh: x^ + y ^ - 2 a x - 2 b y + c = 0 voi a ^ + b ^ - o O cQng

la phuong trinh ciia duong tron c6 tam I(a;b), ban kinh R = Va^ + b^ - c

2 Phuang trinh tiep tuyen:

Cho duong tron ( C ) : ( x - a ) ^ + ( y - b ) ^ = R ^

• Tiep tuyen A ciia (C) tai diem M la duong thang d i qua M va vuong goc vai I M

• Duong thang A : Ax + By + C = 0 la tiep tuyen ciia (C) <=> d(I, A) = R '

• Duong tron ( C ) : (x - a ) ^ + (y - b)^ = R^ c6 hai tiep tuyen cung phuong voi

Oy la x = a ± R Ngoai hai tiep tuyen nay cac tiep tuyen con lai deu c6 dang:

y = kx + m

IV E lip

1 'i)inh nghra.-Trong mat phang cho hai diem co'djnh Fi ,F2 c6 Y^Yj =2c Tap

hop cac diem M cua mat phang sao cho MF^ +MF2 =2a (2a khong doi va

a > c > 0) la mot duong elip

• F,,F2 : la hai tieu diem va 2c la tieu cu ciia elip

• MF|,MF2 : la cac ban kinh qua tieu

2 Phuang trinh chinh tdc cua elip:

4 + 4 = ^ voi b^=a^-c^ K'

a 2 b^

Vay diem M(xo;y(,) e (E) • = 1 va <a Yo < b ,

Trang 4

Phumtg phcip giiii Toan Hhih hoc theo chuyen tie- Nguyen Phu Khdnh, Nguyen Tat Thu

3 Tinh chat v>d hlnh dang cua elip: Cho (E): — + ^ = 1 , a > b

a b

• True doi xung Ox,Oy Tarn dói xiing O j ,

• Dinh: A[(-a;0), A2(a;0), 6^(0;-b) va 62(0; b ) ÂA2 = 2a goi la do dai

true Ion, B]B2 = 2b goi la do dai true bẹ

• Noi tiep trong hinh ehir nhat co so PQRS

C O kích thuoc 2a va 2b voi b^ = â - ệ

1 ^inh nghia: Trong mat phang voi h$ toa do Oxy eho hai diem Fi, F2 eo

FjF2 =2c Tap hop cac diem M ciia mat phSng sao eho MF^ - M F j =2a (2a

khong doi va c > a > 0 ) la mpt Hypebol

• Fp F2 : la 2 tieu diem va F|F2 = 2e la tieu eụ

• 1VIF[,MF2 : la eac ban kinh qua tieụ

2 'Phimng trinh chinh idc cua hypebok x^ y^

â

= 1 voi h^=c^-ậ

3 Tinh chat vd hlnh dang cua hypebol (fi):

• True doi xung Ox (true thuc), Oy (true ao) Tam doi xung O

• Dinh: Aj(-a;0), A2 (a;0) D Q dai true thuc: 2a va do dai true ao: 2b

• Tieu diem Fi(-e; 0), Fj ( c; O)

• Hai tiem can: y = ± —x

a

• Hinh eho nhat co so PQRS c6 kieh thuoe 2a, 2b voi b^ = c^ - ậ

• Tam sai: e = — =

a

• Hai duong chuan: x = ±— = ± —

Cty TNHH MTV DWH Khang Viet

• D O dai cac ban kinh qua tieu cua M ( x o ; y ( , ) e ( H ) : +) MF^ = ex„ + a va MF2 = e X ( , - a khi X Q > 0 +) MFj = -exp - a va MF2 = -exp + a khi X Q < 0

Parabol la tap hop cae diem M cua mat phang each deu mot duong thang

A c o ' d i n h v a m o t diem F co dinh khong thuoe A

A : duong chuan; F : tieu diem va d(F,A) = p > 0 la tham sótieụ

2 'Phuxmg trinh chinh tdc cua ^arabd: = 2px 3.jrinh dang cua Parabol (<P):

• True Ox la true dói xung, dinh Ọ Tieu diem F ( ^ ; 0 )

• Duong chuan A : x =

• M ( x ; y ) e ( P ) : MF = x + ^ voi x > 0

B, CAC BAI THlfONG GAP

§ 1. cAc B A I T O A N C O B A N

1 Xg.p phuang trinh duang thang

De lap phuong trinh duong thang A ta thuong dung cac each sau

• T i m diemM(xo;yo) ma A di qua va mot VTPT n = (a;b) Khi do phuong trinh duong thang can lap la: ăx - X Q ) + b ( y - yp) = 0

• Gia su duong thang can lap A : ax + by + e = 0 Dua vao dieu kien bai toan ta tim dugc a = mb,c = n b Khi do phuong trinh A : m x + y + n = 0 Phuong phap nay ta thuong ap dung doi voi bai toan lien quan den khoang each va goe

• Phuong phap quy tich: M(xQ;yQ)e A:ax + by + e=^Oc:> axy + by^ + e = 0

Vidu 1.1.1.Trong mat phSng voi he toa do Oxy cho duong tron

( C ) : ( x- ] ) 2 + ( y - 2 ) 2 = 2 5

1) Viet phuong trinh tiep tuyen ciia (C) tai diem M(4;6), ' 2) Viet phuong trinh tiep tuyen cua (C) xuát phat t u diem N ( - 6 ; l )

Trang 5

Phucntg phap giai ToAn Ilinh hoc theo chuycn lic- Nguyen Pliii Khanh, Nguyen Tat Thii

3) T u E(-6;3) ve hai tie'p tuye'n EA, EB (A, B la tie'p diem) den (C) Viet

phuong trinh d u o n g thang A B

D u o n g tron (C) c6 tam 1(1; 2), ban kinh R = 5

1) Tie'p tuyen d i qua M va vuong goc v o i I M nen nhan I M = (3;4) lam VTPT

Nen p h u o n g trinh tie'p tuye'n la: 3(x - 4) + 4(y - 6) = 0 <=> 3x + 4y - 36 = 0

2) Gpi A la tie'p tuye'n can t i m

Do A d i qua N nen p h u o n g trinh c6 dang

A : a ( x + 6) + b ( y - l ) = 0<=>ax + by + 6 a - b = 0, a^ + b^ (*)

Ta c6:

7a+ b d(I,A) = R o

l A N A = 0 [(a - l)(a + 6) + (b - 2)(b - 3) = 0

= ^ 7 a - b + 20 = 0

T u do ta suy ra duoc A e A : 7 x - y + 20 = 0

Tuong t u ta cung c6 dug-c B e A = > A B = A = > A B : 7 x - y + 20 = 0

2 Cdch lap phimng trinh dizcrng tron

De lap p h u o n g trinh d u o n g tron (C) ta thuong su dung cac each sau

Cdch 7;Tim tam I(a;b) va ban kinh ciia d u o n g tron K h i do p h u o n g trinh

d u o n g tron co dang: (x -a)^ + ( y - b)^ =

Cdch 2;Gia su p h u o n g trinh d u o n g tron co dang: x^ + y^ - 2ax - 2by + c = 0

8

Cty TNHH MTV DWH Khang Viet

Dua vao gia thie't cua bai toan ta tim dugc a,b,c Cach nay ta t h u o n g ap dung khi yeu cau viet phuong trinh d u o n g tron di qua ba diem

Vi du 1.1.2. Lap p h u o n g trinh d u o n g tron (C), bie't 1) (C) d i qua A(3;4) va cac hinh chie'u ciia A len cac true toa do

2) Goi I(a;b) la tam ciia d u o n g tron (C), v i l € ( C i ) nen: ( a - 2 ) + b = - (1)

Do (C) tie'p xuc voi hai d u o n g t h i n g A ^ A j nen d(I, A j ) = d(I, A2)

a - b a - 7 b

<=>b = -2a,a = 2b

• b = -2a thay vao (1) ta CO dugc:

(a - if- + 4a^ = - <=> 5a^ - 4a + — = 0 phuong trinh nay v6 nghiem

• a = 2b thay v a o ( l ) taco: ( 2 b - 2 r + b ' ' = - < : : > b = - , a = -

o 0 0

Suy ra R = D ( I , A , ) = Vay p h u o n g trinh ( C ) :

3 Cac diem, ctqc biet trong tam gidc

Cho tam giac ABC K h i do:

( 8l 2 r 4^ ' 8 -:l.:J

x — + y

-I 5j 5 , 25

Trang 6

Phumig phdpgidi Todn Hiith hoc theo chiiyen de - Nguyen Phi't Klidnh, Nguyen Tat Thu

• Trong tam G

• True tam H :

3 ' 3 AH.BC = 0

BH.AC = 0 Tam duong tron ngoai tiep I: lA^ = IB^ lA^ = IC^

• Tam duong tron noi tiep K :

Chu y:C6 the tim K theo each sau:

* Ta CO AK = KD tu day ta c6 K

BD ^ Tam duong tron bang tiep (goc A) J: AB.AJ AC.AJ AB AC

BJ.BC AB.BJ

BC AB l?jdui.i.3.Cho tam giac ABC c6 A(1;3),B(-2;0),C 5 3

1) Tim toa do true tam H, tam duong tron ngoai tiep I va trong tam G cua

tam giac ABC Tu dp suy ra I, G, H thang hang;

2) Tim toa do tam duong tron noi tiep va tam duong tron bang tiep goc A

cua tam giac ABC

AH = (x-l;y-3),BH = (x + 2;y),BC = 21 3 ,AC = ( 3 _21 8' 8

CUj TNHH MTV DWH Khang Viet

Ma < AH.BC = 0 nen ta eo BH.AC = 0

3 1

7(x-l) + (y-3) = 0 j7x + y-10 = 0 (x + 2) + 7y = 0 [x + 7y + 2 = 0

3

X = —

2

y = -: 1 2' 2

Suy ra H Goi I(x;y), taeo:

Ma AK = (x-l;y-3),BK = (x + 2;y),AB = (-3;-3) nen (*) tuong duong voi -3(x-l)-3(y-3) - 8 ^ ^ - ^ ) - f ^ y - ' ^

3(x.2).3y 8 ^ - " ' ^ " ^

2x - y = -1 x = 0 x-2y = -2 [y = l

8 ^ Vay K(0;1)

Goi J(a;b) la tam duong tron bang tiep goc A eiia tam giac ABC Ta co:

Trang 7

Phuvng phlip gidi Todn Hinh hoc theo chiiyen dc- Nguyen Phu Khdnh, Nguyen Tat Tltu

BC ~ AB

2a - b = - 1 2a + b = -4

4 Cdc duang ddc hiet trong tam gidc

4.1. D u a n g trung tuyen cua tam giac: K h i gap duong trung tuyen cua tam

giac, ta chu yeu khai thac tinh chat d i qua dinh va trung diem cua canh do'i dien

4.2. D u o n g cao cua tam giac: Ta khai thac tinh chat d i qua d i n h va vuong

goc voi canh do'i dien

4.3. D u o n g trung true cua tam giac: Ta khai thac tinh chat d i qua trung

diem va vuong goc voi canh do

4.4. D u o n g phan giac trong: Ta khai thac tinh chat ne'u M thuoc AB, M ' doi

xung voi M qua phan giac trong goc A thi M ' thuoc A C

Vidu 7.i.4.Trong mat ph^ng v o i he tpa do O x y , hay xac d j n h toa do d i n h C

cua tam giac ABC bie't rang hinh chie'u vuong goc cua C tren d u o n g thang

AB la diem H ( - l ; - l ) , d u o n g phan giac trong cua goc A c6 p h u o n g trinh

x - y + 2 = 0 va d u o n g cao ke t u B c6 phuong trinh 4x + 3y - 1 = 0

JCffigidi

K i hi?u d , : X - y + 2 = 0, d2 : 4x + 3y - 1 = 0

Goi H ' la diem doi x u n g voi H qua d j K h i do H ' E A C

Goi A la d u o n g thang d i qua H va vuong goc v o i d j

x + y + 2=::0 Phuong trinh cua A : x + y + 2 = 0 Suy ra A n d j = I :

x - y + 2 = 0 I(-2;0)

Nen A C n d j = A :

Ta CO I la t r u n g diem ciia H H ' nen H ' ( - 3 ; l )

D u o n g thang A C d i qua H ' va vuong goc voi d j nen c6 p h u o n g trinh :

•A(5;7)

12

Cty TNHH MTV DWH Khang Vie

Vi du 1.1.5. Trong mat phang vai he toa do Oxy , cho tam giac ABC biet

A ( 5 ; 2 ) Phuong trinh d u o n g trung true canh BC, d u o n g t r u n g tuyen C C Ian l u ^ t la x + y - 6 = 0 va 2 x - y + 3 = 0 T i m toa do cac d i n h B,C cua tam giac ABC

Xgfi gidi

Goi d : x + y - 6 = 0, C C : 2 x - y + 3 = 0 Ta c6: C(c;2c + 3) Phuong trinh BC : x - y + c + 3 = 0

Goi M la t r u n g diem ciia BC, suy ra M :

3 ' 3 , C

14 37

3 ' 3

5 Mot sobdi todn dung hinh ca ban

5.1. H i n h chie'u v u o n g goc H cua diem A len d u o n g thang A

• Lap d u o n g thang d d i qua A va vuong goc v o i A

• D u n g r doi x u n g v o i I qua d u o n g thang A

• D u o n g tron ( C ) c6 tam I ' , ban kinh R

Chii y: Giao diem ciia (C) va ( C ) chinh la giao diem cua va A

5.4. D u n g d u o n g thang d ' doi xung voi d qua d u o n g thang A

• Lay hai diem M , N thuoc d D u n g M ' , N ' Ian luot d o i x u n g v o i M , N qua A

'if!', r<(.:

• d ' = M ' N '

Trang 8

Phumig phdp gidi Todii Uinh hoc theo chuyen dc - Nguyen Pliii Khdnh, Nguyen Tat Thti

Vidu 1.1.6.Trong mat phang Oxy cho d u o n g thang d : x - 2 y - 3 = 0 va hai

diem A(3;2), B ( - l ; 4 )

1) T i m diem M thuoc d u a n g thang d sao cho M A + M B nho nhat,

2) Viet p h u o n g t r i n h d u a n g thang d ' sao cho d u o n g thang A : 3x + 4y + 1 = 0

la d u o n g phan giac ciia goc tao boi hai d u o n g thang d va d '

JCffigidi

1) Ta tha'y A va B n a m ve m o t phia so v o i d u o n g thang d Goi A ' la diem doi

x u n g v o i A qua d K h i do v a i m o i diem M thuoc d, ta l u o n c6: M A = M A '

V i A la phan giac cua goc h g p bai giiia hai d u a n g thang d va d ' nen d va

d ' do'i x u n g nhau qua A , do do l e d '

'3 _ 1 6 ' 5 ' " 5

Lay E(3;0) G d , ta tim dugc F la d i e m do'i x i i n g v a i E qua A , ta c6

F e d ' Suy ra FI = (2 U

5 ' 5 , do do p h u o n g trinh d ' : l l x - 2y - 1 3 = 0

Cty TNHH MTV DWH Khang Viet

CP BAI TAP Bai l - l - l - Trong mat phang Oxy cho tam giac ABC CO A ( 2 ; l ) , B(4;3), C ( - 3 ; - l )

1) T i m toa do true tam, tam d u o n g tron ngoai tiep tam giac A B C 2) Viet p h u o n g t r i n h d u o n g tron ngoai tiep tam giac ABC

Jiuang ddn gidi

1) Goi H ( x ; y ) la true tam tam giac ABC, ta c6: A H B C = 0

BH.AC = 0

'(x - 2)(-7) + (y - 1 ) ( - 4 ) = 0 J7x + 4y - 1 8 = 0 (x - 4)(-5) + (y - 3)(-2) = 0 ^ [Sx + 2y - 26 = 0 ^

X = 34

y = -46 Vay H 34 46

Goi I ( x ; y ) la tam d u a n g tron ngoai tiep tam giac ABC, ta c6:

Bai 1.1.2. Trong mat phang toa do Oxy cho tam giac ABC c6 A(3;2) va

p h u o n g t r i n h hai d u a n g trung tuyen B M : 3x + 4y - 3 = 0 , C N : 3x - lOy - 1 7 = 0 Tinh toa do cac diem B, C

Jiuang dan gidi : ? ; • ;

Goi G la trong tam ciia tam giac, suy ra toa do ciia G la nghiem cua he '3x + 4y - 3 = 0

3 x - 1 0 y - 1 7 = 0

7

^ = 3 [ y = - l

> ; r J J ' I ' i

Trang 9

-Phumig phdpgiiii Toan Hitih hoc theo chuyen de- Nguyen Phi'i Khanh, Nguyen Tat Thu

Goi E la trung diem ciia BC, suy ra EA = - G A => E(2;

Gia sir B(a;b), suy ra C ( 4 - a ; - 5 - b ) T u do ta c6 h^:

Bai 1.1.3. Trong mat phang toa do Oxy cho tam giac A B C c6 A ( - 3 ; 0 ) va

p h u o n g trinh hai d u o n g phan giac trong B D : x - y - 1 = 0,CE : x + 2y +17 = 0

Tinh toa do cac diem B, C

Jiu&ng ddn gidi

Gpi A^ d o i x i i n g v o i A qua BD, suy ra A j e BC va A ^ ( l ; - 4 )

A j do'i x u n g v o i A qua CE, suy ra A 2 e BC va A 2 ( - — ; - — )

5 5 Suy ra p h u o n g trinh BC : 3x - 4y - 1 9 = 0

x - y - l = 0 Toa dp B la nghi^m cua he:

Toa do C la nghiem cua he:

Bai 1.1.4.Trong mat phSng toa do Oxy cho tam giac A B C c6 C(5;-3) va

p h u o n g trinh d u o n g cao A A ' : x - y + 2 = 0 , d u o n g trung tuyen

B M : 2x + 5y - 1 3 = 0 Tinh toa do cac diem A , B

Jiixang ddn gidi

Ta CO p h u o n g trinh BC: x + y - 2 = 0

fx = - l Suy ra toa do ciia B la nghiem cua he: x + y - 2 = 0

2x + 5 y - 1 3 = 0 l y = 3 • B ( - l ; 3 ) Gpi A(a;a + 2), suy ra toa do ciia trung diem A C la M + 5 a - 1 ^

M a M e B M nen 2 ^ y ^ + 5 ^ - 1 3 = 0 « a = 3 =^ A ( 3 ; 5 )

Vay A(3;5),B(-1;3)

Bai 1.1.5. Trong mat phang toa dp Oxy cho tam giac A B C CO B(l; —3) va

p h u o n g trinh d u o n g cao A D : 2 x - y + 1 = 0, d u o n g phan giac C E : x + y - 2=::0

.Tinh toa dp cac diem A , C

Cty TNHH MTV DWH Khang Viet Jiic&ng ddn gidi

Ta CO p h u o n g trinh B C : x + 2y + 5 = 0

[x + y - 2 = 0 [x = 9 Tpa dp diem C la nghiem '^"^ L ^ 2y + 5 = 0 ^ |y = - 7 Gpi B' la diem d o i x u n g v o i B qua CE, suy ra B'(5;l) va B' e A C

Bai 1.1.6. Trong mat phang v o i h^ tpa dp Oxy, cho tam giac ABC co M (2; 0)

la trung diem cua canh AB D u o n g trung tuyen va d u o n g cao qua d i n h A Ian

lupt CO p h u o n g trinh la 7x - 2y - 3 = 0 va 6x - y - 4 = 0 Viet p h u o n g trinh

duong thang A C

Jiu&ng ddn gidi

| ' 7 x - 2 y - 3 = 0 Toa do A thoa m a n he: <^

• • [ 6 x - y - 4 = 0

V i B do'i xiing v o i A qua M nen suy ra B = (3; - 2 )

D u o n g thSng BC d i qua B va vuong goc v o i d u o n g thSng: 6x - y - 4 = 0 nen suy ra

Phuong trinh B C : x + 6y + 9 = 0

' 7 x - 2 y - 3 = 0 ' x + 6 y + 9 = 0 Tpa dp trung diem N cua BC thoa man he: •N Suy ra A C = 2 M N = (-4; - 3)

Trang 10

Phumig phtip giai Toan Hinh hoc theo chuyen dS"- Nguyen Phu Khdnh, Nguyen Tat Thii

1) Gia six A : ax + by + c = 0 la tiep tuyen ciia (C)

Bai toan co ban ciia phuong phap toa do trong mat phang la bai toan xac

dinh toa do ciia mot diem ChSng han, de lap phuong trinh duong thang can

tim mot diem di qua va VTPT, voi phuong trinh duong tron thi ta can xac djnh

tarn va ban kinh Chung ta co the gap bai toan tim toa do ciia diem dugc hoi

true tiep hoac gian tiep

• Ve phuong dien hinh hgc tong hgp thi de xac dinh toa do mot diem, ta

thuong chiing minh diem do thugc hai hinh (H) va (H') Khi do diem can tim

chinh la giao diem ciia (H) va (H')

• Ve phuong di^n dai so, de xac dinh toa do ciia mot diem (gom hai toa do) la

bai toan di tim hai an Do do, chiing ta can xac djnh dugc hai phuong trinh

chiia hai an va giai he phuong trinh nay ta tim dugc toa do diem can tim Khi

thiet lap phuong trinh chiing ta can luu y:

+) Tich v6 huong ciia hai vec to cho ta mgt phuong trinh,

+) Hai doan thang bang nhau cho ta mgt phuong trinh,

+) Hai vec to bang nhau cho ta hai phuong trinh,

Cty TNHH MTV DWH Khang Viet

+) Neu diem M e A : ax + by + c = 0,a ^ 0 thi M - b m - c - ; m , liic nay toa

do ciia M chi con mgt an va ta chi can tim mgt phuong trinh

Vi da 1.2A. Trong mat phang Oxy cho duong tron (C): (x - 1 ) ^ + (y - 1 ) ^ = 4

va duong thang A : x - 3 y - 6 = 0 Tim tga dg diem M nam tren A , sao cho tvr M ve dugc hai tiep tuyen MA, MB (A,B la tiep diem) thoa AABM la tam giac vuong

Xgigiai

Duong tron (C) co tam 1(1; 1), ban kinh R = 2

Vi AAMB vuong va I M la duong phan giac ciia goc AMB nen A M I = 45°

Trong tam giac vuong l A M , ta co:

IM = 2V2, suy ra M thugc duong tron tam I ban kinh R' = 2 Mat khac M e A nen M la giao diem ciia A va (I,R') Suy ra tga do ciia M la nghiem ciia he

x = 3 y + 6

x - 3 y - 6 = 0 ( x - i ) 2 + ( y - i ) 2 =8 " [(3y + 5)2 + ( y - l ) ' =8 'x = 3y + 6

Vay CO hai diem M j (3; - l ) va M 2 - ; — thoa yeu cau bai toan

Vi du 1.2.2. Trong mat phSng voi he tga do Oxy cho cac duong thang

d i : x + y + 3 = 0, d j : x - y - 4 = 0, dg : x - 2 y = 0 Tim tga do diem M nam tren duong thSng sao cho khoang each tu M den duong thang d^ bang hai Ian khoang each tu M den duong thang d2

Xffi gidi

Taco M e d 3 , s u y r a M(2y;y) Suy ra d(M,di) = — ^ ; d ( M , d 2 ) = ^ ^ Theo gia thiet ta co: d(M,di) = 2d(M,d2) <^ 3y + 3 ^ 2 l y - 4

Trang 11

Phuvng plidp gidi Toiin Hiith hoc theo chuyen dc- Nguyen Phii Klidnh, Nguyen Tn't Thu

Vi du 1.2.3 Tron g he toa do O x y , cho die m A(0; 2) va d u o n g th3ng

d : x - 2 y + 2 = 0 T i m tren d u o n g thang d hai diem B, C sao cho tam giac

Vay CO hai bp d i e m thoa yeu cau bai toan la:

Vay B ( 3 ; - 1 ) ; C ( 5 ; 3 ) hoac B ( - 1 ; 3 ) , C ( 3 ; 5 )

( b - l f - ( c - 4 f 3

xy = 2 x = 2 x - - 2 x ^ - y ^

<=> • V <

x ^ - y ^ = 3 y = i y = - 1

Cty TNHH MTV DWH Khang Viet

Vi du 1.2.5 Cho parabol (P): y^ = x va hai diem A(9; 3), B ( l ; -1) thupc (P)

Gpi M la diem thupc cung A B cua (P) (phan ciia (P) bi chan b o i day A B ) Xac djnh tpa dp d i e m M nam tren cung A B sao cho t a m giac M A B c6 dien tich ion nha't

JCgi gidi

P h u o n g t r i n h A B : x - 2y - 3 = 0

Vi M G (P) => M ( t ^ ; t) t u gia thiet suy ra - 1 < t < 3

Tam giac M A B c6 dien tich ion nha't o d ( M , AB) Ion nha't

Vi du 2.6 T r o n g mat phang Oxy cho d u o n g tron (C): (x - 1 ) ^ + y^ = 2 va

hai diem A ( l ; - 1 ) , B(2;2) T i m tpa diem M thupc d u o n g tron (C) sao cho dien tich tam giac M A B bang ^

Xffi gidi

Ta CO A B = Vio va S^^^AB = - d ( M , A B ) A B = d ( M , A B ) =

Lai CO A B = (1;3) nen n = ( 3 ; - l ) la VTPT ciia d u o n g thang A B Suy ra p h u o n g t r i n h A B : 3(x - 1 ) - ( y +1) = 0 hay 3 x - y - 4 = 0 Gpi M ( a ; b) e (C) => (a - i f + b^ = 2

b = 3a - 5 ( a - 1 ) 2 + ( 3 a - 5 ) 2 = 2

b = 3a - 5

3 a - b - 4 = l

( a - l ) 2 + b 2 = : 2 i ) k > , J

3 a - b - 4 = - l ( a - l ) 2 + b2 = 2

b = 3a - 3

hoac ( a - 1 ) ' + ( 3 a - 3 ) 2 = 2 v i , h ; ^ / , „

b = 3 a - 3

21

Ngày đăng: 09/07/2015, 00:52

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w