Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
502 KB
Nội dung
Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A 1. Sau đây là 12 đề thi thử học kỳ 2-lớp 11. Các đề thi này bám sát cấu trúc ma trận đề thi của trường. Đề thi chỉ mang tính tham khảo. 2. Đề thi (Đề cương) bao gồm các kiến thức trọng tâm của chương trình học kỳ 2. 3. Trong phần đề thi, phần tự chọn ở chương trình nâng cao, các bài toán được tuyển chọn đặc biệt là phần tiếp tuyến tương đối khó- nhằm giúp các học sinh 11 tiếp cận và quen dần với đề thi đại học. GV: Nguyễn Hữu Tân 1 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) x x x x x 2 2 1 4 3 lim 2 3 2 → − + − + b) x x x x 2 0 2 1 1 lim 3 → + − + 2011 2 2009 2011 2010 1 )lim 2009 n n c n n + + + Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x 0 2= : 1 2 3 2 ( ) 2 4 2 x khi x f x x khi x − − ≠ = − = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 2 2 4 2 1 x x y x + − = + b) 4 8tany x= + Câu 4: (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = a 3 , SD= a 7 và SA ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và SB. a) Chứng minh rằng các mặt bên của hình chóp là các tam giác vuông. b) Tính góc hợp bởi các mặt phẳng (SCD) và (ABCD). c) Tính khoảng cách từ S đến mặt phẳng (MND). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình m x x 2 5 (1 ) 3 1 0− − − = luôn có nghiệm với mọi m. Câu 6a: (2,0 điểm) a) Giải phương trình f’(x)=0, biết rằng: ( ) 3cos 4sin 5f x x x x= + + b) Cho hàm số y x x 4 2 3= − + có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng -1. 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình x x x x 2 cos sin 1 0+ + = có ít nhất một nghiệm thuộc khoảng (0; π). Câu 6b: (2,0 điểm) a) Chứng minh rằng 1n ≥ , ta có : ( ) ( )( ) 6 121 1 321 2 2 222 ++ =+−++++ nnn nn b) Cho hàm số 3 2 3y x x= − − + có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm có hệ số góc lớn nhất Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 2 ĐỀ THI THỬ SỐ 1 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 5 5 2 2 2 1 lim 2 7 n n n n + + + + b) 1 3 2 lim 1 x x x → + − − 2 3 ) lim 2 x x c x + → + − Câu 2: (1,0 điểm) Tìm m để hàm số sau liên tục tại điểm x = -1: 2 1 ( ) 1 2 1 x x khi x f x x m khi x + ≠ − = + = − Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 2 .siny x x= b) 2 ( 2) 4y x x= + + Câu 4: (3,0 điểm) Cho tam giác đều ABC cạnh bằng a. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại B, ta lấy một điểm M sao cho MB = 2a. Gọi I là trung điểm của BC. a) (1,0 điểm) Chứng minh rằng AI ⊥ (MBC). b) (1,0 điểm) Tính góc hợp bởi đường thẳng IM với mặt phẳng (ABC). c) (1,0 điểm) Tính khoảng cách từ điểm B đến mặt phẳng (MAI). II. Phần riêng: (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần sau: 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất 1 nghiệm: 5 2 1 0x x -2x− − = Câu 6a: (2 điểm) Cho hàm số y f x x x x 3 2 ( ) 3 9 5= = − − + . a) Giải bất phương trình: y 0 ′ ≥ . b) Viết phương trình tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 1. 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có đúng 3 nghiệm: x x 3 19 30 0− − = Câu 6b: (2,0 điểm) a) Chứng minh hàm sau có đạo hàm không phụ thuộc vào x 4 4 6 6 ( ) 3 sin os 2 sin osy f x x c x x c x = = + − + ÷ ÷ b) Cho hàm số 3 2 2 4 1 3 x y x x= − + + . Chứng minh rằng (C) không thể có hai tiếp tuyến vuông góc nhau. ––––––––––––––––––––Hết––––––––––––––––––– Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 3 ĐỀ THI THỬ SỐ 2 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 3 2 3 1 lim 15 x x x x →+∞ − + + b) 3 7 2 lim 3 x x x →− + − + 1 7.( 3) 5 )lim 5 4 n n n c + − + + Câu 2: (1,0 điểm) Tìm m để hàm số sau liên tục tại x = 2: 2 2 2 ( ) 2 2 2 x x khi x f x x m khi x + − ≠ = − − = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 2 2 ( 2 )(1 )y x x x= + − b) cos 2y x x= − Câu 4: (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD). a) Chứng minh BD ⊥ SC. b) Chứng minh (SAB) ⊥ (SBC). c) Cho SA = a 6 3 . Tính góc giữa SC và mặt phẳng (ABCD). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau có 3 nghiệm: 3 2 6 1 0x x− + = Câu 6a: (2,0 điểm) Cho hàm số y x x x 3 2 2 5 7= − + + − có đồ thị (C). a) Giải bất phương trình: 2 6 0y ′ + > . b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x 0 1= − . 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất hai nghiệm: x x x 4 2 4 2 3 0+ − − = Câu 6b: (2,0 điểm) a) Giải phương trình f’(x)=0, biết 2cos17 3sin5 os5 ( ) 2 17 5 5 x x c x f x = − + + b) Cho hàm số 3 2 1 3 2 3 x m y x= − + có đồ thị là (C m ). Gọi M là điểm trên (C m ) có x=-1. Tìm m sao cho tiếp tuyến tại M song song với đường thẳng d:5x-y=0 Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 4 ĐỀ THI THỬ SỐ 3 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 4 2 4 4 lim 2 n n n + + − b) x x x 1 2 3 lim 1 + → − − ( ) 2 2 ) lim 2 1 x c x x →+∞ + − − Câu 2: (1,0 điểm) Tìm m để hàm số sau liên tục tại điểm x = 0: 2 2 0 ( ) 3 5 0 x a khi x f x x x khi x + > = + + ≤ Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) ( ) 2 2 1 2 1 y x = + b) 2 2 (1 sin )y x= + Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC. a) Chứng minh AC ⊥ SD. b) Chứng minh MN ⊥ (SBD). c) Cho AB = SA = a. Tính cosin của góc giữa (SBC) và (ABCD). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau luôn có nghiệm với mọi m: ( ) 2 3 1 4 1 0m x x− + − − = Câu 6a: (2,0 điểm) Cho hàm số y x x 4 2 3 4= − − có đồ thị (C). a) Giải phương trình: y 2 ′ = . b) Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ x 0 1= . 2. Theo chương trình Nâng cao Câu 5b: Chứng minh rằng phương trình sau luôn có nghiệm với mọi m: m m x x 2 4 ( 1) 2 2 0+ + + − = Câu 6b: (2,0 điểm) a) Cho 2 1 1 x x y x + + = − . Chứng minh rằng không có tiếp tuyến qua I(1;3) b) Chứng minh rằng hàm sau không phụ thuộc vào biến x 2 2 2 2 2 ( ) os os os 3 3 f x c x c x c x π π = + + + − ÷ ÷ Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 5 ĐỀ THI THỬ SỐ 4 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 2 2 1 3 2 1 lim 1 x x x x → − − − b) 2 2 3 1 lim 2 x x x x − → + + − 2011 9 )lim 2011 5 7c n n + + ÷ Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x 0 2= : 2 2 3 2 2 ( ) 2 4 4 2 x x khi x f x x x khi x − − ≠ = − = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 2 1y x= + b) 2 (1 tan )y x= + Câu 4: (3,0 điểm) Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Gọi H là chân đường cao vẽ từ A của tam giác ACD. a) Chứng minh: CD ⊥ BH. b) Gọi K là chân đường cao vẽ từ A của tam giác ABH. Chứng minh AK ⊥ (BCD). c) Cho AB = AC = AD = a. Tính cosin của góc giữa (BCD) và (ACD). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình cos2 2sin 2x x= − có ít nhất 2 nghiệm trong khoảng ; 6 π π − ÷ Câu 6a: (2,0 điểm) Cho hàm số y f x x x x 3 2 ( ) 3 9 2011= = − − + + có đồ thị (C). a) Giải bất phương trình: f x( ) 0 ′ ≤ . b) Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ bằng 1. 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình sau có ít nhất hai nghiệm nằm trong khoảng ( 1; 2)− : m x x 2 2 3 ( 1) 1 0+ − − = Câu 6b: (2,0 điểm) a) Cho hàm số 2 2 1 2 x x y x − + = − có đồ thị (C). Gọi d là tiếp tuyến của (C) đi qua A(6;4) có hệ số góc khác 0. Tìm tất cả các giá trị m sao cho điểm B(m 2 -10;1-3m) nằm trên d. b) Chứng minh rằng với mọi n * ∈¥ thì ta có đẳng thức: nn nn 3.4 32 4 3 3 3 2 3 1 2 + −=+++ Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 6 ĐỀ THI THỬ SỐ 5 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 2 3 2 3 2 lim 8 x x x x → − + − b) 4 5 2 1 lim 4 x x x x → + − + − ( ) 2 2 )lim 7 5c n n+ − + Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x 0 1= : 2 2 3 1 1 ( ) 2 2 1 1 x x khi x f x x x khi x − + ≠ = − + = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 4 ( 1)y x x= + b) 2 2 tan 1 x x y x + = − Câu 4: (3,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. a) Chứng minh tam giác SBC vuông. b) Gọi H là chân đường cao vẽ từ B của tam giác ABC. Chứng minh (SAC) ⊥ (SBH). c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau luôn có nghiệm với mọi m: m x m x 5 2 4 (9 5 ) ( 1) 1 0− + − − = Câu 6a: 1. Cho hàm số y f x x x 2 4 ( ) 4= = − có đồ thị (C).Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1. 2. Chứng minh rằng hàm số sau có đạo hàm không phụ thuộc vào x: 6 6 2 2 sin os 3sin cosy x c x x x= + + 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Cho ba số a, b, c thoả mãn hệ thức a b c2 3 6 0 + + = . Chứng minh rằng phương trình sau có ít nhất một nghiệm thuộc khoảng (0; 1): ax bx c 2 0+ + = Câu 6b: (2,0 điểm) Cho hàm số y f x x x 2 4 ( ) 4= = − có đồ thị (C). a) Giải bất phương trình: f x( ) 0 ′ < . b) Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục tung. Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 7 ĐỀ THI THỬ SỐ 6 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 2 2 4 lim 7 3 x x x → − + − b) ( ) x x xlim 1 →+∞ + − 2 2 2 1 5 )lim 1 3 n n c n + + − Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm 0 3x = : ² 7 12 3 ( ) 3 2 1 3 x x khi x f x x x khi x − + > = − + ≤ Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 1 tan 6 y x π = + ÷ b) x x y x 2 2 2 1 + − = + Câu 4: (3,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a, SA ⊥ (ABC), SA = a 3 . a) Gọi M là trung điểm của BC. Chứng minh rằng: BC ⊥ (SAM). b) Tính góc giữa các mặt phẳng (SBC) và (ABC). c) Tính khoảng cách từ A đến mặt phẳng (SBC). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh phương trình: x x x 4 2 2 4 3 0+ + − = có ít nhất hai nghiệm thuộc (–1; 1). Câu 6a: (2,0 điểm) a) Cho hàm số x y x 3 4 − = + . Viết phương trình tiếp tuyến tại giao điểm của đồ thị với trục tung b) Giải bất phương trình f’(x)>0 với 7 4 1 9 ( ) 8 3 7 4 f x x x x= − + − 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh phương trình: x x 3 3 1 0− + = có 3 nghiệm phân biệt. Câu 6b: (2,0 điểm) a) Cho hàm số y x x.cos= . Chứng minh rằng: x y x y y2(cos ) ( ) 0 ′ ′′ − + + = . b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số y f x x x 3 ( ) 2 3 1= = − + tại điểm có hệ số góc nhỏ nhất Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 8 ĐỀ THI THỬ SỐ 7 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 2 3 2 4 lim 3 2 2 x x x →− − − + b) ( ) 2 lim 4 1 x x x →+∞ − + 3 3 2 )lim 2 n n c n + + Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm 0 2x = − : 2( 2) 2 ( ) 2 2 1 2 x khi x f x x x khi x + ≠ − = + + = − Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) 2 4 x y x = − b) 2 tan 1y x= − Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, đường cao SO = a 3 . Gọi I là trung điểm của SO. a) Tính khoảng cách từ I đến mặt phẳng (SCD). b) Tính góc giữa các mặt phẳng (SBC) và (SCD). c) Tính khoảng cách giữa hai đường thẳng AC và SD. II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình : 4 3 4 2 4 1x x x+ − = luôn có nghiệm Câu 6a: (2,0 điểm) a) Cho hàm số y xcot2= . Chứng minh rằng: y y 2 2 2 0 ′ + + = . b) Cho hàm số x y x 3 1 1 + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của đồ thị với trục hoành 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình: x x 17 11 1= + có nghiệm. Câu 6b: (2,0 điểm) a) Cho hàm số 3 2 1 3 x y x= + − . Tìm tất cả các giá trị của x thỏa mãn: ' 1y ≤ b) Cho hàm số x y x 3 1 1 + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến vuông góc với đường thẳng d: x y2 2 5 0+ − = . Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 9 ĐỀ THI THỬ SỐ 8 Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 2011 Môn: Toán 11. Thời gian: 90 phút I. Phần chung: (7,0 điểm) Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) 2 2 2 4 lim 3 2 x x x x → − − + b) ( ) x x x 2 lim 1 1 →−∞ + + − ( ) )lim 1c n n+ − Câu 2: (1,0 điểm) Tìm m để hàm số liên tục tại x 0 1= : ³ ² 2 2 1 ( ) 1 1 1 x x x khi x f x x mx khi x − + − ≠ = − + = Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) tan cos 3 2 x y x cos x= − + b) ( ) 2011 2 1y x x= + − Câu 4: (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA ⊥ (ABCD), SA a 2= . Gọi M và N lần lượt là hình chiếu của điểm A trên các đường thẳng SB và SD. a) Chứng minh rằng MN // BD và SC ⊥ (AMN). b) Gọi K là giao điểm của SC với mp (AMN). Chứng minh tứ giác AMKN có hai đường chéo vuông góc. c) Tính góc giữa đường thẳng SC với mặt phẳng (ABCD). II. Phần riêng 1. Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng phương trình x x x 4 3 2 3 2 1 0− + − = có ít nhất hai nghiệm thuộc khoảng (–1; 1). Câu 6a: (2,0 điểm) a) Giải phương trình f’(x)=0 biết 1 ( ) sin2 sinx 2 f x x= + b) Cho hàm số x x y x 2 2 1 − + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(2; 4). 2. Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình x x 5 3 10 100 0− + = có ít nhất một nghiệm âm. Câu 6b: (2,0 điểm) a) Chứng minh rằng: Mọi n thuộc N ta có : ( ) ( ) n n n 21 21 2 1 1 25 4 1 9 4 1 1 4 1 2 − + = − − − −− b) Cho hàm số x x y x 2 2 1 − + = − có đồ thị (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến có hệ số góc k = –1. Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . GV: Nguyễn Hữu Tân 10 ĐỀ THI THỬ SỐ 9 [...]... SBD : ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 20 11 Môn: Toán 11 Thời gian: 90 phút I Phần chung: (7,0 điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: ĐỀ THI THỬ SỐ 12 1 3 3 2 c)lim b) lim x − x − 3 x ÷ x →+∞ x 2 x 2 + 7 x − 18 n2 + 2 − n2 + 4 Câu 2: (1,0 điểm) Tùy theo a, khảo sát tính liên tục của hàm số tại x0 =2 1 − 2 x − 3 khi x ≠ 2 f (x) = x − 5 a2 − 2 khi x = 2 Câu 3: (1,0...Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 20 11 Môn: Toán 11 Thời gian: 90 phút I Phần chung: (7,0 điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: 2 x 2 + 3x − 1 x +2 2 a) b) lim lim x →−∞ 7 x 2 + 9 x x 2 4 − x 2 ĐỀ THI THỬ SỐ 10 c)lim ( 3 n − n3 + n + 2 ) Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x0 = −4 : 2 x + 3 khi... điểm A(-1 ;2) Hết Họ và tên thí sinh: GV: Nguyễn Hữu Tân 11 SBD : Một số đề thi thử học kì 2, toán 11- của trường THPT Long Khánh A ĐỀ THI KIỂM TRA CHẤT LƯỢNG HỌC KỲ 2- 20 11 Môn: Toán 11 Thời gian: 90 phút ĐỀ THI THỬ SỐ 11 I Phần chung: (7,0 điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: x 2 − 7 x + 10 x + 6 −3 c)lim n n 2 + 1 − n 2 − 2 a) lim b)... khoảng 2; 2 ) 1 = 0 có ít nhất 2 nghiệm trong 2 Câu 6a: (2, 0 điểm) a) Giải phương trình f’(x)=0, với f ( x ) = s inx − 3 cos x − 3 x b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số y = 2 x 3 − 2 x + 3 biết tiếp tuyến song song với đường thẳng y =24 x +20 11 2 Theo chương trình Nâng cao ( ) 2 5 Câu 5b: (1,0 điểm) Chứng minh rằng phương trình 1 − m x -3x − 1 = 0 luôn có nghiệm với mọi m Câu 6b: (2, 0... biệt thuộc (–1; 2) Câu 6a: (2, 0 điểm) x −1 2 cos x Giải phương trình: f ( x ) − x − 1 f '( x ) = 0 2 3x + 1 b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số y = tại điểm có hoàng 1− x đô x =2 ( a) Cho hàm số f ( x ) = ) 2 Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình x 3 + 4 x 2 − 2 = 0 có ít nhất hai nghiệm Câu 6b: (2, 0 điểm) a) Cho hàm số y = 2 x − x 2 Chứng minh... -4 2 Theo chương trình Nâng cao Câu 5b: (1,0 điểm) Chứng minh rằng phương trình x 3 + 4 x 2 − 2 = 0 có ít nhất hai nghiệm Câu 6b: (2, 0 điểm) a) Giải phương trình f’(x)=0, với f ( x ) = sin 3 x cos3 x + cos x − 3 s inx + ÷ 3 x b) Viết phương trình tiếp tuyến của đồ thị (C) của hàm số y = Hết - GV: Nguyễn Hữu Tân 12 x +2 đi qua A(-6;5) x 2 Một số đề thi thử học kì 2, toán 11- ... chung: (7,0 điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: x 2 − 7 x + 10 x + 6 −3 c)lim n n 2 + 1 − n 2 − 2 a) lim b) lim x 2 x →3 x 2 + 4 x + 3 x2 − 2x Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x0 = 2 : ( 1 khi x ≤ 2 x +5 f (x) = 2 x − 8 khi x > 2 x² − 4 Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) y = cos(cos x ) + s in(sinx ) ) b) y = 3 ( x + 1) x Câu 4:... hàm số tại x0 =2 1 − 2 x − 3 khi x ≠ 2 f (x) = x − 5 a2 − 2 khi x = 2 Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: x sin x a) y = 2 b) y = cos x x +1 Câu 4: (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a; SA a) lim 3x − 2 − 2 vuông góc với mặt phẳng (ABCD) và SA = a Gọi I, J lần lượt là trung điểm các cạnh SB và SD ; a) Chứng minh rằng: SAB, SAD là các tam giác... (1,0 điểm) Chứng minh rằng phương trình 1 − m x -3x − 1 = 0 luôn có nghiệm với mọi m Câu 6b: (2, 0 điểm) f (x) = A, f (0) = 0 Chứng minh: f’(0)=0 x →0 x b) Cho đường cong (C): y = x 3 − 9 x 2 + 17 x + 2 Qua A( -2; 5) kẻ được bao nhiêu tiếp a) Biết rằng : lim tuyến với (C) Hết Họ và tên thí sinh: GV: Nguyễn Hữu Tân 13 SBD : ... mặt phẳng (ABCD) và SO = a 6 Gọi M là trung điểm của 2 CD a) Chứng minh rằng CD ⊥ mp(SMO) b) Tính góc giữa đường thẳng SA và mp(ABCD); c) Tính theo a khoảng cách từ điểm O đến mp(SCD) II Phần riêng 1 Theo chương trình Chuẩn Câu 5a: (1,0 điểm) Chứng minh rằng với mọi m phương trình ( ) 3 x − 1 + mx = m + 1 , luôn có một nghiệm lớn hơn 1 Câu 6a: (2, 0 điểm) a) Giải phương trình f’(x)=0, với f ( x ) = . điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: a) x x x x x 2 2 1 4 3 lim 2 3 2 → − + − + b) x x x x 2 0 2 1 1 lim 3 → + − + 20 11 2 2009 20 11 20 10 1 )lim 20 09 n n c n n + + + Câu 2: (1,0 điểm). sau: a) 2 3 2 4 lim 3 2 2 x x x →− − − + b) ( ) 2 lim 4 1 x x x →+∞ − + 3 3 2 )lim 2 n n c n + + Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm 0 2x = − : 2( 2) 2 ( ) 2 2 1 2 x khi. (7,0 điểm) Câu 1: (2, 0 điểm) Tìm các giới hạn sau: a) 2 2 1 3 2 1 lim 1 x x x x → − − − b) 2 2 3 1 lim 2 x x x x − → + + − 20 11 9 )lim 20 11 5 7c n n + + ÷ Câu 2: (1,0 điểm) Xét tính