1. Trang chủ
  2. » Giáo án - Bài giảng

lythuyet+bt loga-ltdh

25 168 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,15 MB

Nội dung

8 6 4 2 -2 -10 -5 5 10 g x ( ) = 2 x f x ( ) = 2 SỞ GIÁO DỤC & ĐÀO TẠO TP HỒ CHÍ MINH TRƯỜNG THPT ĐÔNG DƯƠNG GIẢI TÍCH 12 PHẦN 2: Năm học: 2010 - 2011 THPT ĐÔNG DƯƠNG 1 LŨY THỪA 1.ĐỊNH NGHĨA LŨY THỪA VÀ CĂN. Số mũ α Cơ số a Lũy thừa α a * Nn ∈= α Ra ∈ naaaaa n ( == α thừa số ) 0= α 0≠a 1 0 == aa α )( * Nnn ∈−= α 0≠a n n a aa 1 == − α ),( * NnZm n m ∈∈= α 0>a )( abbaaaa n n n m n m =⇔=== α ),(lim * NnQrr nn ∈∈= α 0>a n r aa lim= α 2. TÍNH CHÁT CỦA LŨY THỪA. * với a > 0, b > 0, ta có a . a .a a ; a ; (a ) a ; a a a (ab) a .b ; b b α β α+β α−β β αβ α α = = = β α α   α α α = =  ÷ α   a > 1 : βα βα >⇔> aa 0 < a < 1 : βα βα <⇔> aa Bài 1: Đơn giản biểu thức. 1) ( ) 5 5 2 3 126 yxyx − 2) 33 3 4 3 4 ba abba + + 3) 1. 1 . 1 4 1 4 2 1 3 4 + + + + − a a aa aa a THPT ĐÔNG DƯƠNG 2 4)       +−         + + − + m m m m m 1 2 1 2 . 22 4 2 1 3 2 Bài 2: Biến đổi đưa về dạng lũy thừa với số mũ hữu tỉ. 1) 7 35 .2 8 1 ax 2) 3 4 5 . aa 3) 4 8 3 . bb 4) 4 3 .27 3 1 a Bài 3 : Tính . 1) ( ) 3 3 3       2) 31321 16.4 +− 3) 23 2 3 27 4) ( ) 5 5 4 8 2 Bài 4: Đơn giản các biểu thức. 1) 1 )( 232 3222 + − − ba ba 2) 334 3333232 ))(1( aa aaaa − ++− 3) π π ππ         −+ abba .4)( 1 2 4) 4 1 2 3 3 3 1 3 1 4 4 4 a a a A a a a − −   +  ÷   =   +  ÷   5) 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 1 a a a A a a a a   + − +  ÷ = −  ÷ −  ÷ + +   6) 1 7 1 5 3 3 3 3 1 4 2 1 3 3 3 3 a a a a A a a a a − − − − = − − + THPT ĐÔNG DƯƠNG 3 7) 1 1 1 1 2 2 4 4 3 1 1 1 1 4 2 4 4 4 : a b a b A a b a a b a b     − −   = − −  ÷     + +     8) 1 1 1 1 1 2 4 2 2 1 1 1 4 4 2 1 1 2 1 1 x x x x x A x x x − −     − + + +     = +       − +       Bài 5: Rút gọn: a) ( ) − − −         −  ÷ = −    ÷     −   +  ÷    ÷     1 1 2 2 3 3 1 1 2 2 2 2 1 a b A ab a b a b b) − − − − − = − − − + 2 2 1 1 3 1 1 2 2 2 2 2 a a 2 1 a B a a a a a c) 2 2 1 1 2 1 a a a C a a a a    + − + = −  ÷ ÷  ÷ ÷ − + +    d) ( ) ( ) ( ) 1 2 3 4 3 3 1 2 3 3 3 3 1a a a D a a a − − − − = + + e) 2 8 5 1 3 3 3 3 2 5 2 1 3 3 3 3 a a a a E a a a a − − − − = − + − Luyện tập 1/. Viết dưới dạng lũy thừa với số mũ hữu tỉ các biểu thức sau : a/. 5 3 2 2 2 b/. 11 6 :a a a a a ; a > 0. THPT ĐÔNG DƯƠNG 4 c/. 2 4 3 x x ; (x > 0) d/. 5 3 a a b b ; (ab > 0) 2/. Đơn giản các biểu thức sau : a/. 4 ( 5)a − b/. 4 2 81 ; ( 0)a b b < c/. 8 4 4 ( 1) ; ( 1)x x x+ ≤ − d/. 2 2 2 1 ( ) ( ) 2 a a b P a b ab −   −     = − + e/. 2 1 1 1 1 1 1 2 2 2 2 4 9 4 3 3 ;( 0; 1; ) 2 2 3 a a a a Q a a a a a a a − − − −   − − +   = + > ≠ ≠   − −   g/. h/. 3 5 13 48+ − + 3/. Đưa nhân tử ở ngoài vào dấu căn : a/. (4 ) ;( 4) 4 x x x x − > − b/ 2 1 (5 ) ; (0 5) 25 a a a − < < − 4/. Trục căn ở mẫu số của các biểu thức sau : a/. 4 20 b/. 6 3 1 ; 0; 0a b a b > > c/. 1 3 2+ d/. 5 4 11+ e/. 3 3 1 5 2− 5/. Tính giá trị của biểu thức : a/. 1 5 1 3 7 1 1 2 3 32 4 4 2 3 .5 :2 : 16: (5 .2 .3A −         =               b/. 2 3 3 3 3 2 2 2 2 3 : ( ) a b a a b A a a b b a ab − + − = − − ; với 6 5 a = và 3 5 b = THPT ĐÔNG DƯƠNG 5 c/. 3 2 3 1 2 1 3 2 2 ( ) ( )A a b ab a − − − − −   =     ; với 2 2 a = và 3 1 2 b = 6/. Chứng minh đẳng thức sau : a/. 1 2 2 2 1 1 1 1 3 2 2 2 2 2 1 2 0 a a a a a a a a a − − − − − − − + + = − + b/. 3 3 3 32 4 2 2 2 4 2 2 3 ( )a a b b a b a b+ + + = + c/. 3 2 2 3 2 2 2+ − − = d/. 3 3 5 2 7 5 2 7 2+ − − = 7/. Rút gọn biểu thức : a/. 1 2 2 1 .( ) − a a b/. 2 3 ( 3 1) : − − b b c/. 4 2 4 :x x x π π d/. 3 3 25 5 ( )a 8/. So sánh a/. 600 3 và 400 5 b/. 5 7 1 ( ) 2 − và 3 14 2.2 c/. 3 3 và 2 HÀM SỐ LŨY THỪA I.Khái niệm: Hàm số y x ; α = α∈ ¡ , đươc gọi là hàm lũy thừa Chú ý: tập xác định của hàm số lũy thừa phụ thuộc vào giá trị của α - Với α nguyên dương thì tập xác định là R - Với α nguyên âm hoặc bằng 0, tập xác định là { } \ 0¡ - Với α không nguyên thì tập xác định là ( ) 0;+∞ Làm bài 1/ 60 II. Đạo hàm của hàm số lũy thừa: ( ) ( ) 1 1 x ' .x ; u ' .u α α− α α− = α = α Làm bài 2/61 THPT ĐÔNG DƯƠNG 6 LOGARIT I. Khái niệm logarit 1. Định nghĩa: Cho 2 số a, b dương với a khác 1. Số α thỏa mãn đẳnng thức a b α = được gọi là logarit cơ số a của b và ký hiệu log a b ( ) 1 log b a b a α α= ⇔ = Ví dụ 1: Tìm x a) log 4 2 x = b) 2 log 3x = − c) 81 1 log 4 x = d) log 25 2 x = b) e) log ( 1) 2 3 x + = f) ( ) log 4 3 2 4x =− g) log ) 4(2 1 2 x = − h) log 1 3 4 1 5 2 x = − −    ÷   k) log 5) 0(4 2 x + = l) log 28 x = Chú ý: không có logarit của số 0 và số âm 2. Tính chất: ( ) ( ) ( ) ( ) ( ) 2 log 1 0 a 3 log a 1 a log b a 4 a b 5 log a a = = = α = α Ví dụ 2: Tính a) log 3 2 4 b) 4 3 3 log c) 3 2 2 log d) 2 log 4 e) 3 1 log 3 f) 2 1 log 16 g) 1 3 2 a a log ( ) với 0 1a < ≠ h) 3 5 7 49 49 + log log i) 1 1 3 2 6 8 9 4+ log log II. Quy tắc tính logarit : THPT ĐÔNG DƯƠNG 7 1. Logarit của một tích : a > 0; b 1 > 0; b 2 > 0, a 1≠ ( ) ( ) 6 log b .b log b log b a a a 1 2 1 2 = + Logarit của một tích bằng tổng các logarit Ví dụ 3: Tính: a) 12 12 log 6 log 2+ b) 1 1 1 2 2 2 4 log 6 log 24 log 9 + + 2. Logarit của một thương: a > 0; b 1 > 0; b 2 > 0, a 1≠ ( ) 2 b 1 7 log log b log b a a a 1 2 b   = −  ÷  ÷   Logarit của một thương bằng hiệu các logarit ( ) 1 8 log log b a a b   =−  ÷   Ví dụ 4: Tính a) 100 4 25 25 −log log . b) 2 2 2 20 6 15log log log+ − . c) 2 2 2 5 10 25log log log+ − . d) 6 7 14 3 3 3 log log log+ − e) 10 7 14 5 5 5 log log log+ − . 3. Logarit của một lũy thừa : a > 0; b> 0, a 1≠ ( ) ( ) 9 log b log b a a α =α Logarit của một lũy thừa bằng tích của số mũ với logarit của cơ số ( ) ( ) n 1 10 log b log b a a n = Ví dụ 5: Cho log 2;log 3b c a a = = − . Hãy tính log x a , biết a) 2 3 4 a b x c = b) 2 3 a b x c = c) 2 2 3 x a bc= III. Đổi cơ số : Cho a > 0; b > 0. c>0, a 1≠ , c 1≠ THPT ĐÔNG DƯƠNG 8 ( ) log b c 11 log b a log a c = ( ) 1 12 log b a log a b = b 1≠ ( ) 1 13 log b log b a a = α α ; 0 α ≠ Ví dụ 6: a) Cho 5 14 2 2 log ;loga b= = . Tính 35 2 log theo a và b b) Cho 10 7 2 2 log ;loga b= = . Tính 35 2 log theo a và b c) Cho 4 5 3 3 log ;loga b= = . Tính 10 3 log theo a và b d) Cho 2 9 5 5 log ;loga b= = . Tính 6 5 log theo a và b e) Cho 3 5 2 7 2 3 log ;log ;loga b c= = = . Tính 50 63 log IV. Logarit thập phân, logarit tư nhiên 1. Logarit thập phân: là logarit cơ số 10 log b 10 thường viết là logb hay lgb 2. Logarit tự nhiên: là logarit cơ số e log b e thường viết là lnb Chú ý: log b log b a loga = ln b log b a ln a = Luyện tập: Bài 1: Biết log 5 2 = a và log 5 3 = b . Tính các lôgarit sau theo a và b. 1) log 5 27 2) log 5 15 3) log 5 12 4) log 5 30 Bài 2: Lôgarit theo cơ số 3 của mỗi biểu thức sau , rồi viết dưới dạng tổng hoặc hiệu các lôgarit. 1) ( ) 3 2 5 3 ba 2) 2,0 6 5 10 −         b a 3) 5 4 9 ba 4) 7 2 27a b THPT ĐÔNG DƯƠNG 9 Bài 3: Tính giá trị các biểu thức. 1) log 9 15 + log 9 18 – log 9 10 2) 3 3 1 3 1 3 1 45log3400log 2 1 6log2 +− 3) 3log 2 1 2log 6 136 − 4) )3log.4(loglog 23 4 1 Bài 4: Tính giá trị các biểu thức. 1) 1 1 log 4 log 8 log 2 9 125 7 4 2 81 25 .49   −  ÷ +  ÷   2) 1 log 3 3log 5 1 log 5 5 2 4 2 16 42 + + + 3) 1 log 4 log 9 log 6 7 7 5 2 72 49 5 − − +    ÷  ÷   Bài 5: Tìm x biết. 1) log 6 x = 3log 6 2 + 0,5 log 6 25 – 2 log 6 3. 2) log 4 x = 3log410log2216log 3 1 444 +− Bài 6: Tính. 1) 2020 )32log()32log( −++ 2) )725log()12log(3 −++ 3) e e 1 lnln + 4) ).ln(4ln 21 eee + − Bài 7: Tìm x biết 1) log x18 = 4 2) 5 3 2log 5 −= x 3) 6)2.2(log 3 −= x Bài 8: 1) Biết log 12 6 = a , log 12 7 = b. Tính log 2 7 theo a và b. 2) Biết log 2 14 = a. Tính log 49 32 theo a HÀM SỐ MŨ – HÀM SỐ LOGARIT I. Hàm số mũ: 1. Định nghĩa: Cho a 0,a 1> ≠ Hàm số y = a x được gọi là hàm số mũ cơ số a. THPT ĐÔNG DƯƠNG 10

Ngày đăng: 27/06/2015, 16:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w