Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
1,15 MB
Nội dung
8 6 4 2 -2 -10 -5 5 10 g x ( ) = 2 x f x ( ) = 2 SỞ GIÁO DỤC & ĐÀO TẠO TP HỒ CHÍ MINH TRƯỜNG THPT ĐÔNG DƯƠNG GIẢI TÍCH 12 PHẦN 2: Năm học: 2010 - 2011 THPT ĐÔNG DƯƠNG 1 LŨY THỪA 1.ĐỊNH NGHĨA LŨY THỪA VÀ CĂN. Số mũ α Cơ số a Lũy thừa α a * Nn ∈= α Ra ∈ naaaaa n ( == α thừa số ) 0= α 0≠a 1 0 == aa α )( * Nnn ∈−= α 0≠a n n a aa 1 == − α ),( * NnZm n m ∈∈= α 0>a )( abbaaaa n n n m n m =⇔=== α ),(lim * NnQrr nn ∈∈= α 0>a n r aa lim= α 2. TÍNH CHÁT CỦA LŨY THỪA. * với a > 0, b > 0, ta có a . a .a a ; a ; (a ) a ; a a a (ab) a .b ; b b α β α+β α−β β αβ α α = = = β α α α α α = = ÷ α a > 1 : βα βα >⇔> aa 0 < a < 1 : βα βα <⇔> aa Bài 1: Đơn giản biểu thức. 1) ( ) 5 5 2 3 126 yxyx − 2) 33 3 4 3 4 ba abba + + 3) 1. 1 . 1 4 1 4 2 1 3 4 + + + + − a a aa aa a THPT ĐÔNG DƯƠNG 2 4) +− + + − + m m m m m 1 2 1 2 . 22 4 2 1 3 2 Bài 2: Biến đổi đưa về dạng lũy thừa với số mũ hữu tỉ. 1) 7 35 .2 8 1 ax 2) 3 4 5 . aa 3) 4 8 3 . bb 4) 4 3 .27 3 1 a Bài 3 : Tính . 1) ( ) 3 3 3 2) 31321 16.4 +− 3) 23 2 3 27 4) ( ) 5 5 4 8 2 Bài 4: Đơn giản các biểu thức. 1) 1 )( 232 3222 + − − ba ba 2) 334 3333232 ))(1( aa aaaa − ++− 3) π π ππ −+ abba .4)( 1 2 4) 4 1 2 3 3 3 1 3 1 4 4 4 a a a A a a a − − + ÷ = + ÷ 5) 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 1 a a a A a a a a + − + ÷ = − ÷ − ÷ + + 6) 1 7 1 5 3 3 3 3 1 4 2 1 3 3 3 3 a a a a A a a a a − − − − = − − + THPT ĐÔNG DƯƠNG 3 7) 1 1 1 1 2 2 4 4 3 1 1 1 1 4 2 4 4 4 : a b a b A a b a a b a b − − = − − ÷ + + 8) 1 1 1 1 1 2 4 2 2 1 1 1 4 4 2 1 1 2 1 1 x x x x x A x x x − − − + + + = + − + Bài 5: Rút gọn: a) ( ) − − − − ÷ = − ÷ − + ÷ ÷ 1 1 2 2 3 3 1 1 2 2 2 2 1 a b A ab a b a b b) − − − − − = − − − + 2 2 1 1 3 1 1 2 2 2 2 2 a a 2 1 a B a a a a a c) 2 2 1 1 2 1 a a a C a a a a + − + = − ÷ ÷ ÷ ÷ − + + d) ( ) ( ) ( ) 1 2 3 4 3 3 1 2 3 3 3 3 1a a a D a a a − − − − = + + e) 2 8 5 1 3 3 3 3 2 5 2 1 3 3 3 3 a a a a E a a a a − − − − = − + − Luyện tập 1/. Viết dưới dạng lũy thừa với số mũ hữu tỉ các biểu thức sau : a/. 5 3 2 2 2 b/. 11 6 :a a a a a ; a > 0. THPT ĐÔNG DƯƠNG 4 c/. 2 4 3 x x ; (x > 0) d/. 5 3 a a b b ; (ab > 0) 2/. Đơn giản các biểu thức sau : a/. 4 ( 5)a − b/. 4 2 81 ; ( 0)a b b < c/. 8 4 4 ( 1) ; ( 1)x x x+ ≤ − d/. 2 2 2 1 ( ) ( ) 2 a a b P a b ab − − = − + e/. 2 1 1 1 1 1 1 2 2 2 2 4 9 4 3 3 ;( 0; 1; ) 2 2 3 a a a a Q a a a a a a a − − − − − − + = + > ≠ ≠ − − g/. h/. 3 5 13 48+ − + 3/. Đưa nhân tử ở ngoài vào dấu căn : a/. (4 ) ;( 4) 4 x x x x − > − b/ 2 1 (5 ) ; (0 5) 25 a a a − < < − 4/. Trục căn ở mẫu số của các biểu thức sau : a/. 4 20 b/. 6 3 1 ; 0; 0a b a b > > c/. 1 3 2+ d/. 5 4 11+ e/. 3 3 1 5 2− 5/. Tính giá trị của biểu thức : a/. 1 5 1 3 7 1 1 2 3 32 4 4 2 3 .5 :2 : 16: (5 .2 .3A − = b/. 2 3 3 3 3 2 2 2 2 3 : ( ) a b a a b A a a b b a ab − + − = − − ; với 6 5 a = và 3 5 b = THPT ĐÔNG DƯƠNG 5 c/. 3 2 3 1 2 1 3 2 2 ( ) ( )A a b ab a − − − − − = ; với 2 2 a = và 3 1 2 b = 6/. Chứng minh đẳng thức sau : a/. 1 2 2 2 1 1 1 1 3 2 2 2 2 2 1 2 0 a a a a a a a a a − − − − − − − + + = − + b/. 3 3 3 32 4 2 2 2 4 2 2 3 ( )a a b b a b a b+ + + = + c/. 3 2 2 3 2 2 2+ − − = d/. 3 3 5 2 7 5 2 7 2+ − − = 7/. Rút gọn biểu thức : a/. 1 2 2 1 .( ) − a a b/. 2 3 ( 3 1) : − − b b c/. 4 2 4 :x x x π π d/. 3 3 25 5 ( )a 8/. So sánh a/. 600 3 và 400 5 b/. 5 7 1 ( ) 2 − và 3 14 2.2 c/. 3 3 và 2 HÀM SỐ LŨY THỪA I.Khái niệm: Hàm số y x ; α = α∈ ¡ , đươc gọi là hàm lũy thừa Chú ý: tập xác định của hàm số lũy thừa phụ thuộc vào giá trị của α - Với α nguyên dương thì tập xác định là R - Với α nguyên âm hoặc bằng 0, tập xác định là { } \ 0¡ - Với α không nguyên thì tập xác định là ( ) 0;+∞ Làm bài 1/ 60 II. Đạo hàm của hàm số lũy thừa: ( ) ( ) 1 1 x ' .x ; u ' .u α α− α α− = α = α Làm bài 2/61 THPT ĐÔNG DƯƠNG 6 LOGARIT I. Khái niệm logarit 1. Định nghĩa: Cho 2 số a, b dương với a khác 1. Số α thỏa mãn đẳnng thức a b α = được gọi là logarit cơ số a của b và ký hiệu log a b ( ) 1 log b a b a α α= ⇔ = Ví dụ 1: Tìm x a) log 4 2 x = b) 2 log 3x = − c) 81 1 log 4 x = d) log 25 2 x = b) e) log ( 1) 2 3 x + = f) ( ) log 4 3 2 4x =− g) log ) 4(2 1 2 x = − h) log 1 3 4 1 5 2 x = − − ÷ k) log 5) 0(4 2 x + = l) log 28 x = Chú ý: không có logarit của số 0 và số âm 2. Tính chất: ( ) ( ) ( ) ( ) ( ) 2 log 1 0 a 3 log a 1 a log b a 4 a b 5 log a a = = = α = α Ví dụ 2: Tính a) log 3 2 4 b) 4 3 3 log c) 3 2 2 log d) 2 log 4 e) 3 1 log 3 f) 2 1 log 16 g) 1 3 2 a a log ( ) với 0 1a < ≠ h) 3 5 7 49 49 + log log i) 1 1 3 2 6 8 9 4+ log log II. Quy tắc tính logarit : THPT ĐÔNG DƯƠNG 7 1. Logarit của một tích : a > 0; b 1 > 0; b 2 > 0, a 1≠ ( ) ( ) 6 log b .b log b log b a a a 1 2 1 2 = + Logarit của một tích bằng tổng các logarit Ví dụ 3: Tính: a) 12 12 log 6 log 2+ b) 1 1 1 2 2 2 4 log 6 log 24 log 9 + + 2. Logarit của một thương: a > 0; b 1 > 0; b 2 > 0, a 1≠ ( ) 2 b 1 7 log log b log b a a a 1 2 b = − ÷ ÷ Logarit của một thương bằng hiệu các logarit ( ) 1 8 log log b a a b =− ÷ Ví dụ 4: Tính a) 100 4 25 25 −log log . b) 2 2 2 20 6 15log log log+ − . c) 2 2 2 5 10 25log log log+ − . d) 6 7 14 3 3 3 log log log+ − e) 10 7 14 5 5 5 log log log+ − . 3. Logarit của một lũy thừa : a > 0; b> 0, a 1≠ ( ) ( ) 9 log b log b a a α =α Logarit của một lũy thừa bằng tích của số mũ với logarit của cơ số ( ) ( ) n 1 10 log b log b a a n = Ví dụ 5: Cho log 2;log 3b c a a = = − . Hãy tính log x a , biết a) 2 3 4 a b x c = b) 2 3 a b x c = c) 2 2 3 x a bc= III. Đổi cơ số : Cho a > 0; b > 0. c>0, a 1≠ , c 1≠ THPT ĐÔNG DƯƠNG 8 ( ) log b c 11 log b a log a c = ( ) 1 12 log b a log a b = b 1≠ ( ) 1 13 log b log b a a = α α ; 0 α ≠ Ví dụ 6: a) Cho 5 14 2 2 log ;loga b= = . Tính 35 2 log theo a và b b) Cho 10 7 2 2 log ;loga b= = . Tính 35 2 log theo a và b c) Cho 4 5 3 3 log ;loga b= = . Tính 10 3 log theo a và b d) Cho 2 9 5 5 log ;loga b= = . Tính 6 5 log theo a và b e) Cho 3 5 2 7 2 3 log ;log ;loga b c= = = . Tính 50 63 log IV. Logarit thập phân, logarit tư nhiên 1. Logarit thập phân: là logarit cơ số 10 log b 10 thường viết là logb hay lgb 2. Logarit tự nhiên: là logarit cơ số e log b e thường viết là lnb Chú ý: log b log b a loga = ln b log b a ln a = Luyện tập: Bài 1: Biết log 5 2 = a và log 5 3 = b . Tính các lôgarit sau theo a và b. 1) log 5 27 2) log 5 15 3) log 5 12 4) log 5 30 Bài 2: Lôgarit theo cơ số 3 của mỗi biểu thức sau , rồi viết dưới dạng tổng hoặc hiệu các lôgarit. 1) ( ) 3 2 5 3 ba 2) 2,0 6 5 10 − b a 3) 5 4 9 ba 4) 7 2 27a b THPT ĐÔNG DƯƠNG 9 Bài 3: Tính giá trị các biểu thức. 1) log 9 15 + log 9 18 – log 9 10 2) 3 3 1 3 1 3 1 45log3400log 2 1 6log2 +− 3) 3log 2 1 2log 6 136 − 4) )3log.4(loglog 23 4 1 Bài 4: Tính giá trị các biểu thức. 1) 1 1 log 4 log 8 log 2 9 125 7 4 2 81 25 .49 − ÷ + ÷ 2) 1 log 3 3log 5 1 log 5 5 2 4 2 16 42 + + + 3) 1 log 4 log 9 log 6 7 7 5 2 72 49 5 − − + ÷ ÷ Bài 5: Tìm x biết. 1) log 6 x = 3log 6 2 + 0,5 log 6 25 – 2 log 6 3. 2) log 4 x = 3log410log2216log 3 1 444 +− Bài 6: Tính. 1) 2020 )32log()32log( −++ 2) )725log()12log(3 −++ 3) e e 1 lnln + 4) ).ln(4ln 21 eee + − Bài 7: Tìm x biết 1) log x18 = 4 2) 5 3 2log 5 −= x 3) 6)2.2(log 3 −= x Bài 8: 1) Biết log 12 6 = a , log 12 7 = b. Tính log 2 7 theo a và b. 2) Biết log 2 14 = a. Tính log 49 32 theo a HÀM SỐ MŨ – HÀM SỐ LOGARIT I. Hàm số mũ: 1. Định nghĩa: Cho a 0,a 1> ≠ Hàm số y = a x được gọi là hàm số mũ cơ số a. THPT ĐÔNG DƯƠNG 10