PHÒNG GD&ĐT THANH CHƯƠNG ĐỀ THI KIỂM ĐỊNH CHẤT LƯỢNG MŨI NHỌN. NĂM HỌC 2008-2009 MÔN THI: TOÁN 8 (Thời gian làm bài 120 phút) Bài 1 (1,0 điểm) Phân tích các đa thức sau thành nhân tử: a) x 2 – x – 12; b) x 2 + 2xy + 4y – 4; Bài 2: (2,5 điểm) Cho biểu thức: P = 4 2 2 3 4 1 1 1 ( 1) (1 ) ( ) 1 1 1 1 x x x x x x x x x x x x + − + − + + − + − + × − + − − a. Tìm x để P xác định. b. Rút gọn P. c. Tìm giá trị nguyên của x để P nhận giá trị nguyên? Bài 3: (2,5 điểm) a) Cho đa thức ( 3)( 5)( 7)( 9) 2014Q x x x x= + + + + + . Tìm số dư trong phép chia đa thức Q cho đa thức 2 12 32x x+ + . b) Chứng minh bất đẳng thức: 1 1 4 a b a b + ≥ + . Với ;a b là các số dương. Áp dụng bất đẳng thức trên tìm giá trị nhỏ nhất của 2 2 2 3 M xy x y = + + . với ;x y dương và 1x y + = . Bài 4: (2,5 điểm) ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. a. Chứng minh E là trung điểm AB. b. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P Tính tỷ số diện tích tam giác AND với diện tam giác PMD? Câu 5:(1,5 điểm) Cho trước góc xOy; tỷ số m n và một điểm P nằm trong góc xOy. Dựng đường thẳng đi qua P cắt các cạnh Ox, Oy lần lượt tại C và D sao cho: PC m PD n = . (Chỉ trình bày cách dựng và chứng minh) Hết./. . nguyên? Bài 3: (2,5 điểm) a) Cho đa thức ( 3)( 5)( 7)( 9) 2014Q x x x x= + + + + + . Tìm số dư trong phép chia đa thức Q cho đa thức 2 12 32x x+ + . b) Chứng minh bất đẳng thức: 1 1 4 a b a b + ≥ + . NĂM HỌC 2008-2009 MÔN THI: TOÁN 8 (Thời gian làm bài 120 phút) Bài 1 (1,0 điểm) Phân tích các đa thức sau thành nhân tử: a) x 2 – x – 12; b) x 2 + 2xy + 4y – 4; Bài 2: (2,5 điểm) Cho biểu thức: . Chứng minh bất đẳng thức: 1 1 4 a b a b + ≥ + . Với ;a b là các số dương. Áp dụng bất đẳng thức trên tìm giá trị nhỏ nhất của 2 2 2 3 M xy x y = + + . với ;x y dương và 1x y + = . Bài