Đề thi chọn học sinh giỏi thcs cấp tỉnh Năm học 2004 - 2005 Môn: Toán 7 Thời gian: 150 phút (Không kể thời gian giao đề) Câu 1 (2 điểm) Thực hiện các phép tính: a/ 8 5 6 5 4 5 4 1 3 1 2 1 13 5 11 5 7 5 13 3 11 3 7 3 + + + + + b/ ( 1 + 2 + 3 + + 90 ) ( 12 . 34 - 6 . 68 ) : +++ 6 1 5 1 4 1 3 1 Câu 2 (2 điểm) a/ Chứng minh rằng 36 36 - 9 10 chia hết cho 45 b/ Tính x, y, z biết rằng: = + = ++ = ++ 211 yx z zx y zy x x + y + z c/ Tìm các số a, b, c biết: ( - 2a 2 b 3 ) 10 + ( 3b 2 c 4 ) 15 = 0 Câu 3 (2 điểm) Một ngời đi từ A đến B với vận tốc 4 km/h và dự định đến B lúc 11 giờ 45 phút. Sau khi đi đợc 5 4 quãng đờng thì ngời đó đi với vận tốc 3 km/h nên đến B lúc 12 giờ tra. Tính quãng đờng AB, ngời đó khởi hành lúc mấy giờ? Câu 4 (3 điểm) ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân (góc ACE = 90 0 ). Đờng cao Ah của tam giác ABC và đờng cao CK của tam giác BCE cắt nhau ở N. Chứng minh AN = BC. Câu 5 (1 điểm) Cho 25 số, trong đó 4 số bất kì nào cũng có tổng là 1 số dơng. Chứng minh rằng tổng 25 số ấy là một số dơng Đáp án đề thi chọn học sinh giỏi THCS cấp tỉnh Năm học 2004 - 2005 Môn: Toán 7 Câu 1: 5 2 5 3 8 1 6 1 4 1 5 8 1 6 1 4 1 2 13 1 11 1 7 1 5 13 1 11 1 7 1 3 / += + + + + + a = 1 (1 điểm) b/ Ta có: 12.34 - 6 . 68 = 0 Do đó giá trị của biểu thức bằng 0. Câu 2: a/ Ta có 36 36 có tận cùng bằng 6 9 10 có tận cùng bằng 1 (1/4 điểm) Do đó 36 36 - 9 10 chia hết cho 5, đồng thời cũng chia hết cho 9, vậy chia hết cho 45 (1/4 điểm) b/ Ta có: zyx zy x zx y zy x ++= + = ++ = ++ 211 (1) áp dụng tính chất của dãy tỉ số bằng nhau cho 3 tỉ số đầu ta đợc: ( ) zyx zyx zyx ++= ++ ++ 2 (2) Nếu x + y + z = 0 thì từ (1) suy ra x = 0; y = 0; z = 0. Nếu x + y + z 0 thì từ (2) suy ra: x + y + z = 2 1 (1/2 điểm) Khi đó (1) trở thành: 2 1 2 2 1 1 2 1 1 2 1 = = + = + z z y y x x Do đó: = = = = = = 2 1 2 1 2 1 2 3 2 2 3 2 2 3 2 z y x zx yy xx Có 2 đáp số: (0; 0; 0) và (1/2; 1/2; -1/2) (1/2 điểm) c/ Ta có: 2 10 . a 20 . b 30 + 3 15 . b 30 . c 60 = 0 Hai đơn thức ở vế trái đều không âm mà có tổng bằng 0 nên: = = = = 0. 0. 0 60 . 30 0 30 . 20 cb ba cb ba (1/4 điểm) Do đó b = 0, a và c tuỳ ý hoặc a = 0; c = 0 và b tuỳ ý hoặc a = 0; b = 0; c = 0. Câu 3: Ta có sơ đồ sau: A C B Gọi thời gian đi CB với vận tốc 4 km/h là t 1 (phút) Gọi thời gian đi CB với vận tốc 3 km/h là t 2 (phút) => t 2 - t 1 = 15 (phút) và v 1 = 4 km/h; v 2 = 3 km/h. (1/2 điểm) Ta có 3 4 2 1 = v v mà vận tốc và thờigian là 2 đại lợng tỉ lệ nghịch nên: (1/2 điểm) 15 1 15 34 12 3 1 4 2 3 4 1 2 == === tttt t t => t 2 = 15 . 4 = 60 (phút) = 1 (giờ) (1/2 điểm) Vậy quãng đờng AB bằng: 1 . 5 . 3 = 15 (km) Và ngời đó khởi hành lúc: 12 - 1 . 5 = 8 (giờ) Câu 4: Vẽ hình, ghi giả thiết, kết luận (1/2 điểm) Ta có: )( )( gtCEAC gtBCNA NAC = BCE (Góc có cạnh tơng ứng vuông góc cùng tù) (1) (1 điểm) Lại có: =+ =+ vCE vCC 1 32 1 32 C 2 = E (2) và AC = CE (gt) (3) (1 điểm) Từ (1), (2), (3) =>+ACN =+BEC (gcg) Vậy AN = BC (1/2 điểm) Câu 5: (1 điểm) Trong 25 số đã cho, phải có ít nhất 1 số dơng vì nếu cả 25 số đều âm, thì tổng 4 số bât kì là âm, trái với đề bài. Tách riêng một số dơng đó, còn lại 24 số, chia thành 6 nhóm. Theo đề bài mỗi nhóm đều có tổng mang giá trị dơng nên tổn của 6 nhóm đó là số dơng. Vậy tổng của 25 số đó là số dơng. A B C E N K . Đề thi chọn học sinh giỏi thcs cấp tỉnh Năm học 2004 - 2005 Môn: Toán 7 Thời gian: 150 phút (Không kể thời gian giao đề) Câu 1 (2 điểm) Thực hiện các phép tính: a/ 8 5 6 5 4 5 4 1 3 1 2 1 13 5 11 5 7 5 13 3 11 3 7 3 + + + + + b/. ý hoặc a = 0; b = 0; c = 0. Câu 3: Ta có sơ đồ sau: A C B Gọi thời gian đi CB với vận tốc 4 km/h là t 1 (phút) Gọi thời gian đi CB với vận tốc 3 km/h là t 2 (phút) => t 2 - t 1 = 15 (phút). 90 0 ). Đờng cao Ah của tam giác ABC và đờng cao CK của tam giác BCE cắt nhau ở N. Chứng minh AN = BC. Câu 5 (1 điểm) Cho 25 số, trong đó 4 số bất kì nào cũng có tổng là 1 số dơng. Chứng minh