TRƯỜNG THPT H ẬU LỘC 2 ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2008 - 2009 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : 3x 4 y x 2 − = − . Tìm điểm thuộc (C) cách đều 2 đường tiệm cận . 2. Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn 2 0; 3 π . sin 6 x + cos 6 x = m ( sin 4 x + cos 4 x ) Câu II (2 điểm) 1. Tìm các nghiệm trên ( ) 0;2π của phương trình : sin 3x sin x sin 2x cos2x 1 cos2x − = + − 2. Giải phương trình: 3 3 x 34 x 3 1+ − − = Câu III (1 điểm) Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên SA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB. 1. Tính góc giữa AC và SD 2. Tính khoảng cách giữa BC và SD. Câu IV (2 điểm) 1. Tính tích phân: I = 2 0 sin x cosx 1 dx sin x 2cosx 3 π − + + + ∫ 2. a)Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i b) Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn : 1 < | z – 1 | < 2 PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b Câu V.a.( 3 điểm ) Theo chương trình Chuẩn 1. Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d 1 ) : 3x – 4y + 27 = 0 và (d 2 ) : x + 2y – 5 = 0 2. Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng: ( ) 1 x 1 d : y 4 2t z 3 t = = − + = + và ( ) 2 x 3u d : y 3 2u z 2 = − = + = − a. Chứng minh rằng (d 1 ) và (d 2 ) chéo nhau. b. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d 1 ) và (d 2 ). 3. Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu . Câu V.b.( 3 điểm ) Theo chương trình Nâng cao 1. Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : 3 x – y - 3 = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . 2.Cho đường thẳng (d) : x t y 1 z t = = − = − và 2 mặt phẳng (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0 a) Viết phương trình hình chiếu của (d) trên (P) b) Lập phương trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q) 3. Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có đúng 3quân bài thuộc 1 bộ ( ví dụ 3 con K ) Hết Cỏn b coi thi khụng gii thớch gỡ thờm. trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2008 - 2009 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề Câu Nội dung Điểm I 2.0đ 1 1,25đ Khảo sát và vẽ ĐTHS - TXĐ: D = R \ {2} - Sự biến thiên: + ) Giới hạn : x x Lim y Lim y 3 + = = nên đờng thẳng y = 3 là tiêm cận ngang của đồ thị hàm số +) x 2 x 2 Lim y ; Lim y + = = + . Do đó đờng thẳng x = 2 là tiệm cận đứng của đồ thị hàm số +) Bảng biến thiên: Ta có : y = ( ) 2 2 2x < 0 , x D Hàm số nghịch biến trên mỗi khoảng ( ) ;2 và - Đồ thị + Giao điểm với trục tung : (0 ;2) + Giao điểm với trục hoành : ( 4/3 ; 0) + ĐTHS nhận giao điểm I(2 ;3) của hai đờng tiệm cận làm tâm đối xứng Gọi M(x;y) (C) và cách đều 2 tiệm cận x = 2 và y = 3 | x 2 | = | y 3 | 3x 4 2 x 2 3 x 2 x 2 x 2 = = x 2 2 x 2 2 = + = Vậy có 2 điểm thoả mãn đề bài là : M 1 ( 1; 1) và M 2 (4; 6) 0,25 0,25 0,25 0.5 2 0.75đ Xét phơng trình : sin 6 x + cos 6 x = m ( sin 4 x + cos 4 x ) (2) 2 2 3 1 1 sin 2x m 1 sin 2x 4 2 = ữ (1) Đặt t = sin 2 2x . Với 2 x 0; 3 thì [ ] t 0;1 . Khi đó (1) trở thành : 2m = 3t 4 t 2 với [ ] t 0;1 Nhận xét : với mỗi [ ] t 0;1 ta có : sin 2x t sin 2x t sin 2x t = = = Để (2) có 2 nghiệm thuộc đoạn 2 0; 3 thì ) 3 3 t ;1 t ( ;1 4 2 t 0 t 0 ữ = = 0,25 0,5 y y x + - + - 2 3 3 O y xA B C 60 0 6 4 2 -5 5 x O y N M D S A B C K . thuộc 1 bộ ( ví dụ 3 con K ) Hết Cỏn b coi thi khụng gii thớch gỡ thờm. trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2008 - 2009 Môn thi: toán Thời gian làm bài: 180 phút, không. 2 ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2008 - 2009 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) 1. Khảo sát sự biến thi n. gian giao đề Câu Nội dung Điểm I 2.0đ 1 1,25đ Khảo sát và vẽ ĐTHS - TXĐ: D = R {2} - Sự biến thi n: + ) Giới hạn : x x Lim y Lim y 3 + = = nên đờng thẳng y = 3 là tiêm cận ngang của đồ thị