1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án ôn thi TN 12 (Phân dạng, hay)

43 148 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 3,4 MB

Nội dung

Phần 1: GIẢI TÍCH CHƯƠNG I: ỨNG DỤNG CỦA ĐẠO HÀM. I. TÓM TẮT KIẾN THỨC: 1).Sự đơn điệu của hàm số: * Định nghĩa:      =  ( ) ( ) ( )                  ⇔ ∀ ∈ < ⇒ <      =  ( ) ( ) ( )                  ⇔ ∀ ∈ < ⇒ > * Định lí:      =  ⇔  ′ ≥  ∀ ∈       =  ⇔  ′ ≤  ∀ ∈  Chú ý !"#$%&'()* + * Chú ý: • ,& - !./01%23 #45!./01%23 67$8# • 9)xeùt:23 ;(<3=  >./? >.:  ′  >./3;  ′  @ >A67% >BC4D1%05 6801%23  • 67$80$EF 03; 0G$%& !"# 2). Cực trị của hàm số: a) Dấu hiệu 1 ,$H $    ′ I J1=KL87%L •    + → − $  5)<+ •    − → + $  5)<)  → A67%C4D1%05 6<;  b) Dấu hiệu 2  •             ′ =   ⇒   ′′ >   $  5)<)  •             ′ =   ⇒   ′′ <   $  5)<+ →  >.:  ′  >./8)   +@+1M1N0G$8 >.:  ′′  >.:      ′′ DO 3 )05 6   5)<+&<)  Chú ý: $  5)<;    = ⇒      ′ =  3).GTLN – GTNN của hàm số    = trên D : * Định nghĩa: PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP  YZ=[\5].AV;    = ? ( ) ( )               ∀ ∈ ≤   ⇔  ∃ ∈ =    Y=[\5].VV;    = ? ( ) ( )               ∀ ∈ ≥   ⇔  ∃ ∈ =   4).Các đường tiệm cận của đồ thị hàm số: a) Tiệm cận đứng:   5      ± → = ±∞ ⇒ = 5364; ./8)   53;^ =0G53;_   ⇒ = 5364; b) Tiệm cận ngang:   5      →±∞ = ⇒ = 536; .: 5   →+∞ và 5   →−∞ .  >40G@36 >`E7a4 ( ) ( )      =   V 6 ( )   ≤ 6 ( )   @36  V 6 ( )   > 6 ( )   0G@36 5 ). Khảo sát hàm số:  ./67$8;  .:+1&b/3;7=2/&b":8;+83 DL/=[  ./8K++DG<8K+DG<D/36 @  A67%  ./)N3D:$4;  cd Chú ý:   !"@a$453;7=2/  ′′ = N3  @<+D<) /a$45 );)<+<)    !#$6e 5e$4  %&61)=f365a$4 II. CÁC DẠNG TOÁN ĐIỂN HÌNH: SỰ ĐƠN ĐIỆU CỦA HÀM SỐ Dạng 1: Xét tính đơn điệu của một hàm số:567% Dạng 2: Định giá trị của tham số m để hàm số đồng biến (nghịch biến) trên TXĐ:O5g '7-04)/ V  ( )       ′ = + + ≠ /    ' ′ ≥ ∀ ∈    >  ⇔  ∆ ≤     ' ′ ≤ ∀ ∈    <  ⇔  ∆ ≤  CỰC TRỊ CỦA HÀM SỐ Dạng 1: Tìm các điểm cực trị của một hàm số:OH &h1NH &h PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP Dạng 2: Định giá trị của tham số m để hàm số đạt cực trị tại   : X=2787 >./? >.: ( )     ′ ′ ⇒  >A675 6+<<+ ( )      ′ ⇒ = →%/ >cKL8DL/=[OH &h1NH &h0)5+$J@i F 03F0G >,5 68iF 03 Dạng 3: Định giá trị của tham số m để hàm số luôn luôn có cực đại, cực tiểu: X=2787 >./? >.:  ′  >.:  ′ ∆  >A675 65 G5 G@B9B.  ′ ⇔ = @37a3DI  5-08 0H 3@   ′ ⇔ ∆ > →%/   ′ 0G5 467%567%)jI 5-08 0H  3@ >,5 68DL/=[ Dạng 4: Chứng minh với mọi giá trị của tham số m hàm số luôn luôn có cực đại, cực tiểu: X=2787 >./? >.:  ′  >.:  ′ ∆  >B4   ′ ∆ > DI 5-08 0H 3@ ⇒  5 G5 G@B9B. GTLN – GTNN CỦA HÀM SỐ    = TRÊN D : Dạng 1: Tìm GTLN – GTNN của một hàm số trên khoảng ( )   :<3=   A67%  V %@< &5 • B<+    $         ⇒ = • B<)       (     ⇒ = Dạng 2: Tìm GTLN – GTNN của một hàm số trên đoạn k  l  :<3=  Cách 1:  .:  ′   ./8)$  11  ′ = 1N  ′ 0G$8  .:              với       ∈  → 1888 → 05 6 Cách 2:  A67%kl → 05 6 CÁC BÀI TOÁN LIÊN QUAN ĐẾN KHẢO SÁT HÀM SỐ: Dạng 1: Sự tương giao giữa 2 đồ thị: a)Bài toán 1:./1);=f ( )    ( )   = D ( )    ( )   = > A677=2/1(1); ( )   D ( )    ( ) ( )    =  >Y3;7=2/1(1):51);=f PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPmPPPPPPP b)Bài toán 2:?OB35 6J13;7=2/ <3=  >nI7=2/o1DF7=2/1(1)(D57=2 /;o@B(D57-p5+ >A675 6Y3;7=2/:51);BD >?<D1/88%='1);BD→, 5 6 Dạng 2: Viết phương trình tiếp tuyến của đồ thị (C) của hàm số ( )   = : Phương trình có dạng:            ′ − = − a)Tại          b)n3@k;7 &_e   )   ′ = /$  → /&   Chú ý: q q *  *  ) )⇔ =   *  *  ) )⊥ ⇔ = − III. BÀI TẬP ÁP DỤNG: Bài 1:./801%23 ;8      = +    5    =       + − =   r r      − + = − ,&-. Ba 9801% V801%  ( ) ( )    −∞ − +∞ ( ) ( )   −  ( )  + ( ) + +∞  ( )  ( ) ( )   −∞ +∞  ( ) ( )   −∞ +∞ ( ) ( )    Bài 2:B4&"  s − 01% ( ) m D 01% ( ) m−  Bài 3:9)  ( ) m  m    t      = − + + + + 67$8 ,&-. u u u u − ≤ ≤  ( ) ( ) m          = − − + − − 67$8 ,&-.0G@  m   m m    = − + − + 67$8 ,&-.  ≤ ≤   t m     + − = − pJ8Javw01x$Oyp ,&-. r m  ≤ − Bài 4:9) m   m       = − + − + +<) +  =  ,&-.  = Bài 5: 9) m  m m m r    = − + + +  PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPrPPPPPPP ,G@< ,&-.≥ B@<+D<)  ,&-.z Bài 6:9)  r       − + = − B@<+D<)  ,&-.{m 9+<+  =  ,&-."r 9+<) +  = −  ,&-."| Bài 7:n35 6J1<; ( ) r         = = − + − +  / !  ≤ @(<+  > @<+D(<)  Bài 8:B4 ( ) m    m s m     = − − + + 5 G@<DK\8;  Bài 9:./].AV].VV;8  m   m   = + − Ja1+      −     ,&-.  k l   r   − = =   k l      − = = −   t r  = − + − ,&-. k l     t   − = = −  k l   |   − = − = −  m r   m   = − 1+kπl ,&-. k l m   r r m     π π π     = = =  ÷  ÷      ( ) ( ) k l      π π = = =  r      = − + − + 1+ [ ] −  J 5    = 1+  +     ,&-. ( )  k l  +    + + = =  ( ) k l   + +   = = Bài 10:./8364D;         − = +  ( )         − − = −    m r     + = −   m r m     − = − + J   m    + = + }   r m     − + = − ,&-. 0 1 1 1 *1 +1 1 .364  = −  =  = ±  = ,G@ m = PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPtPPPPPPP .36  =  =  =  =  = ± ,G@ Bài 11: B1 m m      = − −  ,%18<DDdB;  c7=2/7 &;B+ ( )  r 2  − −  ,&-. s r = +  m c  7=2  /  7   &  ;  B    7   &  1  1  DK  =f  ~ r s    *= +  ,&  -. r t r tu   = + = −  r c  7=2  /  7   &  ;  B    7   &  D G  @  DK  =f  ~  s  • m   *= −  ,&-. m  = − −  t c7=2/7 &;B+1);DKe  u ?<D1B35 6J13;7=2/ m m u m   − + − =  Bài 12: B1 m  u s    = − + ,%18<DDd ( )  ; c7=2/7 &;B+)@1(53;7=2/  ′′ =  ,&-. m € = − +  mcK81;=f~     = + − H  );1+ ~)<+D<) ; ( )   ,&-.     =   =   r.:3:/7~K+'Be•$D=f~   = =  ,&-. m r  3 =  Bài 13B1 m m     = − − ,%18<DDdB; 9)Bh=f~   − − = +)7a3 ,&-. m > −  m.:3:/7~K+'Be•$D=f~   = =  ,&-. s r  3 =  r?<D1B35 6J103;7=2/ m m   )− − =  Bài 14 :B1&"$ m >m$  >$>P@B ,%18<DDdB;0"m ]\‚51);BDe .:3:/7~K+'BD7  &;B+‚ ,&-. | r  3 =  m`8)Bhe1+)7a3 PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPuPPPPPPP ,&-. m <  Bài 15:B1B&"}$"$ r P$   ,%18<DDdB ?<D1B/0)   )∆ = hB+)7a3 ,&-.  )− < <  mc7=2/7 &;B .+)@1(M   ,&-. r  € = −  .+)@ (Mm ,&-.  m = ± ⇒  n7 &11DK  &"r$>s ,&-. r r = −  r.:3:/7~K+'BDwe1 Bài 16B1      + = − ,%18<DdB; B4iM=f~&"$>05 G5 GhB+) (808   m./85K8i; [ ] −  ,&-. k l    m    − = − =  k l     − = = − rc7=2/7 &;B+1);BDKe  ,&-.   = − −  tc7=2/7 &;B+1);BDKe1 uc7=2/7 &;B7 &D G@DK=f~  m  − − =  ,&-.    |   = − − = − +  |.:3:/7~K+'BDe\( €./%8)B@\(58 & Bài 17B1 ( ) ( ) r r        − + = − ,%18<DdB;DK r =  ]\ ( ) ) * 5=f~H  ( ) 4 D@3@0n35 6J101); BD ( ) ) *  m]\5/7~K+'Be•$D=f~   = = .:3 : r.:):0p$1&0H &H e•$ PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP|PPPPPPP CHƯƠNG II: HÀM LUỸ THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT I. TÓM TẮT KIẾN THỨC: 1) Luỹ thừa: * Các công thức cần nhớ:                − = = = * Tính chất của lũy thừa:         + =  ( )     =           =  ÷           − =  ( )       = * Quy tắc so sánh: >cK{/      > ⇔ > >cKzz/      > ⇔ < 2) Căn bậc n         =         = ( )      =     = 3) Lôgarit: * Định nghĩa:B1     > ≠  51     α α = ⇔ = * Tính chất: 51 51   51  51           α α = = = = * Quy tắc so sánh: >cK{/ 51 51      > ⇔ > >cKzz/ 51 51      > ⇔ < > 51 51      = ⇔ = * Quy tắc tính: ( )     51  51 51       = +     51 51 51        = − 51 51     α α =  51 51     α α =  * Công thức đổi cơ số: 51 51 51       = & 51 51 51      =  51 51     =  & 51 51      =  * Chú ý AG677a20:3 551$1N5$ AG2J0:3 55$ 4) Bảng đạo hàm cần nhớ: Đạo hàm của hàm số sơ cấp thường gặp Đạo hàm của hàm số hợp u = u(x) ( )  •   α α α − = ( )  •   •   α α α − = PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP€PPPPPPP         = −  ÷   •   •     = −  ÷   ( ) •     = ( ) • •     = ( ) •  1 = ( ) •  •1  = ( ) • 1  = − ( ) • 1 •  = − ( ) •    1   = ( ) •  •  1    = ( ) •   1    = − ( ) •  • 1     = − ( ) •   + += ( ) • •   +  += ( ) • 5     = ( ) • • 5      = ( ) •  5   = ( ) • • 5    = ( ) •  51 5     = ( ) • • 51 5      = t5ƒ&Lƒ51 HÀM SỐ LŨY THỪA HÀM SỐ MŨ HÀM SỐ LOGARIT Dạng   α =  α O&g   =   < ≠  Chú ý:      > > ∀ 51   =   < ≠  Điều kiện của x để hs có nghĩa: > „ 5 α + ∈ @… DK\$ > 5 α − ∈ @… DK  ≠  > 5 α ∉ @… DK  > @… ∀ @…DK  > Đạo hàm Sự biến thiên  α >  α <  >  < <  >  < <    +∞    +∞  ?  ?  ?  ? Đồ thị A GH ) ( )   VM117: e1D5 G H ) 4  D  6   VM117:7% e D5 GH  ) 4 D  6   6) Phương trình mũ, phương trình logarit: PHƯƠNG TRÌNH MŨ PHƯƠNG TRÌNH LOGARIT PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPsPPPPPPP Dạng cơ bản.   =   < ≠ O&g 51   =   < ≠ O&g Cách giải dạng cơ bản. +  ≤ XDG3 >  > X@   51   = Chú ý`E X5 G@     = Cách giải các dạng pt đơn giản. >9=DFO287e                  = ⇔ =   < ≠  >9N†7e ( ) ( )      = >  >A1@D‡g%D 7%=2 >9=DFO287e 51   51                = ⇔ =   < ≠ D     > 1N     >  >9N†7e ( ) 51    =  >Zƒ@D Chú ý:9F 03$8;7=2 / 7) Bất phương trình mũ, bất phương trình logarit: 7=2787 =2<=7=2787 %7=2/ƒD51=-$E0_e7=2787ƒ@1N5G @)$8F ;7=2/ Chú ý: • ,%77=2/ƒ2%7%$E • ,%77=2/51-NF 03$8;7=2/ II. CÁC DẠNG TOÁN ĐIỂN HÌNH VÀ BÀI TẬP ÁP DỤNG: LUỸ THỪA Dạng 1: Thu gọn một biểu thức Bài 1: .:88) 4   |t  t m  | t u 4 −   = + −  ÷   KQ: 4 =  ( ) ( )   r    m m m €  ur € s6 − − − = − − − +  KQ: m u 6 =   t  m |    m m  r r  m t    u t  m −         =  ÷  ÷              KQ: t   =  ( )   m   r t t t  r m r  − −         = +    ÷  ÷  ÷          KQ: rs   = J t m m r   m   t t € t 7 − − − + = −  KQ: m7 = }   m  m  8   − − = KQ: r  8  =    m  m   r   9 + +   =  ÷   KQ: 9 = Bài 2:nI+5ƒ&LDKƒ* j  ( ) m € r  4   = >  t m r   6   = > PPPPPPPPPPPPP.QRARSTUV.WX.R.V.X.PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP [...]... 3 3 3 E = 10 10 8 J= 195 3125 -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -11 - Dạng 2: Rút gọn biểu thức Bài 6: Rút gọn biểu thức B = log 1 25log 5 9 A = log 3 8log 4 81 3 1 log 25 3 2 5 C = log 2 D = log 3 6log 8 9log 6 2 F= E = log 3 2.log 4 3.log 5 4.log 6 5.log 8 7 1 1 − log 4 H =  814 2 + 25log   G = log 1 7 + 2log 9 49 − log 3 27 C=− 125 8 9 3 A = 12 B = −8 log 2 30 log 4... 128 x −3 4 1–x h) (1,25) = (0,64) 2(1+ 2 52 x +1 − 3.52 x −1 = 110 KQ: x2 −6 x − j) 3x −1 = 6 x.2− x.3x +1 c)  −2 ± 3 2    2   h) { 25} b) x) d) { −2; −3} e) { 1} i) { 3} j) { −2} 32 x +1 − 9.3x + 6 = 0 22 x + 2 − 9.2 x + 2 = 0 d) f) 52x + 4 – 110.5x + 1 – 75 = 0 -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -13 - f) x x+1 8 5  2 g)  ÷ − 2  ÷ + = 0 5  2  5 i) (4− k) 12. 9... 4 ≥ 0 2 e) log 5 ( 5 x − 4 ) > 1 − x a) ( 0;1) ∪ ( 27; +∞ ) b) ( 1;10 ) d) ( 0;10 ) e) ( 1; +∞ ) 3  1  0;  ∪ [ 2; +∞ )  4 f) ( −∞;2 ) c) -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -15 - -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -16 - CHƯƠNG III : NGUN HÀM- TÍCH PHÂN VÀ ỨNG DỤNG I TĨM TẮT KIẾN THỨC : A.Ngun hàm + Định nghĩa : Cho hàm số f(x) xác định trên K... sin 2 x 1 + sin x 2 dx 4) ∫ x 1 − xdx 12) ∫ x 3 1 + x 2 dx 4) 1 2 2 (7 − 3 x 2 )3 + c− (1 − x)3 + (1 − x) 5 + c 3 3 5 -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -21 - 5) 6) 1 ln( x 4 + 1) + c 4 7) 8) 1 1 1 cos x cos x 4 2 5 − + c (2ln x + 3) + c − 3 (1 − 3 x) + 3 (1 − 3 x) + c 8 6 15 5 3 5 9) 10) ln x 2 + x + 1 + c 2 3 3 ( ) 11) 3 1 + ln x + c 12) ( 2 1 + sin 2 x + c 1 + x2 5 ) −(... -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -22 - 2x +1 dx 5) ∫ 2 x + x +1 0 2 5 ( x − 1) dx 9) ∫ 2 1 x − x−6 1 1 6) ∫ 10) (2 x + 1)dx ∫ x2 − 4x + 4 0 0 1 1 π 4 x 3 + 3x + 1 8) ∫ dx x −1 −1 2x dx 7) ∫ 2x −1 1 2 x 2 + 3.x.dx 11) ∫ 3 0 1 − xdx 12) 0 ∫ sin 3x.cos x.dx 0 13) π 2 ∫ sin xdx 14) 2 0 Đáp số: 1) 24 π 2 ∫ cos xdx 15) 3 0 2) 8 3) 5 4) 10) 11) 5 − ln 4 2 3 4 5)ln3 12) 16 27 ∫ cos x... + ln x dx x e 7) ∫ 1 ∫ sin x cos xdx 3 0 11) π 6 ∫ e cos xdx sin x 3 8) −x ∫ x.e dx 2 0 12) ∫ x 2 dx 3 0 1 + x3 Đáp số: 1) 32 15 2) 14 9 9) 182 3 10) 1 4 3) π 2 − 2 3 4) 11) e-1 ln 4 3 1 3 6)ln2 7) 8) 12) 5) 2 1 1 (2 2 − 1) (1 − 9 ) 3 2 e 1 3 ( 4 − 1) 2 Bài 7: Tính các tích phân sau : -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -23 - 1) π 2 π 1 ∫ (2 x − 1) cos xdx 2) ∫ (1 + e ) xdx... = 0 ; x = 2 Đs : Đs : 2π (ln 2 − 2ln 2 + 1) π2 4 2 c/ y = xe x ;y=0; ;x=2 d/ y = sin2x ; y = 0 ; x = 0 ; x = Đs : π Đs : π (5e 4 − 1) 4 3π 2 8 -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -24 - -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -25 - CHƯƠNG IV: SỐ PHỨC I TĨM TẮT KIẾN THỨC : 1 Số phức  Số phức z = a + bi, trong đó a, b ∈R, a là phần thực, b là phần ảo, i là... trụ ABCD.A’B’C’D’ KQ: V = 192a 3 -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -30 - CHƯƠNG II: MẶT NĨN, MẶT TRỤ, MẶT CẦU I TĨM TẮT KIẾN THỨC: 1 Khối nón: S xq = π rl , với r là bán kính đáy và l là độ dài đường sinh Stp = S xq + Sdáy , với S dáy = π r 2 1 V = π r 2 h , với h là chiều cao 3 2 Khối trụ: S xq = 2π rl , với r là bán kính đáy và l là độ dài đường sinh Stp = S xq + 2 Sdáy... i -TÀI LIỆU ƠN TẬP THI TN THPT 2010- 2011 -26 - k) h) l) ( (1 + 2i ) 2 − (1 − i ) 2 (3 + 2i ) 2 − (2 + i ) 2 ) ( 2 1 + 3i + 1 − 3i Đs : ) 2 Đs : - 4 3 −i 2 −i − 1+ i i Đs : i Bài 2: Giải các phương trình sau trên tập hợp số phức: a) 21 9 + i 34 17 3 +1 + 2 2 −1 − 3 2 2 2+i −1 + 3i z= 1− i 2+i Đs : 22 4 + i 25 25 b) ( 5 − 7i ) + 3z = ( 2 − 5i ) ( 1 + 3i ) 12 8 + i 3 3 c/ 5 − 2iz... 11 = 12 Bài 4: Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 300 Tính thể tích khối chóp S.ABC a3 3 KQ: V = 24 Bài 5: Cho khối chóp S.ABC có đáy ABC là tam giác vng tại A, SA = AB = a , góc giữa hai mặt phẳng ( SBC ) ( ABC ) SA ⊥ ( ABC ) , 600 a/ Tính thể tích khối chóp S.ABC và khoảng cách từ A đến mặt phẳng ( SBC ) và bằng -TÀI LIỆU ƠN TẬP THI TN THPT . 03F0G >,5 68iF 03 Dạng 3: Định giá trị của tham số m để hàm số luôn luôn có cực đại, cực tiểu: X=2787 >./? >.:  ′  >.:  ′ ∆  >A675.  3@ >,5 68DL/=[ Dạng 4: Chứng minh với mọi giá trị của tham số m hàm số luôn luôn có cực đại, cực tiểu: X=2787 >./? >.:  ′  >.:  ′ ∆  >B4   ′ ∆. 5-08 0H 3@ ⇒  5 G5 G@B9B. GTLN – GTNN CỦA HÀM SỐ    = TRÊN D : Dạng 1: Tìm GTLN – GTNN của một hàm số trên khoảng ( )   :<3=  

Ngày đăng: 21/05/2015, 16:00

w