001K THI TUYN SINH I HC, CAO NG NM 2011 Mụn: Toỏn. Khi A, B. Thi gian lm bi: 180 phỳt (Khụng k thi gian giao ) Cõu I. (2 im). Cho hm s 2 1 1 x y x = + (1). 1) Kho sỏt v v th (C) ca hm s (1). 2) Tỡm im M thuc th (C) tip tuyn ca (C) ti M vi ng thng i qua M v giao im hai ng tim cn cú tớch h s gúc bng - 9. Cõu II. (2 im) 1) Gii phng trỡnh sau: 2 1 1 2 2 x x + = . 2) Gii phng trỡnh lng giỏc: 4 4 4 sin 2 os 2 os 4 tan( ).tan( ) 4 4 x c x c x x x + = + . Cõu III. (1 im) Tớnh gii hn sau: 3 2 2 0 ln(2 . os2 ) 1 lim x e e c x x L x + = Cõu IV . (2 im) Cho hỡnh nún nh S cú di ng sinh l l, bỏn kớnh ng trũn ỏy l r. Gi I l tõm mt cu ni tip hỡnh nún (mt cu bờn trong hỡnh nún, tip xỳc vi tt c cỏc ng sinh v ng trũn ỏy ca nún gi l mt cu ni tip hỡnh nún). 1. Tớnh theo r, l din tớch mt cu tõm I; 2. Gi s di ng sinh ca nún khụng i. Vi iu kin no ca bỏn kớnh ỏy thỡ din tớch mt cu tõm I t giỏ tr ln nht? Cõu V (1 im) Cho cỏc s thc x, y, z tha món: x 2 + y 2 + z 2 = 2. Tỡm giỏ tr ln nht, giỏ tr nh nht ca biu thc: P = x 3 + y 3 + z 3 3xyz. Cõu VI . (1 im) Trong mt phng ta Oxy cho hỡnh ch nht ABCD cú tõm 1 ( ;0) 2 I ng thng AB cú phng trỡnh: x 2y + 2 = 0, AB = 2AD v honh im A õm. Tỡm ta cỏc nh ca hỡnh ch nht ú. Cõu VII . (1 im) Gii h phng trỡnh : 2 2 2 2 3 2 2010 2009 2010 3log ( 2 6) 2log ( 2) 1 y x x y x y x y + = + + + = + + + é THI thử I HC lần ii NM học: 2010-2011 Mụn thi : TON làm bài:180 phútThời gian (không kể thời gian giao đề)002 PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I:(2 im) Cho hm s y = x 3 + 3x 2 + mx + 1 cú th l (C m ); ( m l tham s) 1. Kho sỏt s bin thiờn v v th hm s khi m = 3. 2. Xỏc nh m (C m ) ct ng thng: y = 1 ti ba im phõn bit C(0;1), D, E sao cho cỏc tip tuyn ca (C m ) ti D v E vuụng gúc vi nhau. Cõu II:(2 im) 1. Giai hờ phng trinh: 2 0 1 2 1 1 x y xy x y = = 2. Tìm );0( x thoả mãn phơng trình: cotx 1 = xx x x 2sin 2 1 sin tan1 2cos 2 + + . Cõu III: (2 im) 1. Trờn cnh AD ca hỡnh vuụng ABCD cú di l a, ly im M sao cho AM = x (0 < x a). Trờn ng thng vuụng gúc vi mt phng (ABCD) ti A, ly im S sao cho SA = 2a. a) Tớnh khong cỏch t im M n mt phng (SAC). b) Kẻ MH vuông góc với AC tại H . Tìm vị trí của M để thể tích khối chóp SMCH lớn nhất 2. Tớnh tớch phõn: I = 2 4 0 ( sin 2 )cos2x x xdx + . Cõu IV: (1 im) : Cho các số thực dơng a,b,c thay đổi luôn thoả mãn : a+b+c=1. Chng minh rng : 2 2 2 2. a b b c c a b c c a a b + + + + + + + + PHN RIấNG (3 im) ( Chú ý!:Thí sinh chỉ đợc chọn bài làm ở một phần) A. Theo chng trỡnh chun Cõu Va : 1.Trong mặt phẳng Oxy cho tam giác ABC biết A(2; - 3), B(3; - 2), có diện tích bằng 3 2 và trọng tâm thuộc đờng thẳng : 3x y 8 = 0. Tìm tọa độ đỉnh C. 2.Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1;4;2),B(-1;2;4) và đờng thẳng : 1 2 1 1 2 x y z + = = .Tìm toạ độ điểm M trên sao cho: 2 2 28MA MB + = Cõu VIa : Giải bất phơng trình: 32 4 )32()32( 1212 22 ++ + xxxx B. Theo chng trỡnh Nõng cao Cõu Vb : 1. Trong mpOxy, cho ng trũn (C): x 2 + y 2 6x + 5 = 0. Tỡm M thuc trc tung sao cho qua M k c hai tip tuyn ca (C) m gúc gia hai tip tuyn ú bng 60 0 . 2.Trong khụng gian vi h ta Oxyz, cho im M(2 ; 1 ; 0) v ng thng d với d : x 1 y 1 z 2 1 1 + = = .Vit phng trỡnh chớnh tc ca ng thng i qua im M, ct v vuụng gúc vi ng thng d và tìm toạ độ của điểm M đối xứng với M qua d Cõu VIb : Gii h phng trỡnh 3 3 log log 2 2 2 4 4 4 4 2 ( ) log ( ) 1 log 2 log ( 3 ) xy xy x y x x y = + + + = + + Mụn thi: TON HC Khi A, B 003 Cõu I:Cho hm s ( ) x 2 y C . x 2 + = 1. Kho sỏt v v ( ) C . 2. Vit phng trỡnh tip tuyn ca ( ) C , bit tip tuyn i qua im ( ) A 6;5 . Cõu II: 1. Gii phng trỡnh: cosx cos3x 1 2 sin 2x 4 + = + + ữ . 2. Gii h phng trỡnh: 3 3 2 2 3 x y 1 x y 2xy y 2 + = + + = Cõu III: Tớnh ( ) 4 2 3x 4 dx I cos x 1 e = + Cõu IV: Hỡnh chúp t giỏc u SABCD cú khong cỏch t A n mt phng ( ) SBC bng 2. Vi giỏ tr no ca gúc gia mt bờn v mt ỏy ca chúp thỡ th tớch ca chúp nh nht? Cõu V: Cho a,b,c 0: abc 1.> = Chng minh rng: 1 1 1 1 a b 1 b c 1 c a 1 + + + + + + + + Cõu VI: 1. Trong mt phng Oxy cho cỏc im ( ) ( ) ( ) ( ) A 1;0 ,B 2;4 ,C 1;4 ,D 3;5 v ng thng d :3x y 5 0 = . Tỡm im M trờn d sao cho hai tam giỏc MAB, MCD cú din tớch bng nhau. 2. Vit phng trỡnh ng vuụng gúc chung ca hai ng thng sau: 1 2 x 1 2t x y 1 z 2 d : ; d : y 1 t 2 1 1 z 3 = + + = = = + = Cõu VII: Tớnh: 0 0 1 1 2 2 3 3 2010 2010 2010 2010 2010 2010 2010 2 C 2 C 2 C 2 C 2 C A 1.2 2.3 3.4 4.5 2011.2012 = + + + Kè THI TH I HC NM HC 2010-2011 MễN TON004 (Thi gian lm bi: 180 phỳt) A. PHN DNH CHO TT C TH SINH Cõu I (2 im) Cho hm s 3 2 2 3(2 1) 6 ( 1) 1y x m x m m x= + + + + cú th (C m ). 1. Kho sỏt s bin thiờn v v th ca hm s khi m = 0. 2. Tỡm m hm s ng bin trờn khong ( ) + ;2 Cõu II (2 im) a) Gii phng trỡnh: 1)12cos2(3cos2 =+ xx b) Gii phng trỡnh : 3 2 3 512)13( 22 +=+ xxxx Cõu III (1 im) Tớnh tớch phõn + = 2ln3 0 23 )2( x e dx I Cõu IV (1 im) Cho hỡnh lng tr ABC.ABC cú ỏy l tam giỏc u cnh a, hỡnh chiu vuụng gúc ca A lờn mt phng (ABC) trựng vi tõm O ca tam giỏc ABC. Tớnh th tớch khi lng tr ABC.ABC bit khong cỏch gia AA v BC l a 3 4 Cõu V (1 im) Cho x,y,z tho món l cỏc s thc: 1 22 =+ yxyx .Tỡm giỏ tr ln nht ,nh nht ca biu thc 1 1 22 44 ++ ++ = yx yx P B. PHN DNH CHO TNG LOI TH SINH Dnh cho thớ sinh thi theo chng trỡnh chun Cõu VIa (2 im) a) Cho hỡnh tam giỏc ABC cú din tớch bng 2. Bit A(1;0), B(0;2) v trung im I ca AC nm trờn ng thng y = x. Tỡm to nh C. b) Trong khụng gian Oxyz, cho cỏc im A(1;0;0); B(0;2;0); C(0;0;-2) tỡm ta im O i xng vi O qua (ABC). Cõu VIIa(1 im) Gii phng trỡnh: 10)2)(3)(( 2 =++ zzzz , z C. Dnh cho thớ sinh thi theo chng trỡnh nõng cao Cõu VIb (2 im) a. Trong mp(Oxy) cho 4 im A(1;0),B(-2;4),C(-1;4),D(3;5). Tỡm to im M thuc ng thng ( ): 3 5 0x y = sao cho hai tam giỏc MAB, MCD cú din tớch bng nhau b.Trong khụng gian vi h ta Oxyz, cho hai ng thng: 2 5 1 1 3 4 : 1 + = = zyx d 13 3 1 2 : 2 zyx d = + = Vit phng trỡnh mt cu cú bỏn kớnh nh nht tip xỳc vi c hai ng thng d 1 v d 2 Cõu VIIb (1 im) Gii bt phng trỡnh: 2log9)2log3( 22 > xxx 005 Phần bắt buộc. Câu 1.(2 điểm) Cho hàm số 1 12 + = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Tìm tọa độ điểm M sao cho khoảng cách từ điểm )2;1( I tới tiếp tuyến của (C) tại M là lớn nhất . CÂU 2. (2 điểm). 1. Giải phơng trình : 01cossin2sinsin2 2 =++ xxxx . 2. Tìm giá trị của m để phơng trình sau đây có nghiệm duy nhất : 0)23(log)6(log 2 25,0 =++ xxxm CÂU 3 . (1điểm) Tính tích phân: = 2 1 2 2 4 dx x x I . CÂU 4. (1 điểm). Cho tứ diện ABCD có ba cạnh AB, BC, CD đôi một vuông góc với nhau và aCDBCAB === . Gọi C và D lần lợt là hình chiếu của điểm B trên AC và AD. Tính thể tích tích tứ diện ABCD. CÂU 5. (1 điểm) Cho tam giác nhọn ABC , tìm giá trị bé nhất của biểu thức: CBAAS 2cos2coscos23cos +++= . Phần tự chọn (thí sinh chỉ làm một trong hai phần : A hoặc B ) Phần A CÂU 6A. (2 điểm). 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với )5;2(,)1;1( BA , đỉnh C nằm trên đờng thẳng 04 =x , và trọng tâm G của tam giác nằm trên đờng thẳng 0632 =+ yx . Tính diện tích tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình : d : z y x = = 1 2 và d : 1 5 3 2 2 + == z y x . Chứng minh rằng hai đờng thẳng đó vuông góc với nhau. Viết phơng trình mặt phẳng )( đi qua d và vuông góc với d CÂU7A. (1 điểm) Tính tổng : n n n nnnn CnCCCCS )1()1(432 3210 ++++= Phần B. CÂU 6B. (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với )2;1(,)1;2( BA , trọng tâm G của tam giác nằm trên đờng thẳng 02 =+ yx . Tìm tọa độ đỉnh C biết diện tích tam giác ABC bằng 13,5 . 2. Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình : d : z y x = = 1 2 và d : 1 5 3 2 2 + == z y x . Viết phơng trình mặt phẳng )( đi qua d và tạo với d một góc 0 30 CÂU7B. (1 điểm) Tính tổng : n nnnn CnCCCS )1(32 210 +++++= kỳ thi thử đại học năm 2011 . Mụn Toỏn : Thời gian làm bài 180 phút. 006 A /phần chung cho tất cả thí sinh. ( 8 im ) Cõu I : ( 2 im ). Cho hm s y = x 3 + ( 1 2m)x 2 + (2 m )x + m + 2 . (C m ) 1.Kho sỏt s bin thiờn v v th hm s khi m = 2. 2. Tỡm m th hm s (C m ) cú cc tr ng thi honh cc tiu nh hn 1. Cõu II : ( 2 im ). 1. Gii phng trỡnh: sin 2 2 2(sinx+cosx)=5x . 2. Tỡm m phng trỡnh sau cú nghim duy nht : 3. 2 2 3 .x mx x + = Cõu III : ( 2 im ). 1. Tớnh tớch phõn sau : 2 2 3 1 1 . x I dx x x = + 2. Cho h phng trỡnh : 3 3 ( ) 1 x y m x y x y = + = Tỡm m h cú 3 nghim phõn bit (x 1 ;y 1 );(x 2 ;y 2 );(x 3 ;y 3 ) sao cho x 1 ;x 2 ;x 3 lp thnh cp s cng ( ) 0d .ng thi cú hai s x i tha món i x > 1 Cõu IV : ( 2 im ). Trong khụng gian oxyz cho hai ng thng d 1 : 1 1 2 x y z = = ; d 2 1 2 1 x t y t z t = = = + v im M(1;2;3). 1.Vit phng trỡnh mt phng cha M v d 1 ; Tỡm M i xng vi M qua d 2 . 2.Tỡm 1 2 ;A d B d sao cho AB ngn nht . B. PHN T CHN: ( 2 im ). ( Thớ sinh ch c lm 1 trong 2 cõu V a hoc V b sau õy.) Cõu V a . 1. Trong mt phng oxy cho ABC cú A(2;1) . ng cao qua nh B cú phng trỡnh x- 3y - 7 = 0 .ng trung tuyn qua nh C cú phng trỡnh x + y +1 = 0 . Xỏc nh ta B v C . Tớnh din tớch ABC . 2.Tỡm h s x 6 trong khai trin 3 1 n x x + ữ bit tng cỏc h s khai trin bng 1024. Cõu V b . 1. Gii bt phng trỡnh : 2 2 1 1 5 5 x x+ > 24. 2.Cho lng tr ABC.A B C ỏy ABC l tam giỏc u cnh a. .A cỏch u cỏc im A,B,C. Cnh bờn AA to vi ỏy gúc 60 0 . Tớnh th tớch khi lng tr. K THI KHO ST CHT LNG ễN THI I HC KHI A - B D. Nm 2010. Mụn thi: Toỏn. Thi gian lm bi: 180 phỳt.007 A. PHN CHUNG CHO TT C TH SINH (7 im) Cõu I. (2 im) Cho hm s y = x 3 + 3x 2 + mx + 1 cú th l (C m ); ( m l tham s) 1. Kho sỏt s bin thiờn v v th hm s khi m = 3. 2. Xỏc nh m (C m ) ct ng thng y = 1 ti ba im phõn bit C(0;1), D, E sao cho cỏc tip tuyn ca (C m ) ti D v E vuụng gúc vi nhau. Cõu II (2 im) 1.Gii phng trỡnh: x xx xx 2 32 2 cos 1coscos tan2cos + = . 2. Gii h phng trỡnh: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + , ( , )x yR . Cõu III (1 im) Tớnh tớch phõn: 3 2 2 1 log 1 3ln e x I dx x x = + . Cõu IV. (1 im) Cho hình hộp đứng ABCD.A'B'C'D' có các cạnh AB = AD = a, AA' = 3 2 a và góc BAD = 60 0 . Gọi M và N lần lợt là trung điểm của các cạnh A'D' và A'B'. Chứng minh AC' vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN. Cõu V. (1 im) Cho a, b, c l cỏc s thc khụng õm tha món 1a b c + + = . Chng minh rng: 7 2 27 ab bc ca abc + + . B. PHN RIấNG (3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc 2) 1.Theo chng trỡnh Chun Cõu VIa. ( 2 im) 1. Trong mt phng vi h ta Oxy , cho tam giỏc ABC bit A(5; 2). Phng trỡnh ng trung trc cnh BC, ng trung tuyn CC ln lt l x + y 6 = 0 v 2x y + 3 = 0. Tỡm ta cỏc nh ca tam giỏc ABC. 2. Trong khụng gian vi h ta Oxyz, hóy xỏc nh to tõm v bỏn kớnh ng trũn ngoi tip tam giỏc ABC, bit A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Cõu VIIa. (1 im) Cho 1 z , 2 z l cỏc nghim phc ca phng trỡnh 2 2 4 11 0z z + = . Tớnh giỏ tr ca biu thc 2 2 1 2 2 1 2 ( ) z z z z + + . 2. Theo chng trỡnh Nõng cao Cõu VIb. ( 2 im) 1. Trong mt phng vi h ta Oxy cho hai ng thng : 3 8 0x y + + = , ':3 4 10 0x y + = v im A(-2 ; 1). Vit phng trỡnh ng trũn cú tõm thuc ng thng , i qua im A v tip xỳc vi ng thng . 2. Trong khụng gian vi h ta Oxyz, Cho ba im A(0;1;2), B(2;-2;1), C(-2;0;1). Vit phng trỡnh mt phng (ABC) v tỡm im M thuc mt phng 2x + 2y + z 3 = 0 sao cho MA = MB = MC. Cõu VIIb. (1 im) Gii h phng trỡnh : 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) = 1 x y x y xy x y x x y x + + + + + + = + + , ( , )x y R . THI TH I HC NM 2010-2011 Mụn: Toỏn A. Thi gian: 180 phỳt ( Khụng k giao ).008 I. PHN CHUNG CHO TT C TH SINH (7 im). Cõu I (2 im): Cho hm s 2 4 1 x y x + = . 1) Kho sỏt v v th ( ) C ca hm s trờn. 2) Gi (d) l ng thng qua A( 1; 1 ) v cú h s gúc k. Tỡm k sao cho (d) ct ( C ) ti hai im M, N v 3 10MN = . Cõu II (2 im): 1) Gii phng trỡnh: sin 3 3sin 2 cos2 3sin 3cos 2 0x x x x x + + = . 2) Gii h phng trỡnh: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + . Cõu III (1 im): Tớnh tớch phõn: 2 3 0 3sin 2cos (sin cos ) x x I dx x x = + Cõu IV (1 im): Cho hỡnh chúp t giỏc S.ABCD cú ỏy l hỡnh ch nht vi SA vuụng gúc vi ỏy, G l trng tõm tam giỏc SAC, mt phng (ABG) ct SC ti M, ct SD ti N. Tớnh th tớch ca khi a din MNABCD bit SA=AB=a v gúc hp bi ng thng AN v mp(ABCD) bng 0 30 . Cõu V (1 im): Cho cỏc s dng , , : 3.a b c ab bc ca + + = Chng minh rng: 2 2 2 1 1 1 1 . 1 ( ) 1 ( ) 1 ( )a b c b c a c a b abc + + + + + + + + II. PHN RIấNG (3 im) (Thớ sinh ch c lm mt trong hai phn (phn 1 hoc phn 2)). 1. Theo chng trỡnh Chun : Cõu VI.a (2 im): 1) Trong mt phng vi h ta Oxy cho ng trũn hai ng trũn 2 2 ( ) : 2 2 1 0,C x y x y+ + = 2 2 ( ') : 4 5 0C x y x + + = cựng i qua M(1; 0). Vit phng trỡnh ng thng qua M ct hai ng trũn ( ), ( ')C C ln lt ti A, B sao cho MA= 2MB. 2) Trong khụng gian vi h ta Oxyz, hóy xỏc nh to tõm v bỏn kớnh ng trũn ngoi tip tam giỏc ABC, bit A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Cõu VII.a (1 im): Khai trin a thc: 20 2 20 0 1 2 20 (1 3 ) .x a a x a x a x = + + + + Tớnh tng: 0 1 2 20 2 3 21S a a a a = + + + + . 2. Theo chng trỡnh Nõng cao : Cõu VI.b (2 im) 1) Trong mt phng vi h to Oxy, hóy vit phng trỡnh cỏc cnh ca tam giỏc ABC bit trc tõm (1;0)H , chõn ng cao h t nh B l (0; 2)K , trung im cnh AB l (3;1)M . 2) Trong khụng gian vi h ta Oxyz, cho hai ng thng: 1 ( ) : 1 1 2 x y z d = = v 2 1 1 ( ) : 2 1 1 x y z d + = = . Tỡm ta cỏc im M thuc 1 ( )d v N thuc 2 ( )d sao cho ng thng MN song song vi mt phng ( ) : 2010 0P x y z + + = di on MN bng 2 . Câu VII.b (1 điểm): Giải hệ phương trình 2 1 2 1 2 2log ( 2 2) log ( 2 1) 6 log ( 5) log ( 4) = 1 x y x y xy x y x x y x − + − + − − + + + − + = + − + THI THỬ ĐẠI HỌC 2011 MÔN TOÁN009 Thời gian làm bài: 180 phút A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số 1 . 1 x y x + = − a) Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số. b) Biện luận theo m số nghiệm của phương trình 1 . 1 x m x + = − Câu II (2 điểm) a) Tìm m để phương trình ( ) 4 4 2 sin cos cos 4 2sin 2 0x x x x m + + + − = b) có nghiệm trên 0; . 2 π c) Giải phương trình ( ) ( ) ( ) 8 4 2 2 1 1 log 3 log 1 log 4 . 2 4 x x x + + − = Câu III (2 điểm) a) Tìm giới hạn 3 2 2 0 3 1 2 1 lim . 1 cos x x x L x → − + + = − b) Chứng minh rằng c) 0 2 4 6 98 100 50 100 100 100 100 100 100 2 .C C C C C C − + − + − + = − Câu IV (1 điểm) Cho a, b, c là các số thực thoả mãn 3.a b c + + = Tìm giá trị nhỏ nhất của biểu thức 4 9 16 9 16 4 16 4 9 . a b c a b c a b c M = + + + + + + + + B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu Va (2 điểm) a) Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình ( ) 2 2 1 : 4 5 0C x y y + − − = và ( ) 2 2 2 : 6 8 16 0.C x y x y + − + + = Lập phương trình tiếp tuyến chung của ( ) 1 C và ( ) 2 .C b) Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh đều bằng a. Gọi M là trung điểm của AA’. Tính thể tích của khối tứ diện BMB’C’ theo a và chứng minh rằng BM vuông góc với B’C. Câu VIa (1 điểm) Cho điểm ( ) 2;5;3A và đường thẳng 1 2 : . 2 1 2 x y z d − − = = Viết phương trình mặt phẳng ( ) α chứa d sao cho khoảng cách từ A đến ( ) α lớn nhất. Dành cho thí sinh thi theo chương trình nâng cao Câu Vb (2 điểm) a) Trong hệ tọa độ Oxy, hãy viết phương trình hyperbol (H) dạng chính tắc biết rằng (H) tiếp xúc với đường thẳng : 2 0d x y − − = tại điểm A có hoành độ bằng 4. b) Cho tứ diện OABC có 4, 5, 6OA OB OC = = = và · · · 0 60 .AOB BOC COA= = = Tính thể tích tứ diện OABC. Câu VIb (1 điểm) Cho mặt phẳng ( ) : 2 2 1 0P x y z − + − = và các đường thẳng 1 1 3 : , 2 3 2 x y z d − − = = − 2 5 5 : . 6 4 5 x y z d − + = = − Tìm điểm M thuộc d 1 , N thuộc d 2 sao cho MN song song với (P) và đường thẳng MN cách (P) một khoảng bằng 2. ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 2 MÔN: TOÁN010 Thời gian làm bài: 180 phút (không kể thời gian giao đề) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số 2 m y x m x = + + − 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho với m = 1. 2. Tìm m để hàm số có cực đại và cực tiểu sao cho hai điểm cực trị của đồ thị hàm số cách đường thẳng d: x – y + 2 = 0 những khoảng bằng nhau. Câu II (2,0 điểm) 1. Giải phương trình ( ) ( ) 2 cos . cos 1 2 1 sin . sin cos x x x x x − = + + 2. Giải phương trình 2 2 7 5 3 2 ( )x x x x x x − + + = − − ∈ ¡ Câu III (1,0 điểm). Tính tích phân 3 0 3 3. 1 3 x dx x x − + + + ∫ . Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho ( ) ( ) DMN ABC ⊥ . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: 3 .x y xy + = Câu V (1,0 điểm). Cho x, y, z 0 ≥ thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức ( ) 3 3 3 3 16x y z P x y z + + = + + II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Theo chương trình Chuẩn: Câu VI.a (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng d 1 : 1 1 2 2 3 1 x y z+ − − = = , d 2 : 2 2 1 5 2 x y z − + = = − Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d 1 và d 2 . Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i) n , biết rằng n ∈ N thỏa mãn phương trình log 4 (n – 3) + log 4 (n + 9) = 3 B. Theo chương trình Nâng cao: Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d 1 : x + y + 5 = 0 và d 2 : x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG. 2. Trong không gian toạ độ cho đường thẳng d: 3 2 1 2 1 1 x y z − + + = = − và mặt phẳng (P): x + y + z + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới ∆ bằng 42 . Câu VII.b (1,0 điểm). Giải hệ phương trình ( ) 1 4 4 2 2 1 log log 1 ( , ) 25 y x y x y x y − − = ∈ + = ¡ ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN011 Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số 2x 3 y x 2 − = − có đồ thị (C). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) 2. Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất . Câu II (2 điểm) 1. Giải phương trình: 2( tanx – sinx ) + 3( cotx – cosx ) + 5 = 0 2. Giải phương trình: x 2 – 4x - 3 = x 5+ Câu III (1 điểm) Tính tích phân: 1 2 1 dx 1 x 1 x − + + + ∫ Câu IV (1 điểm) Khối chóp tam giác SABC có đáy ABC là tam giác vuông cân đỉnh C và SA vuông góc với mặt phẳng (ABC), SC = a . Hãy tìm góc giữa hai mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất . Câu V ( 1 điểm ) Cho x, y, z là các số dương thỏa mãn 1 1 1 4 x y z + + = . CMR: 1 1 1 1 2 2 2x y z x y z x y z + + ≤ + + + + + + PHẦN TỰ CHỌN: Thí sinh chọn một trong hai phần A hoặc B A. Theo chương trình Chuẩn Câu VI.a.( 2 điểm ) 1. Tam giác cân ABC có đáy BC nằm trên đường thẳng : 2x – 5y + 1 = 0, cạnh bên AB nằm trên đường thẳng : 12x – y – 23 = 0 . Viết phương trình đường thẳng AC biết rằng nó đi qua điểm (3;1) 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho mp(P) : x – 2y + z – 2 = 0 và hai đường thẳng : (d) x 1 3 y z 2 1 1 2 + − + = = − và (d’) x 1 2t y 2 t z 1 t = + = + = + Viết phương trình tham số của đường thẳng ( ∆ ) nằm trong mặt phẳng (P) và cắt cả hai đường thẳng (d) và (d’) . CMR (d) và (d’) chéo nhau và tính khoảng cách giữa chúng . Câu VIIa . ( 1 điểm ) Tính tổng : 0 5 1 4 2 3 3 2 4 1 5 0 5 7 5 7 5 7 5 7 5 7 5 7 S C C C C C C C C C C C C = + + + + + B. Theo chương trình Nâng cao Câu VI.b.( 2 điểm ) 1. Viết phương trình tiếp tuyến chung của hai đường tròn : (C 1 ) : (x - 5) 2 + (y + 12) 2 = 225 và (C 2 ) : (x – 1) 2 + ( y – 2) 2 = 25 2. Trong không gian với hệ tọa độ Đêcác vuông góc Oxyz cho hai đường thẳng : (d) x t y 1 2t z 4 5t = = + = + và (d’) x t y 1 2t z 3t = = − − = − a. CMR hai đường thẳng (d) và (d’) cắt nhau . b. Viết phương trình chính tắc của cặp đường thẳng phân giác của góc tạo bởi (d) và (d’) . Câu VIIb.( 1 điểm ) Giải phương trình : ( ) 5 log x 3 2 x + = ĐỀ THI THỬ ĐẠI HỌC LẦN 2 - NĂM HỌC 2011 Môn: TOÁN (Thời gian : 180 phút)012 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm): 1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : 3x 4 y x 2 − = − . Tìm điểm thuộc (C) cách đều 2 đường tiệm cận . 2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn 2 0; 3 π .sin 6 x + cos 6 x = m ( sin 4 x + cos 4 x ) Câu II (2 điểm): 1).Tìm các nghiệm trên ( ) 0;2 π của phương trình : sin 3x sin x sin 2x cos2x 1 cos2x − = + − 2).Giải phương trình: 3 3 x 34 x 3 1+ − − = Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên SA = 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB. 1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD. Câu IV (2 điểm): 1).Tính tích phân: I = 2 0 sin x cosx 1 dx sin x 2cosx 3 π − + + + ∫ 2). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn : 1 < | z – 1 | < 2 PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b Câu V.a.( 2 điểm ) Theo chương trình Chuẩn 1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua đỉnh A, C lần lượt là : (d 1 ) : 3x – 4y + 27 = 0 và (d 2 ) : x + 2y – 5 = 0 2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng: ( ) 1 x 1 d : y 4 2t z 3 t = = − + = + và ( ) 2 x 3u d : y 3 2u z 2 = − = + = − a. Chứng minh rằng (d 1 ) và (d 2 ) chéo nhau. b. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d 1 ) và (d 2 ). 3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh . Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu . Câu V.b.( 2 điểm ) Theo chương trình Nâng cao 1).Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : 3 x – y - 3 = 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC . 2).Cho đường thẳng (d) : x t y 1 z t = = − = − và 2 mp (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0 a. Viết phương trình hình chiếu của (d) trên (P) b. Lập ph.trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q) 3). Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có đúng 3quân bài thuộc 1 bộ ( ví dụ 3 con K ) ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 **************** 013Môn : TOÁN; khối: A,B(Thời gian làm bài: 180 phút, không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2 1 1 x y x − = − 2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng 2 . Câu II (2 điểm) 1) Giải phương trình 2) 2 17 sin(2 ) 16 2 3.sin cos 20sin ( ) 2 2 12 x x x x π π + + = + + 3) Giải hệ phương trình : 4 3 2 2 3 2 1 1 x x y x y x y x xy − + = − + = − Câu III (1 điểm): Tính tích phân: I = 4 0 tan .ln(cos ) cos x x dx x π ∫ Câu IV (1 điểm): Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60 0 . Tính côsin của góc giữa hai mặt phẳng (SAB) và (SBC) . Câu V: (1 điểm) Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng: 3 a b b c c a ab c bc a c a b + + + + + ≥ + + + PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (1 điểm) Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng ∆ : 2x + 3y + 4 = 0. Tìm tọa độ điểm B thuộc đường thẳng ∆ sao cho đường thẳng AB và ∆ hợp với nhau góc 45 0 . Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-1;1) và hai đường thẳng 1 ( ) : 1 2 3 x y z d + = = − − và 1 4 ( '): 1 2 5 x y z d − − = = Chứng minh: điểm M, (d), (d’) cùng nằm trên một mặt phẳng. Viết phương trình mặt phẳng đó. Câu VIII.a (1 điểm) Giải phương trình: 2 2 2 (24 1) (24 1) (24 1) log log x x x x x Log x x x + + + + = Theo chương trình Nâng cao Câu VI.b (1 điểm) Trong mặt phẳng tọa độ Oxy cho đường tròn 2 2 ( ) : 1C x y+ = , đường thẳng ( ): 0d x y m + + = . Tìm m để ( )C cắt ( )d tại A và B sao cho diện tích tam giác ABO lớn nhất. Câu VII.b (1 điểm) Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng: (P): 2x – y + z + 1 = 0, (Q): x – y + 2z + 3 = 0, (R): x + 2y – 3z + 1 = 0 và đường thẳng 1 ∆ : 2 2 − − x = 1 1+y = 3 z . Gọi 2 ∆ là giao tuyến của (P) và (Q). Viết phương trình đường thẳng (d) vuông góc với (R) và cắt cả hai đường thẳng 1 ∆ , 2 ∆ . Câu VIII.b (1 điểm) Giải bất phương trình: log x ( log 3 ( 9 x – 72 )) ≤ 1 Môn: Toán – Ngày thi: 06.12.2010 014 Thời gian 180 phút ( không kể giao đề ) Phần chung cho tất cả các thí sinh (7 điểm ) Câu I: (2 điểm) Cho hàm số 2 32 − − = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Câu II (2 điểm) 1. Giải phương trình −=−+ 24 cos2sin 2 cossin 2 sin1 22 x x x x x π 3. Giải bất phương trình −+−>−+− xxxxx 2 1 log)2(22)144(log 2 1 2 2 Câu III (1 điểm) Tính tích phân ∫ + + = e dxxx xx x I 1 2 ln3 ln1 ln Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a. BC = 2 a . 3aSA = , · · 0 30= =SAB SAC . Tính thể tích khối chóp S.ABC. Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c = 3 4 . Tìm giá trị nhỏ nhất của biểu thức 333 3 1 3 1 3 1 accbba P + + + + + = Phần riêng (3 điểm) Thí sinh chỉ được làm một trong hai phần: Phần 1 hoặc phần 2 Phần 1:(Theo chương trình Chuẩn) Câu VIa (2 điểm) 1. Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng 052: 1 =+− yxd . d 2 : 3x +6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d 1 và d 2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d 1 , d 2 . 2. Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và mặt phẳng (P) có phương trình: 02 =−++ zyx . Gọi A’là hình chiêú của A lên mặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4 điểm A’, B, C, D. Xác định toạ độ tâm và bán kính của đường tròn (C) là giao của (P) và (S). Câu VIIa (1 điểm) Tìm số nguyên dương n biết: 2 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200 − − + + + + + − + + − − + − + = − k k k n n n n n n C C k k C n n C Phần 2: (Theo chương trình Nâng cao) Câu VIb (2 điểm) 1.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: 1 916 22 =− yx . Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H). 2. Trong không gian với hệ trục toạ độ Oxyz cho ( ) 052: =+−+ zyxP và đường thẳng 31 2 3 :)( −=+= + zy x d , điểm A( -2; 3; 4). Gọi ∆ là đường thẳng nằm trên (P) đi qua giao điểm của ( d) và (P) đồng thời vuông góc với d. Tìm trên ∆ điểm M sao cho khoảng cách AM ngắn nhất. Câu VIIb (1 điểm): Giải hệ phương trình +=++ =+ +−+ 113 2.322 2 3213 xxyx xyyx TRƯỜNG THPT LƯƠNG NGỌC QUYẾN- TP. THÁI NGUYÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 015Môn: TOÁN – Khối: A (Thời gian làm bài 180 phút, không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) Câu I ( 2,0 điểm): Cho hàm số 2 4 1 x y x − = + . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm trên đồ thị (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(-3; 0) và N(-1; -1). Câu II (2,0 điểm): 1. Giải phương trình: 2 2 1 3 2 1 3 x x x x = + + − + + − 2. Giải phương trình: 2 3 4 2 3 4 sin sin sin sin cos cos cos cosx x x x x x x x + + + = + + + Câu III (1,0 điểm): Tính tích phân: 2 1 ln ln 1 ln e x I x dx x x = + ÷ + ∫ Câu IV (1,0 điểm):Cho hai hình chóp S.ABCD và S’.ABCD có chung đáy là hình vuông ABCD cạnh a. Hai đỉnh S và S’ nằm về cùng một phía đối với mặt phẳng (ABCD), có hình chiếu vuông góc lên đáy lần lượt là trung điểm H của AD và trung điểm K của BC. Tính thể tích phần chung của hai hình chóp, biết rằng SH = S’K =h. Câu V(1,0 điểm): Cho x, y, z là những số dương thoả mãn xyz = 1. Tìm giá trị nhỏ nhất của biểu thức: 9 9 9 9 9 9 6 3 3 6 6 3 3 6 6 3 3 6 x y y z z x P x x y y y y z z z z x x + + + = + + + + + + + + PHẦN RIÊNG(3,0 điểm) Thí sinh chỉ được làm một trong hai phần(phần A hoặc phần B) A. Theo chương trình chuẩn. Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: 2 2 4 3 4 0x y x+ + − = . Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A. 2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2; -1), B(7; -2; 3) và đường thẳng d có phương trình 2 3 2 (t R) 4 2 x t y t z t = + = − ∈ = + . Tìm trên d những điểm M sao cho tổng khoảng cách từ M đến A và B là nhỏ nhất. Câu VII.a (1,0 điểm): Giải phương trình trong tập số phức: 2 0z z+ = B. Theo chương trình nâng cao. Câu VI.b (2,0 điểm): 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ toạ độ vuông góc Oxyz, cho hai đường thẳng: 2 1 0 3 3 0 ( ) ; ( ') 1 0 2 1 0 x y x y z x y z x y + + = + − + = ∆ ∆ − + − = − + = .Chứng minh rằng hai đường thẳng ( ∆ ) và ( '∆ ) cắt nhau. Viết phương trình chính tắc của cặp đường thẳng phân giác của các góc tạo bởi ( ∆ ) và ( '∆ ). Câu VII.b (1,0 điểm): Giải hệ phương trình: 2 2 2 3 3 3 log 3 log log log 12 log log x y y x x x y y + = + + = + . ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT NĂM 2011 016MÔN: TOÁN - KHỐI B (Thời gian làm bài 180 phút không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm). Câu I: (2,0 điểm). Cho hàm số y = x 3 – 3mx 2 + (m-1)x + 2. 1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m. 2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trong trường hợp đó. Câu II: (2,0 điểm). 1. Giải phương trình sau: (1 – tanx) (1+ sin2x) = 1 + tanx. 2. Giải bất phương trình: 2 51 2x x 1 1 x − − < − . Câu III: (1,0 điểm). Tính: 2 2 2 2 0 x A dx 1 x = − ∫ . Câu IV: (1,0 điểm). Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA vuông góc với mp (ABCD) và SA = a; M là trung điểm cạnh SD. a) Mặt phẳng (α) đi qua OM và vuông góc với mặt phẳng (ABCD) cắt hình chóp SABCD theo thiết diện là hình gì? Tính diện tích thiết diện theo a. b) Gọi H là trung điểm của CM; I là điểm thay đổi trên SD. Chứng minh OH ⊥ (SCD); và hình chiếu của O trên CI thuộc đường tròn cố định. Câu V: (1,0 điểm). Trong mp (Oxy) cho đường thẳng (∆) có phương trình: x – 2y – 2 = 0 và hai điểm A (-1;2); B (3;4). Tìm điểm M ∈ (∆) sao cho 2MA 2 + MB 2 có giá trị nhỏ nhất. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B). A. Theo chương trình chuẩn. Câu VIa: (2,0 điểm). Cho đường tròn (C): x 2 + y 2 – 2x – 6y + 6 = 0 và điểm M (2;4) a) Viết phương trình đường thẳng đi qua M cắt đường tròn tại 2 điểm A và B, sao cho M là trung điểm của AB. b) Viết phương trình các tiếp tuyến của đường tròn, biết tiếp tuyến có hệ số góc k = -1. Câu VIIa: (1,0 điểm). Tìm phần thực và phần ảo của số phức sau: 1 + (1 + i) + (1 + i) 2 + (1 + i) 3 + … + (1 + i) 20 B. Theo chương trình nâng cao. Câu VI b: (2,0 điểm). Trong không gian cho điểm A(-4;-2;4) và đường thẳng (d) có phương trình: x = -3 + 2t; y = 1 - t; z = -1 + 4t; t ∈ R. Viết phương trình đường thẳng (∆) đi qua A; cắt và vuông góc với (d). Câu VIIb: (1,0 điểm). Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hoành hình phẳng được giới hạn bởi các đường: y = lnx; y = 0; x = 2. ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011 017Môn thi : TOÁN ; Khối : A Thời gian làm bài 180 phút, không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm): Câu I: (2 điểm) Cho hàm số 2 2 1 x y x − = + (C) 1. Khảo sát hàm số. 2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = 5 . Câu II: (2 điểm) 1. Giải phương trình: 2cos5 .cos3 sin cos8 x x x x + = , (x ∈ R) 2. Giải hệ phương trình: 2 5 3 x y x y y x y + + − = + = (x, y∈ R) Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường 1 x y e= + ,trục hoành, x = ln3 và x = ln8. Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng 3 4 a , tính thể tích khối chóp S.ABCD theo a. Câu V: (1 điểm) Cho x,y ∈ R và x, y > 1. Tìm giá trị nhỏ nhất của ( ) ( ) 3 3 2 2 ( 1)( 1) x y x y P x y + − + = − − PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x 2 + y 2 - 2x - 2my + m 2 - 24 = 0 có tâm I và đường thẳng ∆: mx + 4y = 0. Tìm m biết đường thẳng ∆ cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12. 2. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : 1 1 1 2 1 1 x y z + − − = = − ; d 2 : 1 2 1 1 1 2 x y z− − + = = và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của đường thẳng ∆, biết ∆ nằm trên mặt phẳng (P) và ∆ cắt hai đường thẳng d 1 , d 2 . Câu VII.a (1 điểm) Giải bất phương trình 2 2 log 2log 2 20 0 x x x+ − ≤ 2 B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0, phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC. 3. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : 1 3 1 1 4 x y z − − = = và điểm M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng ∆ đồng thời khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng 4. Câu VII.b (1 điểm) Giải phương trình nghiệm phức : 25 8 6z i z + = − ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2011 018Môn thi: TOÁN, khối A, B Thời gian làm bài 180 phút, không kể thời gian giao đề Câu I: (2,0 điểm) Cho hàm số 2 4 ( ) 1 x y C x − = + . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Gọi M là một điểm bất kì trên đồ thị (C), tiếp tuyến tại M cắt các tiệm cận của (C) tại A, B. CMR diện tích tam giác ABI (I là giao của hai tiệm cận) không phụ thuộc vào vị trí của M. Câu II: (3,0 điểm) 1. Giải hệ phương trình: 2 2 2 2 1 xy x y x y x y x y + + = + + = − 2. Giải phương trình: 2 2 2sin 2sin tanx 4 x x π − = − ÷ . 3. Giải bất phương trình: ( ) ( ) 2 2 1 5 3 1 3 5 log log 1 log log 1x x x x + + > + − Câu III: (2,0 điểm) 1. Tớnh tớch phõn: 2 3 1 ln 2 ln e x x I dx x + = . 2. Cho tp { } 0;1;2;3;4;5A = , t A cú th lp c bao nhiờu s t nhiờn gm 5 ch s khỏc nhau, trong ú nht thit phi cú ch s 0 v 3. Cõu IV: (2,0 im) 1. Vit phng trỡnh ng trũn i qua hai im A(2; 5), B(4;1) v tip xỳc vi ng thng cú phng trỡnh 3x y + 9 = 0. 2. Cho hỡnh lng tr tam giỏc ABC.ABC vi A.ABC l hỡnh chúp tam giỏc u cnh ỏy AB = a; cnh bờn AA = b. Gi l gúc gia hai mp(ABC) v mp(ABC). Tớnh tan v th tớch chúp A.BCCB. Cõu V: (1,0 im) Cho 0, 0, 1x y x y > > + = . Tỡm giỏ tr nh nht ca biu thc 1 1 x y T x y = + 019é THI thử I HC NM học: 2010-2011 Mụn thi : TON Thời gian làm bài:150 phút(không kể thời gian giao đề) PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I:(2 im) Cho hm s : 1x2 1x y + + = (C) 1. Kho sỏt v v th hm s. 2. Vit phng trỡnh tip tuyn vi (C), bit tip tuyn ú i qua giao im ca ng tim cn v trc Ox. Cõu II:(2 im) 1. Gii phng trỡnh: sin 2 cos 2 cot cos sin x x tgx x x x + = 2. Gii phng trỡnh: ( ) 1 xlog1 4 3logxlog2 3 x93 = Cõu III: (2 im) 1.Tính nguyên hàm: sin 2 ( ) 3 4sin 2 xdx F x x cos x = + 2.Giải bất phơng trình: 1 2 3x x x Cõu IV: (1 im) Trong mt phng Oxy cho tam giỏc ABC cú trng tõm G(2, 0) bit phng trỡnh cỏc cnh AB, AC theo th t l 4x + y + 14 = 0; 02y5x2 =+ . Tỡm ta cỏc nh A, B, C. PHN RIấNG (3 im) Chú ý:Thí sinh chỉ đợc chọn bài làm ở một phần nếu làm cả hai sẽ không đợc chấm A. Theo chng trỡnh chun Cõu Va : 1. Tỡm h s ca x 8 trong khai trin (x 2 + 2) n , bit: 49CC8A 1 n 2 n 3 n =+ . 2. Cho ng trũn (C): x 2 + y 2 2x + 4y + 2 = 0. Vit phng trỡnh ng trũn (C') tõm M(5, 1) bit (C') ct (C) ti cỏc im A, B sao cho 3AB = . B. Theo chng trỡnh Nõng cao Cõu Vb : 1. Gii phng trỡnh : ( ) ( ) 21x2log1xlog 3 2 3 =+ 2. Cho hỡnh chúp SABCD cú ỏy ABCD l hỡnh vuụng tõm O, SA vuụng gúc vi đáy hỡnh chúp. Cho AB = a, SA = a 2 . Gi H v K ln lt l hỡnh chiu vuông góc ca A lờn SB, SD. Chng minh SC (AHK) v tớnh th tớch khối chúp OAHK. 021Kè THI KHO ST CHT LNG LP 12 Trng THPT Lờ Vn Hu MễN TON KHI B v D Thỏng 01/2011 Thi gian:180 phỳt (Khụng k thi gian phỏt ) PHN CHUNG CHO TT C CC TH SINH (7.0 im) Cõu I. (2.0 im) Cho hm s y = (C) 1. Kho sỏt s bin thiờn v v th hm s (C) 2. Vit phng trỡnh tip tuyn vi th (C), bit rng khong cỏch t tõm i xng ca th (C) n tip tuyn l ln nht. Cõu II. (2.0 im) 1. Gii phng trỡnh 2 os6x+2cos4x- 3 os2x =sin2x+ 3c c 2. Gii h phng trỡnh 2 2 2 1 2 2 2 2 x x y y y x y + = = Cõu III. (1.0 im) Tớnh tớch phõn 1 2 3 0 ( sin ) 1 x x x dx x + + Cõu IV. (1.0 im) Cho x, y, z l cỏc s thc dng ln hn 1 v tho món iu kin 1 1 1 2 x y z + + Tỡm giỏ tr ln nht ca biu thc A = (x - 1)(y - 1)(z - 1). Cõu V. (1.0 im) Cho hỡnh chúp S.ABCD ỏy ABCD l hỡnh thoi. SA = x (0 < x < ) cỏc cnh cũn li u bng 1. Tớnh th tớch ca hỡnh chúp S.ABCD theo x PHN RIấNG ( 3.0 im) Thớ sinh ch c lm mt trong hai phn A hoc B (Nu thớ sinh lm c hai phn s khụng dc chm im). A. Theo chng trỡnh nõng cao Cõu VIa. (2.0 im) 1. 1. Trong mt phng to Oxy cho hai ng thng (d 1 ) : 4x - 3y - 12 = 0 v (d 2 ): 4x + 3y - 12 = 0. Tỡm to tõm v bỏn kớnh ng trũn ni tip tam giỏc cú 3 cnh nm trờn (d 1 ), (d 2 ), trc Oy. 2. Cho hỡnh lp phng ABCD.ABCD cú cnh bng 2. Gi M l trung im ca on AD, N l tõm hỡnh vuụng CCDD. Tớnh bỏn kớnh mt cu i qua cỏc im B, C, M, N. Cõu VIIa. (1.0 im) Gii bt phng trỡnh 2 3 3 4 2 log ( 1) log ( 1) 0 5 6 x x x x + + > B. Theo chng trỡnh chun Cõu VIb. (2.0 im) 1. Cho im A(-1 ;0), B(1 ;2) v ng thng (d): x - y - 1 = 0. Lp phng trỡnh ng trũn i qua 2 im A, B v tip xỳc vi ng thng (d). 2. Trong khụng gian vi h trc to Oxyz cho im A(1 ;0 ; 1), B(2 ; 1 ; 2) v mt phng (Q): x + 2y + 3z + 3 = 0. Lp phng trỡnh mt phng (P) i qua A, B v vuụng gúc vi (Q). Cõu VIIb. (1.0 im) Gii phng trỡnh 1 2 2 3 2 2 x x x x x x x x C C C C + + + = ( k n C l t hp chp k ca n phn t) 022 THI TH H&C LNI NM HC 2010-2011 TRNG THPT NGUYN TRUNG THIấN MễN TON-KHI A+B: (180 phỳt) A.PHN CHUNG CHO TT C CC TH SINH (7 im): Cõu I (2 im): Cho hm s 3 2 2 3 3 3( 1)y x mx m x m m= + + (1) 1.Kho sỏt s bin thiờn v v th ca hm s (1) ng vi m=1 2.Tỡm m hm s (1) cú cc tr ng thi khong cỏch t im cc i ca th hm s n gúc ta O bng 2 ln khong cỏch t im cc tiu ca th hm s n gúc ta O. Cõu II (2 im): 1. Gii phng trỡnh : 2 2 os3x.cosx+ 3(1 sin2x)=2 3 os (2 ) 4 c c x + + 2. Gii phng trỡnh : 2 2 1 2 2 1 2 2 2 2 log (5 2 ) log (5 2 ).log (5 2 ) log (2 5) log (2 1).log (5 2 ) x x x x x x x + − + − − = − + + − Câu III (1 điểm): Tính tích phân : 6 0 tan( ) 4 os2x x I dx c π π − = ∫ Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng (AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức 2 2 2 3( ) 2P x y z xyz = + + − . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng :3 4 4 0x y∆ − + = . Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu 2 2 2 ( ) : 2 6 4 2 0S x y z x y z+ + − + − − = . Viết phương trình mặt phẳng (P) song song với giá của véc tơ (1;6;2)v r , vuông góc với mặt phẳng ( ) : 4 11 0x y z α + + − = và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của 4 x trong khai triển Niutơn của biểu thức : 2 10 (1 2 3 )P x x= + + 2.Theo chương trình nâng cao: Câu VIb (2 điểm): 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp 2 2 ( ) : 1 9 4 x y E + = và hai điểm A(3;-2) , B(-3;2) . Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu 2 2 2 ( ) : 2 6 4 2 0S x y z x y z+ + − + − − = . Viết phương trình mặt phẳng (P) song song với giá của véc tơ (1;6;2)v r , vuông góc với mặt phẳng ( ) : 4 11 0x y z α + + − = và tiếp xúc với (S). Câu VIIb (1 điểm): Tìm số nguyên dương n sao cho thoả mãn 2 0 1 2 2 2 2 121 2 3 1 1 n n n n n n C C C C n n + + + + = + + 024KỲ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn: Toán. Khối A, B. Thời gian làm bài: 180 phút (Không kể thời gian giao đề) Câu I. (2 điểm). Cho hàm số 2 1 1 x y x − = + (1). 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích hệ số góc bằng - 9. Câu II. (2 điểm) 1) Giải phương trình sau: 2 1 1 2 2 x x + = − . 2) Giải phương trình lượng giác: 4 4 4 sin 2 os 2 os 4 tan( ).tan( ) 4 4 x c x c x x x π π + = − + . Câu III. (1 điểm) Tính giới hạn sau: 3 2 2 0 ln(2 . os2 ) 1 lim x e e c x x L x → − − + = Câu IV . (2 điểm) Cho hình nón đỉnh S có độ dài đường sinh là l, bán kính đường tròn đáy là r. Gọi I là tâm mặt cầu nội tiếp hình nón (mặt cầu bên trong hình nón, tiếp xúc với tất cả các đường sinh và đường tròn đáy của nón gọi là mặt cầu nội tiếp hình nón). 3. Tính theo r, l diện tích mặt cầu tâm I; 4. Giả sử độ dài đường sinh của nón không đổi. Với điều kiện nào của bán kính đáy thì diện tích mặt cầu tâm I đạt giá trị lớn nhất? Câu V (1 điểm) Cho các số thực x, y, z thỏa mãn: x 2 + y 2 + z 2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: P = x 3 + y 3 + z 3 – 3xyz. Câu VI . (1 điểm) Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có tâm 1 ( ;0) 2 I Đường thẳng AB có phương trình: x – 2y + 2 = 0, AB = 2AD và hoành độ điểm A âm. Tìm tọa độ các đỉnh của hình chữ nhật đó. Câu VII . (1 điểm) Giải hệ phương trình : 2 2 2 2 3 2 2010 2009 2010 3log ( 2 6) 2log ( 2) 1 y x x y x y x y − + = + + + = + + + 025ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 TRƯỜNG THPT MINH CHÂU Môn toán - KHỐI A Thời gian 180 phút ( không kể giao đề ) PHẦN A : DÀNH CHO TẤT CẢ CÁC THI SINH . Câu I (2,0 điểm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : y = x 3 – 3x 2 + 2 2) Biện luận theo m số nghiệm của phương trình : 2 2 2 1 m x x x − − = − Câu II (2,0 điểm ) 1) Giải phương trình : 5 2 2 os sin 1 12 c x x π − = ÷ 2) Giải hệ phương trình: 2 8 2 2 2 2 log 3log ( 2) 1 3 x y x y x y x y + = − + + + − − = . Câu III(1,0 điểm ) Tính tích phân: /4 2 /4 sin 1 x I dx x x π π − = + + ∫ Câu IV ( 1,0 điểm ) : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = 2a . Cạnh SA vuông góc với mặt phẳng đáy , cạnh bên SB tạo với mặt phắng đáy một góc 60 0 .Trên cạnh SA lấy điểm M sao cho AM = 3 3 a , mặt phẳng ( BCM) cắt cạnh SD tại N .Tính thể tích khối chóp S.BCNM Câu V (1,0 điểm ) Cho x , y , z là ba số thực thỏa mãn : 5 -x + 5 -y +5 -z = 1 .Chứng minh rằng + + + + + + + + 25 25 25 25 5 5 5 5 5 x y z x y z y z x z x y ≥ + + 5 5 5 4 x y z PHẦN B ( THÍ SINH CHỈ ĐƯỢC LÀM MỘT TRONG HAI PHẦN ( PHẦN 1 HOẶC PHẦN 2) PHẦN 1 ( Dành cho học sinh học theo chương trình chuẩn ) Câu VI.a 1.( 1,0 điểm ) Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao : 1 0CH x y − + = , phân giác trong : 2 5 0BN x y+ + = .Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC 2.( 1,0 điểm ) Trong không gian với hệ tọa độ 0xyz cho đường thẳng d 2 1 4 6 8 x y z− + = = − − và hai điểm A(1;-1;2) ,B(3 ;- 4;-2).Tìm điểm I trên đường thẳng d sao cho IA +IB đạt giá trị nhỏ nhất Câu VII.a (1 điểm): Giải phương trình sau trên tập số phức C: 2 4 3 1 0 2 z z z z− + + + = PHẦN 2 ( Dành cho học sinh học chương trình nâng cao ) Câu VI.b 1. (1.0 điểm) Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng 03: 1 =−− yxd và 06: 2 =−+ yxd . Trung điểm của một cạnh là giao điểm của d 1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật. 2. (1,0điểm) Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng : D 1 : 2 1 1 1 2 x y z − − = = − , D 2 : 2 2 3 x t y z t = − = = Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung của D 1 và D 2 CâuVII.b ( 1,0 điểm) Tính tổng: 0 4 8 2004 2008 2009 2009 2009 2009 2009 S C C C C C= + + + + + 026ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2011 Môn thi: TOÁN, khối A, B Thời gian làm bài 180 phút, không kể thời gian giao đề Câu 1 (2.0 điểm): Cho hàm số 3 2 3 3 4y x mx m = − + (m là tham số) có đồ thị là (C m ) 1. Khảo sát và vẽ đồ thị hàm số khi m = 1. 2. Xác định m để (C m ) có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng y = x. Câu 2 (2.0 điểm ) : 1. Giải phương trình: 2 3 4 2sin 2 2 3 2(cotg 1) sin 2 cos x x x x + + − = + . 2. Tìm m để hệ phương trình: 3 3 2 2 2 2 3 3 2 0 1 3 2 0 x y y x x x y y m − + − − = + − − − + = có nghiệm thực. Câu 3 (2.0 điểm): 2. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng (d) lần lượt có phương trình: (P): 2x − y − 2z − 2 = 0; (d): 1 2 1 2 1 x y z + − = = − 1. Viết phương trình mặt cầu có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 2 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 3. 2. Viết phương trình mặt phẳng (Q) chứa đường thẳng (d) và tạo với mặt phẳng (P) một góc nhỏ nhất. Câu 4 (2.0 điểm): 1. Cho parabol (P): y = x 2 . Gọi (d) là tiếp tuyến của (P) tại điểm có hoành độ x = 2. Gọi (H) là hình giới hạn bởi (P), (d) và trục hoành. Tính thể tích vật thể tròn xoay sinh ra bởi hình (H) khi quay quanh trục Ox. 2. Cho x, y, z là các số thực dương thỏa mãn: x 2 + y 2 + z 2 ≤ 3. Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 1 1 1 P xy yz zx = + + + + + Câu 5 (2.0 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, hãy lập phương trình tiếp tuyến chung của elip (E): 2 2 1 8 6 x y + = và parabol (P): y 2 = 12x. 2. Tìm hệ số của số hạng chứa x 8 trong khai triển Newton: 12 4 1 1 x x − − ÷ 027ĐỀ THI VÀ GỢI Ý BÀI GIẢI MÔN TOÁN –ĐH-CĐ năm 2011 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm). Cho hàm số y = 2 x mx 2m 1 mx 1 − + − − (1), có đồ thị là (C m ), m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Xác định m để tiệm cận xiên của (C m ) đi qua gốc tọa độ và hàm số (1) có cực trị. Câu II (2 điểm) 1. Giải phương trình : 2 2 2 3 sin x sin x sin x 3 3 2 π π − + + + = ÷ ÷ 2. Cho hệ phương trình : 3 3 x y m(x y) x y 2 + = + − = Tìm tất cả các giá trị của m để hệ phương trình trên có 3 nghiệm phân biệt (x 1 ; y 1 ), (x 2 ; y 2 ) và (x 3 ; y 3 ) sao cho x 1 , x 2 , x 3 lập thành một cấp số cộng. Câu III (2 điểm). 1. Tam giác ABC có a = b 2 - Chứng minh rằng : cos 2 A = cos2B. - Tìm giá trị lớn nhất của góc B và giá trị tương ứng của các góc A, C. 2. Tính tích phân: I = 3 2 1 ln x dx (x 1)+ ∫ Câu IV (2 điểm). Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (6;-2;3); B (2;-1;3); C (4;0;-1). 1. Chứng minh rằng: A, B, C là ba đỉnh của một tam giác. Tìm độ dài đường cao của tam giác ABC kẻ từ đỉnh A. 2. Tìm m và n để điểm M (m + 2; 1; 2n + 3) thẳng hàng với A và C. PHẦN TỰ CHỌN: Thí sinh chỉ được chọn làm câu V. a hoặc câu V.b Câu V.a. Theo chương trình THPT không phân ban (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hypebol (H) có phương trình: 2 2 x y 1 2 3 − = và điểm M(2; 1). Viết phương trình đường thẳng d đi qua M, biết rằng đường thẳng đó cắt (H) tại hai điểm A, B mà M là trung điểm của AB. 2. Cho hai đường thẳng song song. Trên đường thẳng thứ nhất lấy 9 điểm phân biệt. Trên đường thẳng thứ hai lấy 16 điểm phân biệt. Hỏi có bao nhiêu tam giác với đỉnh là các điểm lấy trên hai đường thẳng đã cho. Câu V.b. Theo chương trình THPT phân ban thí điểm (2 điểm) 1. Giải phương trình: 2007 2006 2006 x 2007 x 1 − + − = 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh A ( µ A = 90 o ), AB=AC=a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 60 o . Hãy tính thể tích của khối chóp S.ABC. . + 025ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 TRƯỜNG THPT MINH CHÂU Môn toán - KHỐI A Thời gian 180 phút ( không kể giao đề ) PHẦN A : DÀNH CHO TẤT CẢ CÁC THI SINH . Câu I (2,0 điểm) 1) Khảo sát sự biến thi n. trình nghiệm phức : 25 8 6z i z + = − ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2011 018Môn thi: TOÁN, khối A, B Thời gian làm bài 180 phút, không kể thời gian giao đề Câu I: (2,0 điểm) Cho hàm số 2 4 (. bởi các đường: y = lnx; y = 0; x = 2. ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010 -2011 017Môn thi : TOÁN ; Khối : A Thời gian làm bài 180 phút, không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7