1. Trang chủ
  2. » Giáo án - Bài giảng

5 bộ đề thi vào lớp 10 - 2

11 155 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 343,88 KB

Nội dung

GV:Mai Thnh LB ễN THI VO LP 10 1 TP ễN THI TUYN VO LP 10 Đề : 1 Bài 1: Cho biểu thức: P = ( ) + + + 1 122 : 11 x xx xx xx xx xx a,Rút gọn P b,Tìm x nguyên để P có giá trị nguyên. Bài 2 : Cho phơng trình: x 2 -( 2m + 1)x + m 2 + m - 6= 0 (*) a.Tìm m để phơng trình (*) có 2 nghiệm âm. b.Tìm m để phơng trình (*) có 2 nghiệm x 1 ; x 2 thoả mn 3 2 3 1 xx =50 Bài 3 : Giải hệ phơng trình : ( ) ( ) 2 2 18 1 . 1 72 x y x y x x y y + + + = + + = Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đờng tròn tâm O . H là trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A. a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành. b, Gọi P và Q lần lợt là các điểm đối xứng của điểm D qua các đờng thẳng AB và AC . Chứng minh rằng 3 điểm P; H; Q thẳng hàng. c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất. Bài 5 Cho x>o ; 2 2 1 7 x x + = Tớnh: 5 5 1 x x + Đáp án Bài 1: (2 điểm). ĐK: x 1;0 x a, Rút gọn: P = ( ) ( ) ( ) 1 12 : 1 12 2 x x xx xx z <=> P = 1 1 )1( 1 2 + = x x x x b. P = 1 2 1 1 1 += + xx x Để P nguyên thì )(121 9321 0011 4211 Loaixx xxx xxx xxx == === === === Vậy với x= { } 9;4;0 thì P có giá trị nguyên. Bài 2: Để phơng trình có hai nghiệm âm thì: GV:Mai Thnh LB ễN THI VO L P 10 2 ( ) ( ) <+=+ >+= ++= 012 06 06412 21 2 21 2 2 mxx mmxx mmm 3 2 1 0)3)(2( 025 < < >+ >= m m mm b. Giải phơng trình: ( ) 50)3(2 3 3 =+ mm = + = =+=++ 2 51 2 51 0150)733(5 2 1 22 m m mmmm Bà3. Đặt : ( ) ( ) 1 1 u x x v y y = + = + Ta có : 18 72 u v uv + = = u ; v là nghiệm của phơng trình : 2 1 2 18 72 0 12; 6 X X X X + = = = 12 6 u v = = ; 6 12 u v = = ( ) ( ) 1 12 1 6 x x y y + = + = ; ( ) ( ) 1 6 1 12 x x y y + = + = Giải hai hệ trên ta đợc : Nghiệm của hệ là : (3 ; 2) ; (-4 ; 2) ; (3 ; -3) ; (-4 ; -3) và các hoán vị. Bà4 a. Giả sử đ tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành . Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên CH AB và BH AC => BD AB và CD AC . Do đó: ABD = 90 0 và ACD = 90 0 . Vậy AD là đờng kính của đờng tròn tâm O Ngợc lại nếu D là đầu đờng kính AD của đờng tròn tâm O thì tứ giác BHCD là hình bình hành. b) Vì P đối xứng với D qua AB nên APB = ADB nhng ADB = ACB nhng ADB = ACB Do đó: APB = ACB Mặt khác: AHB + ACB = 180 0 => APB + AHB = 180 0 Tứ giác APBH nội tiếp đợc đờng tròn nên PAB = PHB Mà PAB = DAB do đó: PHB = DAB Chứng minh tơng tự ta có: CHQ = DAC H O P Q D C B A GV:Mai Thnh LB ễN THI VO L P 10 3 Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 180 0 Ba điểm P; H; Q thẳng hàng c). Ta thấy APQ là tam giác cân đỉnh A Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất D là đầu đờng kính kẻ từ A của đờng tròn tâm O Bi 5 T 2 2 2 2 1 1 1 1 7 2 7 9 3 x x x x x x x x + = + = + = + = (do x>o) Nờn 5 4 3 2 4 2 5 2 3 4 4 2 1 1 1 1 1 1 1 1 3 1 x x x x x x x x x x x x x x x x + = + + + = + + + ( ) 2 2 1 3 2 7 1 3 49 8 123 x x = + + = = HT Đề : 2 Câu1 : Cho biểu thức A= 2 )1( : 1 1 1 1 2 2233 + + + x xx x x x x x x Với x 2 ;1 .a, Ruý gọn biểu thức A .b , Tính giá trị của biểu thức khi cho x= 6 4 2 + c. Tìm giá trị của x để A=3 Câu2 .a, Giải hệ phơng trình: 2 ( ) 4 3( ) 2 3 7 x y y x x y = + = b. Giải bất phơng trình: 3 2 2 4 2 20 3 x x x x x + + <0 Câu3 . Cho phơng trình (2m-1)x 2 -2mx+1=0 a)Xác định m để phơng trình trên có nghiệm phõn bit b)Xác định m để phơng trình trên có nghiệm phõn bit x1;x2 sao cho: 2 2 1 2 3 x x + = Câu 4 . Cho nửa đờng tròn tâm O , đờng kính BC .Điểm A thuộc nửa đờng tròn đó Dng hình vuông ABCD thuộc nửa mặt phẳng bờ AB, không chứa đỉnh C. Gọi Flà giao điểm của Aevà nửa đờng tròn (O) . Gọi Klà giao điểm của CFvà ED a. chứng minh rằng 4 điểm E,B,F,K. nằm trên một đờng tròn b. chứng minh rằng :BK l tip tuyn ca(o) c. chứng minh rằng :F l trung im ca CK đáp án Câu 1: a. Rút gọn A= x x 2 2 b.Thay x= 6 4 2 2 2 + = + vào A ta đợc A= 2(4 2) + GV:Mai Thnh LB ễN THI VO LP 10 4 O K F E D C B A c.A=3<=> x 2 -3x-2=0=> x= 2 173 Câu 2 : a)Đặt x-y=a ta đợc pt: a 2 +3a=4 => a=-1;a=-4 Từ đó ta có 2 ( ) 4 3( ) 2 3 7 x y y x x y = + = <=>* 1 2 3 7 x y x y = + = (1) V * 4 2 3 7 x y x y = + = (2) Giải hệ (1) ta đợc x=2, y=1 Giải hệ (2) ta đợc x=-1, y=3 Vậy hệ phơng trình có nghiệm là x=2, y=1 hoặc x=-1; y=3 b) Ta có x 3 -4x 2 -2x-20=(x-5)(x 2 +x+4) mà x 2 +x+3=(x+1/2) 2 +11/4>0 ; x 2 +x+4>0 với mọi x Vậy bất phơng trình tơng đơng với x-5>0 =>x>5 Câu 3 : Phơng trình: ( 2m-1)x 2 -2mx+1=0 a)Xét 2m-10=> m 1/2 v , = m 2 -2m+1= (m-1) 2 > 0 m1 ta thấy pt có 2 nghiệm p.bit với m 1/2 v m1 b) m= 2 2 4 Câu 4: a. Ta có KEB= 90 0 mặt khác BFC= 90 0 ( góc nội tiếp chắn nữa đờng tròn) do CF kéo dài cắt ED tại D => BFK= 90 0 => E,F thuộc đờng tròn đờng kính BK hay 4 điểm E,F,B,K thuộc đờng tròn đờng kính BK. b. BCF= BAF Mà BAF= BAE=45 0 => BCF= 45 0 Ta có BKF= BEF Mà BEF= BEA=45 0 (EA là đờng chéo của hình vuông ABED)=> BKF=45 0 Vì BKC= BCK= 45 0 => tam giác BCK vuông cân tại B =>BK OB=>BK l tip tuyn ca(0) c)BF CK ti F=>F l trung im HT Đề: 3 Bài 1: Cho biểu thức: ( ) ( )( ) yx xy xyx y yyx x P + ++ + = 111))1)(( a). Tìm điều kiện của x và y để P xác định . Rút gọn P. b). Tìm x,y nguyên thỏa mn phơng trình P = 2. Bài 2 : Cho parabol (P) : y = -x 2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) . a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt b). Xác định m để A,B nằm về hai phía của trục tung. Bài 3 : Giải hệ phơng trình : =++ =++ =++ 27 1 111 9 zxyzxy zyx zyx Bài 4 : Cho đờng tròn (O) đờng kính AB = 2R và C là một điểm thuộc đờng tròn );( BCAC . Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC . Tia BC cắt Ax tại Q , tia AM cắt BC tại N. a). Chứng minh các tam giác BAN và MCN cân . b). Khi MB = MQ , tính BC theo R. GV:Mai Thnh LB ễN THI VO LP 10 5 Bài 5: Cho x >o ;y>0 thỏa mn x+y=1 : Tỡm GTLN ca A= x y + Đáp án Bài 1: a). Điều kiện để P xác định là :; 0;1;0;0 + yxyyx . *). Rút gọn P: ( ) ( )( )( ) (1 ) (1 ) 1 1 x x y y xy x y P x y x y + + = + + ( ) ( ) ( )( )( ) ( ) 1 1 x y x x y y xy x y x y x y + + + = + + ( ) ( ) ( )( )( ) 1 1 x y x y x xy y xy x y x y + + + = + + ( ) ( ) ( ) ( ) ( )( ) 1 1 1 1 1 1 x x y x y x x x y + + + + = + ( ) 1 x y y y x y + = ( ) ( ) ( ) ( ) 1 1 1 1 x y y y y y + = . x xy y = + Vậy P = .yxyx + b). P = 2 .yxyx + = 2 ( ) ( ) ( )( ) 111 111 =+ =++ yx yyx Ta có: 1 + 1 y 1 1 x 0 4 x x = 0; 1; 2; 3 ; 4 Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mn Bài 2: a). Đờng thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) . Nên phơng trình đờng thẳng (d) là : y = mx + m 2. Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình: - x 2 = mx + m 2 x 2 + mx + m 2 = 0 (*) Vì phơng trình (*) có ( ) mmmm >+=+= 04284 2 2 nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B. b). A và B nằm về hai phía của trục tung p.trình : x 2 + mx + m 2 = 0 có hai nghiệm trái dấu m 2 < 0 m < 2. Bài 3 : ( ) ( ) =++ =++ =++ 327 )2(1 111 19 xzyzxy zyx zyx ĐKXĐ : .0,0,0 zyx GV:Mai Thnh LB ễN THI VO LP 10 6 Q N M O C B A ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 81 2 81 81 2 27 2( ) 2 0 ( ) ( ) ( ) 0 ( ) 0 ( ) 0 ( ) 0 x y z x y z xy yz zx x y z xy yz zx x y z x y z xy yz zx x y z xy yz zx x y y z z x x y x y y z y z x y z z x z x + + = + + + + + = + + = + + + + = + + = + + + + + + = + + = = = = = = = = = Thay vào (1) => x = y = z = 3 . Ta thấy x = y = z = 3 thõa mn hệ phơng trình . Vậy hệ phơng trình có nghiệm duy nhất x = y = z = 3. Bài 4: a). Xét ABM và NBM . Ta có: AB là đờng kính của đờng tròn (O) nên :AMB = NMB = 90 o . M là điểm chính giữa của cung nhỏ AC nên ABM = MBN => BAM = BNM => BAN cân đỉnh B. Tứ giác AMCB nội tiếp => BAM = MCN ( cùng bù với góc MCB). => MCN = MNC ( cùng bằng góc BAM). => Tam giác MCN cân đỉnh M b). Xét MCB và MNQ có : MC = MN (theo cm trên MNC cân ) ; MB = MQ ( theo gt) BMC = MNQ ( vì : MCB = MNC ; MBC = MQN ). => ) ( cgcMNQMCB = => BC = NQ . Xét tam giác vuông ABQ có BQAC AB 2 = BC . BQ = BC(BN + NQ) => AB 2 = BC .( AB + BC) = BC( BC + 2R) => 4R 2 = BC( BC + 2R) => BC = R)15( Bài 5:) Do A > 0 nên A lớn nhất A 2 lớn nhất. Xét A 2 = ( x + y ) 2 = x + y + 2 xy = 1 + 2 xy (1) Ta có: 2 yx + xy (Bất đẳng thức Cô si) => 1 > 2 xy (2) Từ (1) và (2) suy ra: A 2 = 1 + 2 xy < 1 + 2 = 2 Max A 2 = 2 <=> x = y = 2 1 , max A = 2 <=> x = y = 2 1 . Đề 4 Câu 1: Cho hàm số f(x) = 44 2 + xx a) Tính f(-1); f(5) b) Tìm x để f(x) = 10 c) Rút gọn A = 4 )( 2 x xf khi x 2 GV:Mai Thnh LB ễN THI VO LP 10 7 Câu 2: Giải hệ phơng trình +=+ += )3)(72()72)(3( )4)(2()2( yxyx yxyx Câu 3: Cho biểu thứcA = + + 1 : 1 1 1 1 x x x x x x xx với x > 0 và x 1 a) Rút gọn A b) Tìm giá trị của x để A = 3 Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB. Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC. a) Chứng minh rằng PC cắt AH tại trung điểm E của AH b) Giả sử PO = d. Tính AH theo R và d. Câu 5: Cho phơng trình 2x 2 + (2m - 1)x + m - 1 = 0 Tìm m để phơng trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mn: 3x 1 - 4x 2 = 11 đáp án Câu 1a) f(x) = 2)2(44 22 ==+ xxxx Suy ra f(-1) = 3; f(5) = 3 b) = = = = = 8 12 102 102 10)( x x x x xf c) )2)(2( 2 4 )( 2 + = = xx x x xf A Với x > 2 suy ra x - 2 > 0 suy ra 2 1 + = x A Với x < 2 suy ra x - 2 < 0 suy ra 2 1 + = x A Câu 2 ( 2) ( 2)( 4) 2 2 4 8 4 ( 3)(2 7) (2 7)( 3) 2 6 7 21 2 7 6 21 0 x y x y xy x xy y x x y x y x y xy y x xy y x x y = + = + = = + = + + = + + = = x -2 y 2 Câu 3 a) Ta có: A = + + 1 : 1 1 1 1 x x x x x x xx = + + ++ 11 )1( : 1 1 )1)(1( )1)(1( x x x xx x x xx xxx = + + 1 : 1 1 1 1 x xxx x x x xx = 1 : 1 11 ++ x x x xxx = 1 : 1 2 + x x x x = x x x x 1 1 2 + = x x 2 b) A = 3 => x x 2 = 3 => 3x + x - 2 = 0 => x = 2/3 A P GV:Mai Thnh LB ễN THI VO L P 10 8 Câu 4 Do HA // PB (Cùng vuông góc với BC) a) nên theo định lý Ta let áp dụng cho CPB ta có CB CH PB EH = ; (1) Mặt khác, do PO // AC (cùng vuông góc với AB) => POB = ACB (hai góc đồng vị) => AHC POB Do đó: OB CH PB AH = (2) Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của AH. b) Xét tam giác vuông BAC, đờng cao AH ta có AH 2 = BH.CH = (2R - CH).CH Theo (1) và do AH = 2EH ta có .)2( 2PB AH.CB 2PB AH.CB AH 2 = R AH 2 .4PB 2 = (4R.PB - AH.CB).AH.CB 4AH.PB 2 = 4R.PB.CB - AH.CB 2 AH (4PB 2 +CB 2 ) = 4R.PB.CB 2 222 222 222 2222 d Rd.2.R 4R)R4(d Rd.8R (2R)4PB 4R.2R.PB CB4.PB 4R.CB.PB AH = + = + = + = Câu 5 Để phơng trình có 2 nghiệm phân biệt x 1 ; x 2 thì > 0 <=> (2m - 1) 2 - 4. 2. (m - 1) > 0 Từ đó suy ra m 1,5 (1) Mặt khác, theo định lý Viét và giả thiết ta có: = = =+ 114x3x 2 1m .xx 2 12m xx 21 21 21 = = = 11 8m-26 77m 4 7 4m-13 3 8m-26 77m x 7 4m-13 x 1 1 Giải phơng trình 11 8m-26 77m 4 7 4m-13 3 = ta đợc m = - 2 và m = 4,125 (2) đ k (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì ph trình có hai nghiệm phân biệt thỏa mn: 3 x 1 -4 x 2 = 11 HT GV:Mai Thnh LB ễN THI VO L P 10 9 Đề 5 Câu 1: Cho P = 2 1 x x x + + 1 1 x x x + + + - 1 1 x x + a/. Rút gọn P. b/. Chứng minh: P < 1 3 với x 0 và x 1. Câu 2: Cho phơng trình : x 2 2(m - 1)x + m 2 3 = 0 ( 1 ) ; m là tham số. a/. Tìm m để phơng trình (1) có nghiệm. b/. Tìm m để phơng trình (1) có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia. Câu 3: a/. Giải phơng trình : 1 x + 2 1 2 x = 2 Câu 4: Cho ABC cân tại A với AB > BC. Điểm D di động trên cạnh AB, ( D không trùng với A, B). Gọi (O) là đờng tròn ngoại tiếp BCD . Tiếp tuyến của (O) tại C và D cắt nhau ở K . a/. Chứng minh tứ giác ADCK nội tiếp. b/. Tứ giác ABCK là hình gì? Vì sao? c/. Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành. Cõu5. Cho ba số x, y, z tho mn đồng thời : 2 2 2 2 1 2 1 2 1 0 x y y z z x + + = + + = + + = Tính giá trị của biểu thức : 2009 2009 2009 A x y z = + + . . Đáp án Câu 1: Điều kiện: x 0 và x 1 P = 2 1 x x x + + 1 1 x x x + + + - 1 ( 1)( 1) x x x + + = 3 2 ( ) 1 x x + + 1 1 x x x + + + - 1 1 x = 2 ( 1)( 1) ( 1) ( 1)( 1) x x x x x x x x + + + + + + + = ( 1)( 1) x x x x x + + = 1 x x x + + b/. Với x 0 và x 1 .Ta có: P < 1 3 1 x x x + + < 1 3 3 x < x + x + 1 ; ( vì x + x + 1 > 0 ) x - 2 x + 1 > 0 ( x - 1) 2 > 0. ( Đúng vì x 0 và x 1) Câu 2:a/. Phơng trình (1) có nghiệm khi và chỉ khi 0. (m - 1) 2 m 2 3 0 4 2m 0 m 2. b/. Với m 2 thì (1) có 2 nghiệm. Gọi một nghiệm của (1) là a thì nghiệm kia là 3a . Theo Viet ,ta có: GV:Mai Thnh LB ễN THI VO L P 10 10 2 3 2 2 .3 3 a a m a a m + = = a= 1 2 m 3( 1 2 m ) 2 = m 2 3 m 2 + 6m 15 = 0 m = 3 2 6 ( thõa mn điều kiện). Câu 3: Điều kiện x 0 ; 2 x 2 > 0 x 0 ; x < 2 . Đặt y = 2 2 x > 0 Ta có: 2 2 2 (1) 1 1 2 (2) x y x y + = + = Từ (2) có : x + y = 2xy. Thay vào (1) có : xy = 1 hoặc xy = - 1 2 * Nếu xy = 1 thì x+ y = 2. Khi đó x, y là nghiệm của phơng trình: X 2 2X + 1 = 0 X = 1 x = y = 1. * Nếu xy = - 1 2 thì x+ y = -1. Khi đó x, y là nghiệm của phơng trình: X 2 + X - 1 2 = 0 X = 1 3 2 Vì y > 0 nên: y = 1 3 2 + x = 1 3 2 Vậy phơng trình có hai nghiệm: x 1 = 1 ; x 2 = 1 3 2 Câu 4: c/. Theo câu b, tứ giác ABCK là hình thang. Do đó, tứ giác ABCK là hình bình hành AB // CK BAC ACK = Mà 1 2 ACK = sđ EC = 1 2 sđ BD = DCB Nên BCD BAC = Dựng tia Cy sao cho BCy BAC = .Khi đó, D là giao điểm của AB và Cy. Với giả thiết AB > BC thì BCA > BAC > BDC . D AB . Vậy điểm D xác định nh trên là điểm cần tìm .Cõu5. Từ giả thiết ta có : 2 2 2 2 1 0 2 1 0 2 1 0 x y y z z x + + = + + = + + = Cộng từng vế các đẳng thức ta có : ( ) ( ) ( ) 2 2 2 2 1 2 1 2 1 0 x x y y z z + + + + + + + + = O K D C B A [...].. .2 2 2 ⇒ ( x + 1) + ( y + 1) + ( z + 1) = 0 x +1 = 0  ⇔  y + 1 = 0 ⇒ x = y = z = −1 z +1 = 0  ⇒ A = x 20 09 + y 20 09 + z 20 09 = ( −1) 20 09 + ( −1) 20 09 + ( −1) 20 09 = −3 VËy : A = -3 ……………………………………………H T…………………………………………………………………… GV:Mai Thành LB Đ ÔN THI VÀO L P 10 11 . Thnh LB ễN THI VO LP 10 6 Q N M O C B A ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 81 2 81 81 2 27 2( ) 2 0 ( ) ( ) ( ) 0 ( ) 0 ( ) 0 ( ) 0 x y z x y z xy yz zx x y z. ta có . )2( 2PB AH.CB 2PB AH.CB AH 2 = R AH 2 .4PB 2 = (4R.PB - AH.CB).AH.CB 4AH.PB 2 = 4R.PB.CB - AH.CB 2 AH (4PB 2 +CB 2 ) = 4R.PB.CB 2 222 22 2 22 2 22 22 d Rd .2. R 4R)R4(d Rd.8R . với x -5 & gt;0 =>x> ;5 Câu 3 : Phơng trình: ( 2m-1)x 2 -2 mx+1=0 a)Xét 2m -1 0= > m 1 /2 v , = m 2 -2 m+1= (m-1) 2 > 0 m1 ta thấy pt có 2 nghiệm p.bit với m 1 /2 v m1 b) m= 2 2 4

Ngày đăng: 15/05/2015, 20:00

w