1. Trang chủ
  2. » Giáo án - Bài giảng

bản chất của vật chất di truyền

31 671 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 2,31 MB

Nội dung

khái niệm và bản chất của di truyền, bài giảng thực hành di truyền trên chuột, Giới thiệu bản chất của vật chất di truyền là DNA, thành phần, cấu trúc của phân tử DNA, dạng DNA khác nhau trong tế bào. Năm 1968, Frederich Miescher (Thụy Điển) phát hiện ra trong nhân tế bào bạch cầu một chất không phải là protein và gọi là nuclein. Về sau thấy chất này có tính acid nên gọi là acid nucleic. Acid nucleic có 2 loại là desoxyribonucleic (DNA) và ribonucleic (RNA). Năm 1914, R. Feulgen (nhà hóa học người Đức) tìm ra phương pháp nhuộm màu đặc hiệu đối với DNA. Sau đó các nghiên cứu cho thấy DNA của nhân giới hạn trong NST. Nhiều sự kiện cho gián tiếp cho thấy DNA là chất di truyền. Mãi đến năm 1944 vai trò mang thông tin di truyền của DNA mới được chứng minh và đến năm 1952 mới được công nhận.

Trang 1

Bài giảng Môn: Di truyền học (45 tiết)

Chương 1

Bản chất của vật chất di truyền

Mục tiêu của chương

Giới thiệu bản chất của vật chất di truyền là DNA, thành phần, cấu trúc của phân tử DNA, dạng DNA khác nhau trong tế bào

Năm 1914, R Feulgen (nhà hóa học người Đức) tìm ra phương pháp nhuộm màu đặc hiệu đối với DNA Sau đó các nghiên cứu cho thấy DNA của nhân giới hạn trong NST Nhiều sự kiện cho gián tiếp cho thấy DNA là chất di truyền Mãi đến năm 1944 vai trò mang thông tin di truyền của DNA mới được chứng minh và đến năm 1952 mới được công nhận

1 Các chứng minh gián tiếp

Nhiều số liệu cho thấy có mối quan hệ giữa DNA và chất di truyền

- DNA có trong tế bào của tất cả các vi sinh vật, thực vật, động vật chỉ giới hạn ở trong nhân và là thành phần chủ yếu của nhiễm sắc thể Đó là một cấu trúc mang nhiều gen xếp theo đường thẳng

1

Trang 2

- Tất cả các tế bào dinh dưỡng của bất kỳ một loại sinh vật nào đều chứa một lượng DNA rất ổn định, không phụ thuộc vào sự phân hóa chức năng hoặc trạng thái trao đổi chất Ngược lại, số lượng RNA lại biến đổi tùy theo trạng thái sinh lý của tế bào.

- Số lượng DNA tăng theo số lượng bội thể của tế bào Ở tế bào sinh dục đơn bội (n) số lượng DNA là 1, thì tế bào dinh dưỡng lưỡng bội (2n) có

số lượng DNA gấp đôi

- Tia tử ngoại (UV) có hiệu quả gây đột biến cao nhất ở bước sóng260nm Đây chính là bước sóng DNA hấp thu tia tử ngoại nhiều nhất

Tuy nhiên trong các số liệu trên, thành phần cấu tạo của NST ngoài DNA còn có các protein Do đó cần có các chứng minh trực tiếp mới khẳng định vai trò vật chất di truyền của DNA

2 Thí nghiệm biến nạp DNA (Transformation)

Hiện tượng biến nạp do Griffith phát hiện vào năm 1928 ở vi khuẩn

Diplococcus pneumoniae (gây sưng phổi ở động vật có vú) Vi khuẩn này

Thí nghiệm được tiến hành như sau:

a Tiêm vi khuẩn dạng S sống gây bệnh cho chuột, sau một thời gian nhiễm bệnh, chuột chết

b Tiêm vi khuẩn dạng R sống không gây bệnh cho chuột, chuộtsống

c Tiêm vi khuẩn dạng S bị đun chết cho chuột, chuột chết

d Tiêm hỗn hợp vi khuẩn dạng S bị đun chết trộn với vi khuẩn Rsống cho chuột, chuột chết Trong xác chuột chết có vi khuẩn S và R

Trang 3

Hình 1.1 Thí nghiệm biến nạp ở chuột

Hiện tượng trên cho thấy vi khuẩn S không thể tự sống lại được sau khi bị đun chết, nhưng các tế bào chết này đã truyền tính gây bệnh cho tế bào R Hiện tượng này gọi là biến nạp

Đến 1944, ba nhà khoa học T Avery, Mc Leod, Mc Carty đã tiến hành thí nghiệm xác định rõ tác nhân gây biến nạp Nếu tế bào S bị xử lý bởi protease hoặc RNAase thì hoạt tính biến nạp vẫn còn, cứng tỏ RNA và protein không phải là tác nhân gây bệnh Nhưng nếu tế bào chết S bị xử lý bằng DNAase thì hoạt tính biến nạp không còn nữa, chứng tỏ DNA là nhân

tố biến nạp Kết quả thí nghiệm được tóm tắc như sau:

DNA của S + tế bào R sống  chuột chết (có S, R )

Trang 4

Kết luận: hiện tượng biến nạp là một chứng minh sinh hóa xác nhận rằng DNA mang tín hiệu di truyền Nhưng vai trò của DNA vẫn chưa được công nhận vì cho rằng trong các thí nghiệm vẫn còn một ít protein.

Hình 1.2 Vật chất di truyền của phage là DNA

3 Sự xâm nhập của DNA virus vào vi khuẩn

Năm 1952, A Hershey và M Chase đã tiến hành thí nghiệm với bacteriophage T2 xâm nhập vi khuẩn E.coli.

Phage T2 cấu tạo gồm vỏ protein bên ngoài và ruột DNA bên trong Thí nghiệm này nhằm xác định xem phage nhiễm vi khuẩn đã bơm chất nào vào tế bào vi khuẩn: chỉ DNA, chỉ protein hay cả hai

Vì DNA chứa nhiều phosphor, không có lưu huỳnh; còn protein chứa lưu huỳnh nhưng không chứa phosphor nên có thể phân biệt giữa DNA

và protein nhờ đồng vị phóng xạ Phage được nuôi trên vi khuẩn mọc trên môi trường chứa các đồng vị phóng xạ P32 và S35 S35 xâm nhập vào protein

và P32 xâm nhập vào DNA của phage

Trang 5

Thí nghiệm: phage T2 nhiễm phóng xạ được tách ra và đem nhiễm vào các vi khuẩn không nhiễm phóng xạ, chúng sẽ gắn lên mặt ngoài của tế bào vi khuẩn Cho phage nhiễm trong một khoảng thời gian đủ để bám vào vách tế bào vi khuẩn và bơm chất nào đó vào tế bào vi khuẩn Dung dịch được lắc mạnh và ly tâm để tách rời tế bào vi khuẩn khỏi phần phage bám bên ngoài vách tế bào Phân tích phần trong tế bào vi khuẩn thấy chứa nhiều

P32 (70%) và rất ít S35, phần bên ngoài tế bào vi khuẩn chứa nhiều S35 và rất

ít P32 Thế hệ mới của phage chứa khoảng 30% P32 ban đầu

Thí nghiệm này đã được chứng minh trực tiếp rằng DNA của phage

T2 đã xâm nhập vào tế bào vi khuẩn và sinh sản để tạo ra thế hệ phage mới mang tính di truyền có khả năng đến nhiễm vào các vi khuẩn khác

Hinh 1.3 Sư xâm nhâp DNA cua virus vao vi khuân

II Thành phần và cấu tạo hóa học của acid nucleic

DNA và RNA là những hợp chất cao phân tử Các đơn phân là các nucleotide

Mỗi nucleotide gồm ba thành phần

- H3PO4

Trang 6

Hình 1.4 Thành phần đường và base của nucleotide

(a) Base purin va pyrimidin (b) Đương ribose va deoxyribose (c) Sư khac nhau giưa Thymine va Uracil

Trong nucleotide, base purin sẽ gắn với C1 của đường ỏ N9 Nếu là pyrimidin thì sẽ gắn với C1 của đường ở N3 C5 của đường gắn với nhóm phosphate

Trang 7

Trong mạch, 2 nucleotide nối với nhau nhờ mối liên kết giữa nhóm

3’-OH của đường với nhóm -OH của H3PO4, cùng nhau mất đi một phân tử nước

Nếu phân tử chỉ gồm đường và nitrogenous base gọi là nucleoside

1 DNA

1.1 Cấu tạo hóa học của DNA

Hình 1.5 Sự bắt cặp bổ sung của các base của hai mạch đơn

luận:

Trên cơ sở các nghiên cứu của mình, Chargaff (1951) đã đưa ra kết

+ Số lượng A = T, G = C

Trang 8

+ Tỉ số A +T đặc trưng cho mỗi loài sinh vật.

G + XCác base căn bản của acid nucleic bắt cặp bổ sung

Cũng trong thời gian này, Wilkins và Franklin (người Anh) nghiên cứu, phân tích tán xạ bằng tia rơnghen, kết luận:

+ Các purin và pyrimidin có cấu trúc phẳng, mặt phẳng của chúng được xếp vuông góc với trục dài của mạch polynucleotide cái này xếp chồng lên cái kia, khoảng cách trung tâm giữa hai mặt phẳng kề nhau là3,4Ao

+ Mạch polynucleotide xoắn thành lò xo quanh trục giữa, mỗi bước xoắn là 34Ao (ứng với 10 nu)

+ Việc so sánh nồng độ DNA đo được với các số liệu tính toán trên

cơ sở sắp không gian của các nguyên tử cho thấy DNA có nhiều hơn một mạch polynucleotide

Năm 1951, J Watson và F Crick: tổng hợp các số liệu phân tích hóa học và tán xạ của tia X, để xây dựng nên mô hình cấu trúc phân tử DNA Theo mô hình này, phân tử DNA có những đặc trưng chủ yếu trong cấu trúc không gian như sau:

Hình 1.6 Mối liên kết hydro giữa A-T và G-C

Trang 9

1 Phân tử DNA gồm hai chuỗi polynucleotide xoắn song song ngược chiều quanh một trục chung.

2 Các gốc base quay vào phía trong của vòng xoắn, còn các gốc

H3PO4, pentose quay ra ngoài tạo phần mặt của hình trụ Các mặt phẳng của phân tử đường nằm về phía phải của các base Còn các base thì xếp trên những mặt phẳng song song với nhau và thẳng góc với trục phân tử Khoảng cách giữa các cặp base là 3,4 Ao Chúng lệch nhau một góc 360 nên cứ 10 gốc (10 nucleotide) tạo nên một vòng quay

Hình 1.7 Chuỗi xoắn kép DNA

3 Chiều cao của mỗi vòng xoắn là 34 Ao, gồm 10 bậc thang do 10 cặp base tạo nên Đường kính của vòng xoắn là 20 Ao

Trang 10

4 Hai chuỗi polynucleotide gắn với nhau qua liên kết hydro được hình thành giữa các cặp base đứng đối diện nhau theo nguyên tắc bổ sung cặp đôi nghiêm ngặt: A luôn luôn liên kết với T bằng 2 mối liên kết hydro,

G liên kết với X bằng 3 mối liên kết hydro Do đó trong phân tử DNA tổng

số base loại pirimidin luôn bằng tổng số các base loại purin (quy luật Chargaff)

+ Khoảng cách giữa hai mạch polynucleotide luôn xác định, không thay đổi Khoảng cách này bằng kích thước của một base loại purin cộng với kích thước của một base loại pirimidin

+ A luôn luôn đi với T là vì giữa 2 base này chỉ có khả năng hình thành nên hai liên kết hydrro ở các vị trí N6 - O6 và N1 - N1

G luôn luôn đi với X vì giữa 2 base này có thể tạo ra 3 liên kết hydro ở các

vị trí N6 - O6, N1 -N1 và N2 - O2

Vì vậy mà A chỉ liên kết với T và G chỉ liên kết với C

5 Tính chất bổ sung giữa các cặp base dẫn đến tính chất bổ sung giữa hai chuỗi polynucleotide của DNA Do đó biết thành phần, trật tự sắp xếp của các nucleotide trên chuỗi này sẽ suy ra thành phần, trật tự sắp xếp của các nucleotide trên chuỗi kia Đặc điểm quan trọng nhất của mô hình là đối song song (antiparallel) Để các bazơ tương ứng đối diện nhau, hai mạch cần phải bố trí: đầu của sợi này đối diện với đuôi của sợi kia Mô hình Watson-Crick ra đời từ năm 1953 và trong vòng 25 năm tiếp theo nó được công nhận và sử dụng rộng rãi

Mãi đến những năm 70, nhờ dùng các phân tích chính xác nhiều dạng DNA đã được phát hiện, dạng thường gặp là dạng B theo mô hình của Watson-Crick, đây là cấu trúc phổ biến cho hầu hết sinh vật Mỗi dạng DNA là một dòng họ các phân tử có kích thước dao động quanh các trị số trung bình

Hai chỉ số được dùng để đánh giá DNA

- Chỉ số h: là chiều cao giữa hai nu kề nhau

- Chỉ số n: số nucleotide của một vòng xoắn

Ngoài DNA dạng B, còn nhiều dạng xoắn phải khác (A, C, D .) chúng phân biệt với DNA dạng B về khoảng cách giữa các base cũng như

độ nghiêng của chúng so với trục và sự phân bố trên chuỗi kép

Trang 11

Gần đây, người ta còn phát hiện ra một dạng DNA có bộ khung zigzag và đóng xoắn theo chiều trái, gọi là DNA xoắn trái hay DNA Z, trên mỗi vòng xoắn có tới 12 cặp base Giải thích sự tồn tại của DNA Z có nhiều quan niệm khác nhau: Theo Watson, chỉ trong những điều kiện đặc biệt, như nồng độ muối cao thì các vùng chứa trình tự GCGCGC chuyển sang cấu hình Z, ngược lại ở nồng độ muối thấp chúng quay trở lại dạng B Điều đó chứng tỏ DNA Z có thể đóng vai trò giảm sức căng cục bộ trong phân tử DNA siêu xoắn hoặc có thể tương tác đặc thù với các protein điều hòa Tuy nhiên A Rich cho rằng DNA Z xảy ra trong tự nhiên mà bằng chứng là có mặt trong ruồi giấm bình thường Có thể là vùng DNA Z nằm xen kẻ với vùng DNA B và chúng có thể xoay hình dáng thành dạng B khi xảy ra các biến đổi hóa học nào đó làm cho DNA Z trở nên không ổn định Rich còn gợi ý rằng những gen nằm ở các vùng bị xoay như thế thì có thể tháo xoắn sau đó và bắt đầu phiên mã Nhờ vậy mà protein có thể được tổng hợp Mặc

dù đây mới chỉ là giả thiết song khám phá này đã cung cấp một công cụ tiềm năng cho nghiên cứu về hoạt động của các gen và DNA.Việc phát hiện các dạng DNA cho thấy DNA trong tế bào không đơn điệu tùy trạng thái sinh lý mà DNA ở dạng này hoặc dạng khác

Hình 1.8 DNA dạng xoắn kép Z

a Mô hình dạng B của Watson-Crick, là dạng xoắn phải với trục đều

b Mô hình dạng Z, là dạng xoắn trái với trục không đều

1.2 DNA cuộn lại trong tế bào

Hầu hết trong cơ thể sinh vật, DNA có chiều dài dài hơn rất nhiều lần so với chiều dài của tế bào

Trang 12

Ví dụ: phage T2 có chiều dài tế bào khoảng 0,16 m, trong khi chiêu dàiADN của chúng khoảng 50 m.

Hình 1.9 Các dạng thẳng, vòng tròn và xiêu xoắn của DNA

Do đó DNA ở trong tế bào phải cuộn xoắn Sự cuộn xoắn này rất tinh vi vì trong quá trình tồn tại, các gen phải hoạt động, như vậy nó phải là một chất có hoạt tính thường xuyên

Người ta thấy DNA có thể ở 3 dạng cấu trúc:

- Dạng siêu xoắn: mạch kép vặn xoắn lại thành hình số 8 Đây là dang tự nhiên ở vi khuẩn

Trang 13

- Dạng vòng tròn: sợi DNA căng tròn có được do DNA siêu xoắn bị cắt đứt 1 trong hai mạch kép.

- Dạng thẳng: khi DNA bị cắt đứt cả hai mạch

Mô hình về bộ gen của E coli

Ở E coli, chiều dài DNA được rút ngắn đáng kể, sự cuộn lại được

thực hiện nhờ vào các RNA nối Khi các RNA nối bị cắt thì các DNA bung dài ra, thuận lợi cho sự sao chép DNA Nếu mạch DNA bị cắt, DNA được tháo xoắn, căng ra thuận lợi cho sự tổng hợp protein

Hình 1.10 Mô hình cấu trúc nhiễm sắc thể (bộ gen) của E coli

(Theo Pettijohn và Hecht, 1974)

Trang 14

Hình 1.11 Sự tháo xoắn DNA trong tế bào vi khuẩn

2 RNA

Ở các sinh vật như: thực khuẩn thể, virus của động vật, virus củathực vật thì vật liệu di truyền là RNA Ở các sinh vật bậc cao có RNA là bản sao mã của DNA

RNA có cấu tạo từ các đơn phân là các ribonucleotide Giống với nucleotide, mỗi ribonucleotide gồm ba thành phần: đường ribose, H3PO4, bazơnitric (T được thay bằng U) Trong tế bào có ba loại RNA:

2.1 RNA riboxom (ribosomal RNA-rRNA)

rRNA cùng với protein cấu tạo nên ribosome rRNA chiếm tỷ lệ cao trong tế bào có thể đến 75% của tổng RNA Ở các ribosome khác nhau có các rRNA khác nhau, chúng được đặc trưng bởi hằng số lắng S:

- Eukaryote : ribosome có hệ số lắng khi ly tâm là 80S, gồm hai đơnvị:

Trang 15

RNA ribosom có cấu trúc bậc I (mạch thẳng) và cấu trúc bậc hai Trong ribosome, các rRNA tồn tại ở dạng cấu trúc bậc hai RNA ribosom có cấu tạo là một sợi xoắn có nhiều vùng liên kết đôi theo nguyên tắc bổ sung

A liên kết với U, G liên kết với X và có khi G liên kết với U Trong tế bào rRNA chiếm tỷ lệ cao có thể lên đến 75-80% tổng số RNA

Hình 1.12 rRNA cấu tạo nên ribosom

2.2 RNA vận chuyển (Transfer RNA - tRNA)

Mỗi tRNA gắn với một phân tử amino acid, mang đến ribosome để tham gia tổng hợp protein Mỗi tRNA đặc hiệu cho một loại amino acid Có hơn 20 loại tRNA khác nhau tương ứng với hơn 20 loại amino acid Trong thực tế, người ta thấy số lượng tRNA lớn hơn rất nhiều so với số lượng amino acid vì một amino acid có nhiều bộ ba mã hóa Đồng thời cùng một

bộ ba mã hóa, vẫn có thể có nhiều tRNA do hiện tượng biến đổi của các nucleotide trong tRNA tạo nên các loại tRNA mới và trong quá trình tổng hợp tRNA, sau khi hình thành chuỗi polynucleotide còn chịu sự tác động của các yếu tố của môi trường nội và ngoại bào làm các nucleotide bị biến đổi, tạo ra các tRNA mới

Các tRNA cùng tham gia vận chuyển một acid amin là các izoaceptor Số lượng izoaceptor thay đổi tùy acid amin

Trang 16

Cấu trúc bậc I của tRNA: tRNA vận chuyển có phân tử lượng nhỏ:25.000-30.000, gồm 75-90 nucleotide, có hằng số lắng 4S Trong thành phần cấu trúc của tRNA có khoảng 10% các nucleotide hiếm với khoảng 30 loại khác nhau Mọi cấu trúc của tRNA đều có 2 đầu 5' và 3' giống nhau: đầu 5' luôn chứa G với gốc P tự do, còn đầu 3' luôn có 3 nucleotide là CCA3'-OH Nhóm 3'-OH của A có thể liên kết với acid amin để tạo phức hợp tRNA-aminoacyl.

Chuỗi polynucleotide cuộn lại có những đoạn tạo mạch xoắn kép, hình thành cấu trúc bậc hai của tRNA

Hình 1.13 Cấu trúc của tRNA

Enzyme aminoacyl tRNA synthetase gắn amino acid với tRNA tương ứng Mỗi enzyme đặc hiệu cho một loại amino acid riêng biệt và xúc tác phản ứng gắn với tRNA của nó nhờ năng lượng ATP tạo ra aminoacyl tRNA Phức hợp aminoacyl tRNA đến ribosome gắn với mRNA bằng nhờ các bộ ba đối mã (anticodon) trên tRNA bắt cặp bổ sung với các bộ ba mã hóa (codon) trên mRNA

Trang 17

Các tRNA có một số đặc tính cấu trúc chung: chiều dài khoảng

73-93 nucleotide, cấu trúc gồm một mach cuộn lại như hình lá chẻ ba nhờ bắt cặp bên trong phân tử Đầu mút 3’ có trình tự kết thúc là CCA, amino acid luôn gắn vào đầu này Đầu 5 chứa gốc phosphate của G

Mỗi tRNA có có 4-5 vùng với chức năng khác nhau:

- Vòng DHU: có chứa nucleotide dihydrouridin, vùng này có chức năng nhận biết aminoacyl tRNA synthetase

- Vòng anticodon: đọc mã trên mRNA theo nguyên tắc kết cặp anticodon – codon

- Vòng phụ: có thể không có ở một số RNA

- Vòng TφC: có chứa nucleotide pseudouridin, vùng này có chức năng nhận biết ribosom để vào đúng vị trí tiếp nhận aminoacyl tRNA (vị trí A)

- Đấu 3’ –CCA: vị trí gắn với acid amin

tRNA chiểm khoảng 15% tổng số RNA của tế bào

2.3 RNA thông tin (messenger RNA – mRNA)

RNA thông tin làm nhiệm vụ truyền đạt thông tin di truyền từ DNAđến protein mRNA chiểm khoảng 5% tổng số RNA tế bào

Cấu trúc của mRNA:

Các mRNA của prokaryote có nữa thời gian (half life) tồn tại ngắn trung bình 2 phút Các mRNA của Eukaryote có nữa thời gian tồn tại khoảng 30 phút - 24 giờ

Ngày đăng: 15/05/2015, 09:05

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w