1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi GVDG cấp THPT Tỉnh Thái Bình

5 463 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 205 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH Đề chính thức ĐỀ THI GIÁO VIÊN DẠY GIỎI TRUNG HỌC PHỔ THÔNG Năm học 2010 - 2011 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu 1 (3 điểm) a) Đồng chí hãy nêu nhiệm vụ, quyền của nhà giáo và các hành vi nhà giáo không được làm đã được ghi trong Luật Giáo dục năm 2005. b) Đồng chí hãy cho biết nội dung các tiêu chí về năng lực dạy học và năng lực giáo dục của chuẩn nghề nghiệp giáo viên trung học cơ sở, giáo viên trung học phổ thông ban hành kèm theo Thông tư số 30/2009/TT-BGDĐT ngày 22 tháng 10 năm 2009 của Bộ trưởng Bộ Giáo dục và Đào tạo. Câu 2 (3 điểm) Xét bài toán Tìm tất cả các giá trị của tham số m để phương trình sau có nghiệm dương: 2 3 1 0mx x m− + − = a) Hãy nêu ra ít nhất 3 hướng giải của bài toán. (Không cần giải chi tiết) b) Trình bày ngắn gọn việc hướng dẫn học sinh tìm được các hướng giải trên. c) Hãy nêu một số bài toán mà sau khi sử lý nó ta đưa được về bài toán trên. Câu 3 (2 điểm) Xét bài toán sau và lời giải của nó: 2 3 3 4 log log log 2log 36x x+ = Lời giải: + Điều kiện: 0x > + Ta có phương trình đã cho 2 3 3 2 1 log log log 2 2 log 6 2 x x   ⇔ + = × ×  ÷   2 3 3 log log log 6x x⇔ + = 2 2 3 3 log log 2 log 2 logx x⇔ − = − 2 2 3 3 log log 2 (log log 2)x x⇔ − = − − 2 3 log log 2 2 x x ⇔ = − 2 2 1 1 log 2 log 3 x x ⇔ = − 2 2 log 3 log 2 x x ⇔ = − 2 2 log 3 log 2 0 x x ⇔ + = 2 log 6 0 x ⇔ = 0 6 2 x   ⇔ =  ÷   6 1⇔ = (vô lý) Vậy phương trình vô nghiệm. a) Lời giải trên sai ở đâu? b) Hướng khắc phục (Không cần tính toán chi tiết) Câu 4 (2 điểm) Hướng dẫn học sinh giải bài toán sau bằng 2 cách (Không dùng định lý đảo về dấu tam thức bậc hai) Tìm m để hàm số sau đồng biến trong khoảng ( ) 1; + ∞ 3 2 1 (3 1) ( 3) 4 3 3 y x m x m x m= − − + + + − Ghi chú: Được phép sử dụng tài liệu. SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH HƯỚNG DẪN CHẤM THI GVDG TRUNG HỌC PHỔ THÔNG Năm học 2010 - 2011 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu Ý Nội dung Điểm 1 a) - Điều 72; - Điều 73; - Điều 75 Luật Giáo dục 2005 1,5 b) - Điều 6. Tiêu chuẩn 3: Năng lực dạy học. Gồm 8 tiêu chí, từ tiêu chí 8 đến tiêu chí 15; - Điều 7. Tiêu chuẩn 4: Năng lực giáo dục. Gồm 6 tiêu chí, từ tiêu chí 16 đến tiêu chí 21. 1,5 2 a) - Xét trường hợp 0m = - Trường hợp 0m ≠ Hướng 1: Xét các khả năng thỏa mãn yêu cầu của bài toán (phương pháp trực tiếp) 1 2 1 2 1 2 0 ; 0 ; 0x x x x x x< < = < < ≤ Hướng 2: Xét các khả năng không thỏa mãn yêu cầu của bài toán (phương pháp gián tiếp) 0∆ < hoặc 1 2 0x x≤ ≤ Hướng 3: Tách tham số 2 1 3 x m x + = + rồi dùng tương giao đồ thị. 1,75 b) Tùy vào đặc điểm của từng hướng mà phát vấn học sinh cho phù hợp. Hướng 1: Với 1 2 ;x x thỏa mãn những điều kiện nào thì phương trình bậc 2 có nghiệm dương. Hướng 2: Với 1 2 ;x x thỏa mãn những điều kiện nào thì phương trình bậc 2 không có nghiệm dương. Hướng 3: Có thể đưa bài toán về một dạng có sử dung BBT hàm số. 0,75 c) Một số bài toán mà sau khi sử lý nó ta đưa được về bài toán trên: - Tìm m để phương trình sau có nghiệm: 9 3 3 1 0 x x m m− + − = - Tìm m để phương trình sau có nghiệm khác 0: 0,5 3 1 0mx x m− + − = 3 a) Sai lầm ở bước biến đổi sau: 2 3 log log 2 2 x x = − 2 2 1 1 log 2 log 3 x x ⇔ = − 2 2 log 3 log 2 x x = Phép biến đổi này chỉ đúng khi 1 2 x ≠ ; Chính vì ngầm hiểu 1 2 x ≠ trong phép biến đổi đó mà ta đã vô tình làm mất nghiệm 2x = 1,0 b) Hướng khắc phục: Ta có phương trình 2 3 3 2 log log log 2 log 2x x⇔ + = + 2 3 2 3 log log 2log log 2 1x x⇔ + = + ( ) 2 3 3 log 1 log 2 1 log 2x⇔ + = + 2 log 1x⇔ = 2x⇔ = Vậy 2x = là nghiệm duy nhất của phương trình đã cho. 1,0 4 a) Cách 1: Phương pháp tam thức bậc hai Ta có 2 y' x 2(3m 1)x m 3= − − + + . Hàm số đồng biến trong khoảng (1, )+∞ khi và chỉ khi 2 y' x 2(3m 1)x m 3 0 x (1, )= − − + + ≥ ∀ ∈ +∞ . Điều này được thoả mãn trong hai trường hợp sau: 1) ' 0∆ ≤ (vì khi đó y' 0, x R≥ ∀ ∈ , hàm số đồng biến trên R) Ta có 2 2 9m 7m 2 0 m 1 9 − − ≤ ⇔ − ≤ ≤ (1) 2) Phương trình y' 0= có hai nghiệm thoả mãn: 1 2 1 2 x x 1 x 1 x 1 0< ≤ ⇔ − < − ≤ . ⇔ 1 2 1 2 ' 0 (x 1)(x 1) 0 (x 1) (x 1) 0 ∆ >   − − ≥   − + − <  ⇔ 2 9m 7m 2 0 5m 6 0 3m 2 0 − − >   − + ≥   − <  ⇔ 2 m 9 < − (2) Từ (1) và (2) ta được m 1 ≤ b) Cách 2: Phương pháp hàm số Ta có 2 y' x 2(3m 1)x m 3= − − + + . Hàm số đồng biến trong khoảng (1, )+∞ khi và chỉ khi: 2 y' x 2(3m 1)x m 3 0 x (1, )= − − + + ≥ ∀ ∈ +∞ . ⇔ 2 x 2x 3 f (x) m, x 1 6x 1 + + = ≥ ∀ > − ⇔ 2 x 2x 3 f (x) m, x 1 6x 1 + + = ≥ ∀ ≥ − (Vì hàm số liên tục tại x = 1) Xét hàm số 2 x 2x 3 f (x) , x 1 6x 1 + + = ∀ ≥ − 2 2 x 2 2(3x x 10) f '(x) , f '(x) 0 5 (6x 1) x 3 =  − −  = = ⇔  − = −  Bảng biến thiên Ta có ⇔ f (x) m, x 1≥ ∀ ≥ ⇔ minf (x) m, x 1≥ ∀ ≥ ⇔ m 1 ≤ f’(x) x f(x) 1 2 +∞ 0 - + −∞ 1 . SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH Đề chính thức ĐỀ THI GIÁO VIÊN DẠY GIỎI TRUNG HỌC PHỔ THÔNG Năm học 2010 - 2011 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu 1 (3 điểm) a) Đồng. tài liệu. SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH HƯỚNG DẪN CHẤM THI GVDG TRUNG HỌC PHỔ THÔNG Năm học 2010 - 2011 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu Ý Nội dung Điểm 1 a) -. 2 2 x 2 2(3x x 10) f '(x) , f '(x) 0 5 (6x 1) x 3 =  − −  = = ⇔  − = −  Bảng biến thi n Ta có ⇔ f (x) m, x 1≥ ∀ ≥ ⇔ minf (x) m, x 1≥ ∀ ≥ ⇔ m 1 ≤ f’(x) x f(x) 1 2 +∞ 0 - + −∞ 1

Ngày đăng: 13/05/2015, 09:00

TỪ KHÓA LIÊN QUAN

w