1. Trang chủ
  2. » Giáo án - Bài giảng

Kham pha tong S

3 309 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 78 KB

Nội dung

Giáo viên: Nguyễn Ngọc Thái Trrờng: THCS Mạo Khê II khám phá mới từ Một bài toán quen thuộc Trong bài viết này tôi xin trân trọng giới thiệu với các bạn đồng nghiệp và các em học sinh yêu toán một giải pháp tính tổng S k trên cơ sở khai thác và phát triển một bài toán đã biết. Từ một bài toán quen thuộc: Tính tổng: S 1 = 1 1 1 1 . 1.2 2.3 3.4 998.999 + + + + Mà nhiều học sinh đã biết cách giải Song nếu bạn đặt vấn đề khái quát hoá bài toán trên, ta có: S 2 = 1 1 1 1 1.2 2.3 3.4 n(n+1) + + + + (n N*). Từ đây bạn đã có một cách giải đi từ số hạng tổng quát: 1 1 1 k(k+1) k k 1 = + Cho k chạy từ 1 đến n ta sẽ tìm đợc kết quả dễ dàng: S 2 = 1 1 1 1 1.2 2.3 3.4 n(n+1) + + + + = 1 1 1 1 1 1 1 n 1 . 1 2 2 3 n n 1 n 1 n 1 + + + = = + + + Song nếu để ý số thừa số ở mỗi phân số trong tổng đợc tăng dần lên ta có tổng: S 3 = 1 1 1 1 1.2.3 2.3.4 3.4.5 n(n+1)(n+2) + + + + . Lúc đó số hạng tổng quát: 1 1 1 1 n(n+1)(n+2) 2 n(n+1) (n+1)(n+2) = . S 3 = 1 1 1 1 1.2.3 2.3.4 3.4.5 n(n+1)(n+2) + + + + = 1 1 1 1 1 1 1 1 1 1 2 1.2 2.3 2.3 3.4 n(n+1) (n+1)(n+2) 2 1.2 (n+1)(n+2) + + + = . T¬ng tù: S 4 = 1 1 1 1 1.2.3.4 2.3.4.5 3.4.5.6 n(n+1)(n+2)(n+3) + + + + . Ta cã: 1 1 1 1 n(n+1)(n+2)(n+3) 3 n(n+1)(n+2) (n+1)(n+2)(n+3)   = −     . S 4 = 1 1 1 1 1.2.3.4 2.3.4.5 3.4.5.6 n(n+1)(n+2)(n+3) + + + + = 1 1 1 1 1 1 1 1 1 1 3 1.2.3 2.3.4 2.3.4 3.4.5 n(n+1)(n+2) (n+1)(n+2)(n+3) 3 1.2.3 (n+1)(n+2)(n+3)     − + − + + − = −         . Víi S 5 = 1 1 1 1 1.2.3.4.5 2.3.4.5.6 3.4.5.6.7 n(n+1)(n+2)(n+3)(n+4) + + + + . L¹i cã: 1 1 1 1 n(n+1)(n+2)(n+3)(n+4) 4 n(n+1)(n+2)(n+3) (n+1)(n+2)(n+3)(n+4)   = −     . 5 1 1 1 1 S = 1.2.3.4.5 2.3.4.5.6 3.4.5.6.7 n(n+1)(n+2)(n+3)(n+4) 1 1 1 1 1 1 1 4 1.2.3.4 2.3.4.5 2.3.4.5 3.4.5.6 n(n+1)(n+2)(n+3) (n+1)(n+2)(n+3)(n+4) 1 1 1 4 1.2.3.4 (n+1)(n+2)(n+3)(n+4) + + + +   = − + − + + −       = −     B©y giê ta h·y kh¸i qu¸t cho mÉu sè cña tõng ph©n sè: S k = 1 1 1 1 1.2.3 k 2.3.4 (k 1) 3.4.5 (k 2) n(n+1)(n+2)(n+3) (n+k-1) + + + + + + (k >1). Ta cã: 1 1 1 1 n(n+1)(n+2)(n+3) (n+k-1) k 1 n(n+1)(n+2) (n+k-2) (n+1)(n+2) (n+k-1)   = −   −   . k 1 1 1 1 S = 1.2.3 k 2.3.4 (k 1) 3.4.5 (k 2) n(n+1)(n+2)(n+3) (n+k-1) 1 1 1 1 1 k 1 1.2.3 (k 1) 2.3.4 n(n+1)(n+2)(n+3) (n+k-2) (n+1)(n+2)(n+3) (n+k-1) 1 1 k 1 1.2.3 ( k + + + + + +   = − + + −   − −   = − 1 k 1) (n+1)(n+2)(n+3) (n+k-1)   −   −   Ví dụ: Tính tổng: S 7 = 1 1 1 1 1.2.3.4.5.6.7 2.3.4.5.6.7.8 3.4.5.6.7.8.9 n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) + + + + . áp dụng công thức trên ta có: 7 1 1 1 1 S = 1.2.3.4.5.6.7 2.3.4.5.6.7.8 3.4.5.6.7.8.9 n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6) 1 1 1 . 6 1.2.3.4.5.6 (n+1)(n+2)(n+3)(n+4)(n+5)(n+6) + + + + = Nhờ công thức trên bạn có thể đề xuất những bài toán tính tổng phức tạp hơn khi cho k đủ lớn theo trình độ học sinh từ lớp 6 đến lớp 9. Trên đây là một giải pháp tìm kiếm điều phi thờng trong cái bình thờng mà tôi đã khám phá đợc. Kính mong các bạn đồng nghiệp phê bình góp ý giúp cho bài viết của tôi đợc hoàn mỹ hơn. Tôi xin trân trọng cám ơn! Mạo Khê ngày 20 tháng 3 năm 2010. . 1 + + + = = + + + Song nếu để ý s thừa s ở mỗi phân s trong tổng đợc tăng dần lên ta có tổng: S 3 = 1 1 1 1 1.2.3 2.3.4 3.4.5 n(n+1)(n+2) + + + + . Lúc đó s hạng tổng quát: 1 1. S 2 = 1 1 1 1 1.2 2.3 3.4 n(n+1) + + + + (n N*). Từ đây bạn đã có một cách giải đi từ s hạng tổng quát: 1 1 1 k(k+1) k k 1 = + Cho k chạy từ 1 đến n ta s tìm đợc kết quả dễ dàng: S 2 . trên cơ s khai thác và phát triển một bài toán đã biết. Từ một bài toán quen thuộc: Tính tổng: S 1 = 1 1 1 1 . 1.2 2.3 3.4 998.999 + + + + Mà nhiều học sinh đã biết cách giải Song nếu

Ngày đăng: 09/05/2015, 15:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w