Sở GD&ĐT Bắc Ninh Trờng THPT Quế Võ số 1 đề thi Thử Đại học lần 1 Môn thi: TOáN 12 (Thời gian làm bài: 150 phút) I. phần chung cho tất cả thí sinh. (7 điểm) Câu I : (2 điểm) Cho hàm số : y = - x 3 - 3x 2 + mx + 4.(1) 1.Khảo sát hàm số vi m = 0. 2.Tìm m để đồ thị hàm số (1) có điểm cực đại và điểm cực tiểu đồng thời chúng đối xứng với nhau qua đ- ờng thẳng : y = 1 5 4 4 x . Câu II : (2 điểm) 1.Giải hệ phơng trình : ( ) ( ) ( ) 2 2 2 2 2 5 4 6 2 0 1 2x+ =3 - y 2 x y x y x y x y + + = 2.Giải phơng trình: ( ) ( ) 2 3 2 cos 2 3 2 cos sin 0cos x x x x + + = . Câu III: (1 điểm) : Tính tích phân sau: I = 4 2 4 .x sinx dx cos x . Câu IV: (1 điểm): Cho hình chóp S. ABCD có ABCD là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD).Gọi M, N lần l - ợt là trung điểm của AD và SC, I là giao điểm của BM và AC. Cho SA= a, AD = a 2 , AB = a. Chứng minh rằng mặt phẳng (SBM) vuông góc với mặt phẳng (SAC) và tính thể tích của tứ diện ABIN. Câu V: (1 điểm): Cho a, b là các số dơng thoả mãn: ab + a+ b = 3 . Chứng minh rằng: 2 2 3 3 3 1 1 2 a b ab a b b a a b + + + + + + + II. phần riêng.(3 điểm) (Thí sinh chỉ đợc làm một trong hai phần (phần 1 hoặc phần 2)). 1. Theo chơng trình chuẩn Câu VIa: (2 điểm) 1.Trong mặt phẳng với hệ toạ độ OXY cho đờng tròn (C) : (x-1) 2 + (y + 2) 2 = 9 và đờng thẳng (d) : 3x - 4y + m = 0. Tìm m để trên (d) có duy nhất một điểm P mà từ đó có thể kẻ đợc hai tiếp tuyến PA, PB tới (C) (A, B là tiếp điểm) sao cho tam giác PAB là tam giác đều. 2.Trong không gian với hệ toạ độ OXYZ cho đờng thẳng (d) có phơng trình đợc viết dới dạng giao của hai mặt phẳng : 3 0 2 3 0 x z y z + = = và mặt phẳng (P): x+y+z=3.Tìm toạ độ giao điểm A của đờng thẳng (d) và mặt phẳng (P).Lập phơng trình đờng thẳng (d) là hình chiếu vuông góc của đờng thẳng (d) trên mặt phẳng (P) . Câu VIIa (1 điểm): Giải bất phơng trình sau: 2 3 6 3 5 2 15.2 x x x + + + < 2 x . 2. Theo chơng trình nâng cao Câu VIb: (2 điểm) : 1.Trong mặt phẳng với hệ toạ độ OXY cho tam giác ABC có đờng phân giác trong của góc A : x + 2y - 5 = 0, đờng cao kẻ từ A : 4x + 13y - 10 = 0, điểm C(4;3) . Tìn toạ độ điểm B. 2. Trong không gian với hệ toạ độ OXYZ cho điểm A(-2;0;-2), B(0;3;-3) .Lập phơng trình mặt phẳng (P) qua A sao cho khoảng cách từ B đến mặt phẳng (P) là lớn nhất. Câu VIIb (1 điểm): Cho hàm số y = 2 1 1 x x x + (C).Cho M là điểm bất kỳ trên (C), tiếp tuyến tại M cắt hai tiệm cận tại hai điểm A, B . Chứng minh rằng M là trung điểm AB. Hết 1 . Ninh Trờng THPT Quế Võ số 1 đề thi Thử Đại học lần 1 Môn thi: TOáN 12 (Thời gian làm bài: 150 phút) I. phần chung cho tất cả thí sinh. (7 điểm) Câu I : (2 điểm) Cho hàm số : y = - x 3 - 3x 2 +. trong của góc A : x + 2y - 5 = 0, đờng cao kẻ từ A : 4x + 13y - 10 = 0, điểm C(4;3) . Tìn toạ độ điểm B. 2. Trong không gian với hệ toạ độ OXYZ cho điểm A (-2 ;0 ;-2 ), B(0;3 ;-3 ) .Lập phơng trình mặt. VIa: (2 điểm) 1.Trong mặt phẳng với hệ toạ độ OXY cho đờng tròn (C) : (x-1) 2 + (y + 2) 2 = 9 và đờng thẳng (d) : 3x - 4y + m = 0. Tìm m để trên (d) có duy nhất một điểm P mà từ đó có thể