Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 84 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
84
Dung lượng
2,3 MB
Nội dung
http://www.VNMATH.com 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2010 Môn thi: TOÁN − Giáo dục trung học phổ thông Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN CHUNG CHO TẤT C Ả THÍ SINH (7, 0 điểm) Câu 1 (3,0 điểm). Cho hàm số 32 13 5. 42 yxx=−+ 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho. 2) Tìm các giá trị của tham s ố m để phương trình x 3 – 6x 2 + m = 0 có 3 nghiệm thực phân biệt. Câu 2 (3,0 điểm). 1) Giải phương trình 2 24 2log 14log 3 0.xx−+= x 2) Tính tích phân 1 22 0 (1)Ixx d=− ∫ . 3) Cho hàm số 2 () 2 12.fx x x=− + Giải bất phương trình '( ) 0.fx≤ Câu 3 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 o . Tính thể tích khối chóp S.ABCD theo a. II. PHẦN RIÊNG - PHẦN TỰ CH ỌN (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2). 1. The o chương trình Chuẩn Câu 4.a (2,0 điểm). Trong không gian v ới hệ toạ độ Oxy z, cho 3 điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). 1) Viết phương trình mặt phẳng đi qua A và vuông góc với đườ ng thẳng BC. 2) Tìm toạ độ tâm mặt cầu ngoại tiếp tứ diện OABC. Câu 5.a (1,0 điểm). Cho h ai số phức và Xác định phần thực và phần ảo của số phức 1 12zi=+ 2 23.z=−i 12 2.zz− 2. Theo chương trình Nâng cao Câu 4.b (2,0 điểm). Tr ong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ có phương trình 11 . 22 1 xy z+− == − 1) Tính khoảng cách từ điểm O đến đường t hẳng Δ. 2) Viết phương trình mặt phẳng chứa điểm O và đườ ng thẳng Δ. Câu 5.b (1,0 điểm). Cho hai số phức và Xác định phần thực và phần ảo của số phức 1 25zi=+ 2 34.z=−i 12 zz Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: ……………………………… Số báo danh: …………………………… Chữ kí của giám thị 1: …………………………… Chữ kí của giám thị 2: …………………… http://www.VNMATH.com 2 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2010 Môn thi: TOÁN – Giáo dục trung học phổ thông HƯỚNG DẪN CHẤM THI (Văn bản gồm 04 trang) I. Hướng dẫn chung 1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì cho đủ số điểm từng phần như hướng dẫn quy định. 2) Việc chi tiết hoá (nếu có) thang điểm trong hướng dẫn chấm phải đảm bảo không làm sai lệch hướng dẫn chấm và phải được thống nhất thực hiện trong toàn Hội đồng chấm thi. 3) Sau khi cộng điểm toàn bài, làm tròn đến 0,5 điểm (lẻ 0,25 làm tròn thành 0,5; lẻ 0,75 làm tròn thành 1,0 điểm). II. Đáp án và thang điểm CÂU ĐÁP ÁN ĐIỂM 1. (2,0 điểm) a) Tập xác định: D = \ . 0,25 b) Sự biến thiên: • Chiều biến thiên: 'y = 2 3 4 x − 3x. Ta có: 'y = 0 ⇔ 0 4 x x = ⎡ = ⎢ ⎣ ; 'y > 0 ⇔ 0 4 x x < ⎡ > ⎢ ⎣ và 'y < 0 ⇔ 0 < x < 4. Do đó: + Hàm số đồng biến trên mỗi khoảng (;0) − ∞ và (4; ); + ∞ + Hàm số nghịch biến trên khoảng (0; 4). 0,50 • Cực trị: + Hàm số đạt cực đại tại x = 0 và y C§ = y(0) = 5; + Hàm số đạt cực tiểu tại x = 4 và y CT = y(4) = −3. 0,25 • Giới hạn: lim ; lim xx yy →−∞ →+∞ =−∞ =+∞ . 0,25 Câu 1 (3,0 điểm) • Bảng biến thiên: 0,25 x − ∞ 0 4 + ∞ y ’ + 0 − 0 + y 5 − 3 − ∞ + ∞ http://www.VNMATH.com 3 2 c) Đồ thị (C): 0,50 2. (1,0 điểm) Xét phương trình: 32 60xxm−+= (∗). Ta có: (∗) ⇔ 32 13 55 . 42 4 m xx−+=− 0,25 Do đó: (∗) có 3 nghiệm thực phân biệt ⇔ đường thẳng 5 4 m y = − cắt đồ thị (C) tại 3 điểm phân biệt 0,25 ⇔ −3 < 5 − 4 m < 5 ⇔ 0 < m < 32. 0,50 1. (1,0 điểm) Điều kiện xác định: x > 0. Với điều kiện đó, phương trình đã cho tương đương với phương trình 2 22 2log 7log 3 0xx − += 0,50 ⇔ 2 2 log 3 1 log 2 x x = ⎡ ⎢ = ⎢ ⎣ 0,25 ⇔ 8 2. x x = ⎡ ⎢ = ⎣ 0,25 Lưu ý: Nếu thí sinh chỉ tìm được điều kiện xác định của phương trình thì cho 0,25 điểm. 2. (1,0 điểm) () 1 432 0 2dIxxxx=−+ ∫ 0,25 = 1 543 0 111 523 xxx ⎛⎞ −+ ⎜⎟ ⎝⎠ 0,50 = 1 . 30 0,25 3. (1,0 điểm) Câu 2 (3,0 điểm) Trên tập xác định D = R của hàm số f(x), ta có: '( ) f x = 2 2 1 12 x x − + . 0,25 5 − 3 O x y 6 4 − 2 http://www.VNMATH.com 4 3 Do đó: '( ) f x ≤ 0 ⇔ 2 12 2 x x+≤ 0,25 ⇔ 2 0 4 x x ≥ ⎧ ⎨ ≥ ⎩ 0,25 ⇔ x ≥ 2. 0,25 Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên AO ⊥ BD. (1) Vì SA ⊥ mp(ABCD) nên: + SA là đường cao của khối chóp S.ABCD; + SA ⊥ BD. (2) Từ (1) và (2) suy ra BD ⊥ mp(SOA). Do đó SO ⊥ BD. (3) Từ (1) và (3) suy ra n SOA là góc giữa mp(SBD) và mp(ABCD). Do đó n SOA = 60 o . 0,50 Xét tam giác vuông SAO, ta có: SA = OA. n tan SOA = 2 A C .tan60 o = 2 . 2 a 3 = 6 . 2 a 0,25 Câu 3 (1,0 điểm) Vì vậy V S.ABCD = 1 3 SA. A BCD S = 1 3 . 6 . 2 a 2 a = 3 6 6 a . 0,25 1. (1,0 điểm) Gọi (P) là mặt phẳng đi qua A(1; 0; 0) và vuông góc với BC. Vì BC ⊥ (P) nên B C JJJG là một vectơ pháp tuyến của (P). 0,25 Ta có: B C JJJG = (0; − 2; 3). 0,25 Do đó, phương trình của (P) là: −2y + 3z = 0. 0,50 2. (1,0 điểm) Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC. Vì O(0; 0; 0) ∈ (S) nên phương trình của (S) có dạng: x 2 + y 2 + z 2 + 2ax + 2by + 2cz = 0. (∗) 0,25 Vì A(1; 0; 0), B(0; 2; 0), C(0; 0; 3) ∈ (S) nên từ (∗) ta được: 12 0 44 0 96 0. a b c + = ⎧ ⎪ + = ⎨ ⎪ + = ⎩ Suy ra: a = 1 2 − ; b = − 1; c = 3 . 2 − 0,50 Vì vậy, mặt cầu (S) có tâm 13 ;1; 22 I ⎛⎞ = ⎜⎟ ⎝⎠ . 0,25 Câu 4.a (2,0 điểm) Lưu ý: Thí sinh có thể tìm toạ độ của tâm mặt cầu (S) bằng cách dựa vào các nhận xét về tính chất hình học của tứ diện OABC. Dưới đây là lời giải theo hướng này và thang điểm cho lời giải đó: B A C D O S http://www.VNMATH.com 5 4 Tâm I của mặt cầu (S) là giao điểm của đường trục của đường tròn ngoại tiếp tam giác OAB và mặt phẳng trung trực của đoạn thẳng OC. 0,25 Từ đó, vì tam giác OAB vuông tại O, các điểm A, B thuộc mp(Oxy) và điểm C thuộc trục Oz nên hoành độ, tung độ của I tương ứng bằng hoành độ, tung độ của trung điểm M của đoạn thẳng AB và cao độ của I bằng 1 2 cao độ của C. 0,50 Ta có M = 1 ;1;0 2 ⎛⎞ ⎜⎟ ⎝⎠ và C = (0; 0; 3) (giả thiết). Vì vậy 13 ;1; 22 I ⎛⎞ = ⎜⎟ ⎝⎠ . 0,25 Ta có 12 238.zz i−=−+ 0,50 Câu 5.a (1,0 điểm) Do đó, số phức 12 2−zz có phần thực bằng −3 và phần ảo bằng 8. 0,50 1. (1,0 điểm) Từ phương trình của ∆ suy ra ∆ đi qua điểm M(0; −1; 1) và có vectơ chỉ phương G u = (2; −2; 1). Do đó d(O, ∆) = , M Ou u ⎡⎤ ⎣⎦ JJJJGG G . 0,50 Ta có M O JJJJG = (0; 1; −1). Do đó () ,1;2;2MO u ⎡⎤ = −− − ⎣⎦ J JJJGG . 0,25 Vì vậy d(O, ∆) = 222 222 (1) (2) (2) 2(2)1 −+−+− +− + = 1. 0,25 2. (1,0 điểm) Gọi (P) là mặt phẳng chứa điểm O và đường thẳng ∆. Do vectơ ,nMOu ⎡⎤ = ⎣⎦ GJJJJGG có phương vuông góc với (P) nên n G là một vectơ pháp tuyến của (P). 0,50 Câu 4.b (2,0 điểm) Suy ra phương trình của (P) là: −x − 2y − 2z = 0, hay x + 2y + 2z = 0. 0,50 Ta có: 12 .zz = 26 + 7i. 0,50 Câu 5.b (1,0 điểm) Do đó, số phức 12 .zz có phần thực bằng 26 và phần ảo bằng 7. 0,50 Hết http://www.VNMATH.com 6 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2009 Môn thi: TOÁN − Giáo dục trung học phổ thông Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu 1 (3,0 điểm). Cho hàm số 21 2 x y x + = − . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C), biết hệ số góc của tiếp tuyến bằng – 5. Câu 2 (3,0 điểm) 1) Giải phương trình . 25 6.5 5 0 xx −+= 2) Tính tích phân 0 (1 cos )d . I xx π =+ ∫ x 3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số 2 () ln(1 2) f xx x=− − trên đoạn [– 2 ; 0]. Câu 3 (1,0 điểm). Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết , tính thể tích của khối chóp S.ABC theo a. n 0 120BAC = II. PHẦN RIÊNG (3,0 điểm) Thí sinh học chương trình nào thì chỉ được chọn phần dành riêng cho chương trình đó (phần 1 hoặc phần 2). 1. Theo chương trình Chuẩn: Câu 4a (2,0 điểm). Trong không gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: (S): và (P): 222 (1)( 2)(2)3xy z−+− +− =6 02218 x yz + ++= . 1) Xác định toạ độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặt phẳng (P). 2) Viết phương trình tham số của đường thẳng d đi qua T và vuông góc với (P). Tìm toạ độ giao điểm của d và (P). Câu 5a (1,0 điểm). Giải phương trình 84 2 10zz − += trên tập số phức. 2. Theo chương trình Nâng cao: Câu 4b (2,0 điểm). Trong không gian Oxyz, cho điểm A(1; – 2; 3) và đường thẳng d có phương trình 12 21 xy z3 1 + −+ == − . 1) Viết phương trình tổng quát của mặt phẳng đi qua điểm A và vuông góc với đường thẳng d. 2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếp xúc với d. Câu 5b (1,0 điểm). Giải phương trình 2 21ziz 0 − += trên tập số phức. Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: Chữ kí của giám thị 1: Chữ kí của giám thị 2: http://www.VNMATH.com 7 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHÍNH THỨC KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2009 Môn thi: TOÁN – Giáo dục trung học phổ thông HƯỚNG DẪN CHẤM THI Bản hướng dẫn gồm 05 trang I. Hướng dẫn chung 1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì cho đủ số điểm từng phần như hướng dẫn quy định. 2) Việc chi tiết hoá (nếu có) thang điểm trong hướng dẫn chấm phải đảm bảo không làm sai lệch hướng dẫn chấm và phải được thống nhất thực hiện trong toàn Hội đồng chấm thi. 3) Sau khi cộng điểm toàn bài, làm tròn đến 0,5 điểm (lẻ 0,25 làm tròn thành 0,5; lẻ 0,75 làm tròn thành 1,0 điểm). II. Đáp án và thang điểm CÂU ĐÁP ÁN ĐIỂM 1. (2,0 điểm) a) Tập xác định: { } \2D = \ 0,25 b) Sự biến thiên: • Chiều biến thiên: y' = 2 5 (2)x − − < 0 ∀x ∈ D. Suy ra, hàm số nghịch biến trên mỗi khoảng ( ) ;2 − ∞ và . () 2;+∞ • Cực trị: Hàm số đã cho không có cực trị. 0,50 Lưu ý: Ở ý b), cho phép thí sinh không nêu kết luận về cực trị của hàm số. • Giới hạn và tiệm cận: 2 lim x y + → =+∞, 2 lim x y − → = −∞; lim lim 2 xx yy →−∞ →+∞ = = . Suy ra, đồ thị hàm số có một tiệm cận đứng là đường thẳng 2 x = và một tiệm cận ngang là đường thẳng 2y = . 0,50 Câu 1 (3,0 điểm) • Bảng biến thiên: x – ∞ 2 + ∞ y' – – y 2 + ∞ – ∞ 2 0,25 http://www.VNMATH.com 8 c) Đồ thị (C): (C) cắt trục tung tại điểm 1 0; 2 ⎛⎞ − ⎜⎟ ⎝⎠ và cắt trục hoành tại điểm 1 ;0 2 ⎛⎞ − ⎜⎟ ⎝⎠ . 0,50 Lưu ý: - Cho phép thí sinh thể hiện toạ độ giao điểm của (C) và các trục toạ độ chỉ trên hình vẽ. - Nếu thí sinh chỉ vẽ đúng dạng của đồ thị (C) thì cho 0,25 điểm. 2. (1,0 điểm) Kí hiệu d là tiếp tuyến của (C) và (x 0 ; y 0 ) là toạ độ của tiếp điểm. Ta có: Hệ số góc của d bằng – 5 ⇔ y'(x 0 ) = – 5 0,25 ⇔ 2 0 5 5 (2)x − =− − ⇔ 0 0 1 3 x x = ⎡ = ⎢ ⎣ 000 0 13;3xyx y=⇒ =− =⇒ =7. 0,50 Từ đó, ta được các phương trình tiếp tuyến theo yêu cầu của đề bài là: 5yx=− +2 2 và 52yx = −+ . 0,25 1. (1,0 điểm) Đặt 5 x = t, t > 0, từ phương trình đã cho ta có phương trình t 2 – 6t + 5 = 0 (*) 0,50 Giải (*), ta được t và t1= 5 = . 0,25 Với t , ta được: 5 1= 1 x = ⇔ 0 x = Với t , ta được: 5 5= 5 x = ⇔ 1 x = Vậy, phương trình đã cho có tất cả 2 nghiệm là 2 giá trị x vừa nêu trên. 0,25 2. (1,0 điểm) Đặt u và , ta có d x= d(1cos)dvx=+ x xdu = và vxsin x = + . 0,50 Do đó: 0 0 (sin) (sin)dIxx x x x π π =+ −+ ∫ x 0,25 Câu 2 (3,0 điểm) = 22 2 0 4 cos 22 x x π π π ⎛⎞ − −− = ⎜⎟ ⎝⎠ . 0,25 y 2 x 2 O 1 2 − 1 2 − http://www.VNMATH.com 9 Lưu ý: • Thí sinh được phép trình bày lời giải vừa nêu trên như sau: 22 2 0 00 0 4 d( sin ) ( sin ) ( sin )d cos 22 x Ixx xxx x x xx x π ππ π π π ⎛⎞ − =+=+ −+ =−− = ∫∫ ⎜⎟ ⎝⎠ • Ngoài cách 1 nêu trên, còn có thể tính I theo cách sau: Cách 2 : 00 22 0 00 0 22 0 dcosd(*) d(sin ) sin sin d (**) 22 4 cos . 22 Ixxxxx x xx xx xx x ππ π ππ π π π ππ =+ ∫∫ =+ =+ − ∫∫ − =+ = Trong trường hợp thí sinh tính I theo cách 2, việc cho điểm được thực hiện như sau : - Biến đổi về (*): 0,25 điểm; - Biến đổi từ (*) về (**): 0,50 điểm; - Biến đổi tiếp từ (**) đến kết quả: 0,25 điểm. 3. (1,0 điểm) Ta có: 22(21)(1) 2 1 xx xx '( ) 2 12 fx x + − − =+ = − ∀x ∈(– 2; 0). Suy ra, trên khoảng (– 2; 0): 1 '( ) 0 2 fx x = ⇔=− . 0,50 Ta có: , , (0) 0f = (2) 4 ln5f −=− 11 ln 2 24 f ⎛⎞ −=− ⎜⎟ ⎝⎠ . 0,25 Vì 4 4 4ln5ln 0(do 5) 5 e e−= > > và 4 4 1 ln 2 ln 0 (do 2 ) 42 e e−= < < Nên [] 2;0 1 min ( ) ln 2 4 x fx ∈− =− và [] 2;0 max ( ) 4 ln 5 x fx ∈− = − . 0,25 Lưu ý: Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) trên đoạn [– 2; 0] còn được kí hiệu tương ứng bởi [2;0] min ( ) f x − và ma [2;0] x ( ) f x − . Câu 3 (1,0 điểm) Vì SA ⊥ mp(ABC) nên SA ⊥ AB và SA ⊥ AC. Xét hai tam giác vuông SAB và SAC, ta có } chungSA SAB SAC SB SC ⇒Δ =Δ = A BAC⇒= 0,25 S C B a A http://www.VNMATH.com 10 [...]... thng SA vuụng gúc vi mt phng ( ABC ) Bit AB = a, BC = a 3 v SA = 3a 1 Tớnh th tớch khi chúp S.ABC theo a 2 Gi I l trung im ca cnh SC, tớnh di on thng BI theo a II PHN DNH CHO TH SINH TNG BAN (2,0 im) A Thớ sinh Ban KHTN chn cõu 5a hoc cõu 5b Cõu 5a (2,0 im) 1 1 Tớnh tớch phõn I = ( 4x + 1) e x dx 0 2 Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s f ( x ) = 2x 4 + 4x 2 + 3 trờn on [ 0; 2] Cõu 5b (2,0 im)... (1,0 im) Vect phỏp tuyn ca mt phng cn tỡm l u = ( 2; 1; 2 ) Phng trỡnh mt phng cn tỡm: 2 ( x + 2 ) 1( y 1) + 2 ( z + 2 ) = 0 hay 2x y + 2z + 9 = 0 Cõu 5 (1,0 im) 0,50 0,50 S hng tng quỏt trong khai trin nh thc Niutn ca ( 2x 1) l 10 k Tk +1 = C10 ( 2x ) 10 k ( 1) k k = ( 1) 210 k C10 x10 k k Ta cú 10 k = 7 k = 3 ( k = 0, 1, , 10 ) 0,50 0,50 3 H s ca x 7 l ( 1) 27 C10 3 .Ht 3 26 http://www.VNMATH.com... 1 y +1 z = = cú phng trỡnh 2 1 2 1 Chng minh rng ng thng OM song song vi ng thng d 2 Vit phng trỡnh mt phng i qua im M v vuụng gúc vi ng thng d Cõu 5 (1,0 im) Tỡm h s ca x 7 trong khai trin nh thc Niutn ca ( 2x 1) 10 Ht Thớ sinh khụng c s dng ti liu Giỏm th khụng gii thớch gỡ thờm H v tờn thớ sinh: S bỏo danh: Ch ký ca giỏm th 1: Ch ký ca giỏm th 2: 22 http://www.VNMATH.com... z1, 2 = 4 16 Cõu 4b 1 (0,75 im) (2,0 im) Gi (P) l mt phng i qua A v vuụng gúc vi d Vỡ d (P) nờn vect ch phng u ca d l vect phỏp tuyn ca (P) T phng trỡnh ca d, ta cú u = ( 2;1; 1) Do ú, phng trỡnh tng quỏt ca mp(P) l: 2.( x 1) + 1.( y + 2) + ( 1)( z 3) = 0 hay 2 x + y z + 3 = 0 11 0,25 0,50 http://www.VNMATH.com 2 (1,25 im) Khong cỏch h t A n d: T phng trỡnh ca d suy ra im B(1; 2; 3) thuc d... THễNG NM 2008 LN 2 Mụn thi: TON Trung hc ph thụng khụng phõn ban CHNH THC HNG DN CHM THI Bn Hng dn chm cú 03 trang I Hng dn chung 1 Nu thớ sinh lm bi khụng theo cỏch nờu trong ỏp ỏn m vn ỳng thỡ cho im tng phn nh hng dn quy nh 2 Vic chi tit hoỏ thang im (nu cú) so vi thang im trong Hng dn chm phi m bo khụng sai lch vi Hng dn chm v c thng nht thc hin trong Hi ng chm thi 3 Sau khi cng im ton bi, lm trũn... cạnh đáy bằng a, cạnh bên bằng 2a Gọi I là trung điểm của cạnh BC 1) Chứng minh SA vuông góc với BC 2) Tính thể tích khối chóp S.ABI theo a II PHầN dnh cho thí sinh từng ban (2 điểm) A Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b Câu 5a (2,0 điểm) 1 1) Tính tích phân I = x 2 (1 x 3 ) 4 dx 1 2) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f (x) = x + 2 cos x trên đoạn 0; 2 Câu 5b (2,0 điểm)... LN 2 Mụn thi: TON Trung hc ph thụng phõn ban B GIO DC V O TO CHNH THC HNG DN CHM THI Bn Hng dn chm cú 04 trang I Hng dn chung 1 Nu thớ sinh lm bi khụng theo cỏch nờu trong ỏp ỏn m vn ỳng thỡ cho im tng phn nh hng dn quy nh 2 Vic chi tit hoỏ thang im (nu cú) so vi thang im trong Hng dn chm phi m bo khụng sai lch vi Hng dn chm v c thng nht thc hin trong Hi ng chm thi 3 Sau khi cng im ton bi, lm trũn... ( 0; 2 ) 3 y 0,50 3 1 O x 2 2 (1,0 im) im thuc th cú tung y = 2 l im ( 0; 2 ) ; y ' ( 0 ) = 5 Phng trỡnh tip tuyn cn tỡm: y = 5 ( x 0 ) 2 hay y = 5x 2 Cõu 2 (1,5 im) 0,50 0,50 Phng trỡnh ó cho tng ng x + 2 > 0 x 2 > 0 2 log 3 ( x 4 ) = log 3 5 0,50 x > 2 2 x 4 = 5 0,50 x > 2 x = 3 x = 3 x = 3 0,50 Nghim ca phng trỡnh l x = 3 Cõu 3 (1,0 im) Cõu 4 (2,0 im) = 4 = 4i 2 = ( 2i )... ABCD có đáy ABCD là hình vuông cạnh bằng a , cạnh bên SA vuông góc với đáy và SA = AC Tính thể tích của khối chóp S ABCD Cho hàm số y = II PHầN dnh cho thí sinh từng ban (2,0 điểm) A Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b Câu 5a (2, 0 điểm) 1 Cho hình phẳng (H ) giới hạn bởi các đờng y = sin x , y = 0 , x = 0 , x = 2 Tính thể tích của khối tròn xoay đợc tạo thành khi quay hình (H ) quanh trục... giác S.ABC có đáy ABC là tam giác vuông tại đỉnh B, cạnh bên SA vuông góc với đáy Biết SA = AB = BC = a Tính thể tích của khối chóp S.ABC II PHầN dành cho thí sinh từng ban (2,0 điểm) A Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b Câu 5a (2,0 điểm) 2 1 Tính tích phân J = 1 2 xdx 2 x +1 2 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x) = x 3 8 x 2 + 16 x 9 trên đoạn [1; 3] Câu 5b (2,0 điểm) . tích khối chóp S.ABI theo a. II. PHầN dnh cho thí sinh từng ban (2 điểm) A. Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b Câu 5a (2,0 điểm) 1) Tính tích phân dx)x1(xI 43 1 1 2 = . 2) Tìm