Nguyễn Quốc Hoàn 0913 661 886 (094 888 111 7) H 1 CHệễNG III. VECTễ TRONG KHONG GIAN. QUAN HE VUONG GOC TRONG KHONG GIAN I. Chứng minh hai đ-ờng thẳng vuông góc: d 1 d 2 Cách 1. Dùng các ph-ơng pháp đã biết trong hình học phẳng (nếu hai đ-ờng thẳng đó đồng phẳng) Cách 2. 1 2 1 2 u .u 0; u ; u là các vectơ chỉ ph-ơng của các đ-ờng thẳng Cách 3. 1 12 2 d ( ) dd ( ) d Cách 4. 1 12 2 d / / ( ) dd d ( ) Cách 5. Sử dụng định lý ba đ-ờng vuông góc: II. Chứng minh đ-ờng thẳng vuông góc với mặt phẳng: d () Cách 1: 1 2 12 12 d d d ( ) {M} , ( ) Cách 2: d / / d ( ) () Cách 3: d ( ) d ( ) ( ) / /( ) Cách 4: ( ) ( ) ( ) ( ) d ( ) d ( ) d Cách 5: ( ) ( ) d ( ) (P) d (P) ( ) (P) Cách 6: (Trục đ-ờng tròn là đ-ờng thẳng vuông góc với mặt phẳng chứa đ-ờng tròn tại tâm của nó) B-ớc 1. Tìm một điểm S ở đỉnh cách đều các đỉnh của đa giác đáy. Tìm một điểm H ở đáy cách đều các đỉnh của đa giác đáy (tâm của đa giác đáy) B-ớc 2. Đ-ờng thẳng qua hai điểm S và H, đó là trục của đ-ờng tròn. Trục của đ-ờng tròn vuông góc mặt phẳng chứa đ-ờng tròn tại tâm của nó. III. Chứng minh hai mặt phẳng vuông góc: () () Cách 1: Chứng minh góc giữa hai mặt phẳng bằng 90 0 Cách 2: d ( ) ( ) ( ) d ( ) . IV. Chứng minh quan hệ song song: 1. a // b Cách 1. Dùng các ph-ơng pháp đã biết trong ch-ơng quan hệ song song Cách 2. Hai VTCP cùng ph-ơng và điểm trên đ-ờng này không thuộc đ-ờng kia Cách 3. ab ab a (P), b (P) 2. d // () Cách 1. Dùng các ph-ơng pháp đã biết trong ch-ơng quan hệ song song Cách 2. Gọi u là VTCP của d, lấy trong () hai vectơ a và b không cùng ph-ơng. Ta chứng minh: ba vectơ u , a , b đồng phẳng và điểm bất kỳ trên d không thuộc () Cách 3. d ( ) d d / / ( ) () 3. (P) // (Q) Cách 1. Dùng các ph-ơng pháp đã biết trong ch-ơng quan hệ song song Cách 2. (P) (Q) (P) Q) (P) a,(Q) a . d 1 () d 2 () d 2 () 2 d ' là hình chiếu của d 2 trên () d 1 d 2 d 1 2 d ' . Ngun Qc Hoµn 0913 661 886 (094 888 111 7) H 2 V. Gãc: C¸c gãc cÇn tÝnh ®Ịu tõ 0 0 ®Õn 90 0 1. TÝnh gãc gi÷a hai ®-êng th¼ng: a vµ b C¸ch 1: 1 12 2 a / / a ; b ; b / / C¸ch 2: Gãc gi÷a hai ®-êng th¼ng b»ng hc bï víi gãc gi÷a hai VTCP 2. TÝnh gãc gi÷a ®-êng th¼ng vµ mỈt ph¼ng: d vµ () B-íc 1. T×m h×nh chiÕu d’ cđa d trªn () B-íc 2. d ; d' d;( ) Chó ý: Cã thĨ gãc gi÷a d vµ () ®-ỵc quy vỊ gãc gi÷a vµ () víi // d, hc gãc gi÷a d vµ () víi () // () 3. TÝnh gãc gi÷a hai mỈt ph¼ng: () vµ () C¸ch 1: a ( ) ( );( ) a ; b b ( ) C¸ch 2: cos = S' S (Víi lµ gãc gi÷a hai mỈt ph¼ng () vµ (), S lµ diƯn tÝch ®a gi¸c H trªn (), S’ lµ diƯn tÝch ®a gi¸c H’ lµ h×nh chiÕu cđa H trªn ()) C¸ch 3: ( ) ( ) K ( );( ) a ;b a ( ), K a, a b ( ), K b, b Chó ý 1: §Ĩ t×m ®iĨm K ta th-êng thùc hiƯn nh- sau T×m ®-êng th¼ng bÊt kú d d () = {A} ; d () = {B}. KỴ AK t¹i K (K ; d) BK VËy ( );( ) AK;BK Chó ý 2: NÕu hai mỈt ph¼ng chøa hai tam gi¸c c©n mµ giao tun chøa c¹nh ®¸y chung cđa hai tam gi¸c c©n th× chän K lµm trung ®iĨm cđa c¹nh ®¸y ®ã. VI. Tìm thiết diện: 1. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng Phương pháp: Tìm 2 đường thẳng cắt nhau hc chÐo nhau cùng vuông góc với đường thẳng đã cho, khi đó mặt phẳng cắt sẽ song song (hoặc chứa) 2 đường thẳng ấy. 2. Tìm thiết diện qua một đường thẳng và vng góc với mặt phẳng Cho mặt phẳng () và đường thẳng d khơng vng góc (). Mặt phẳng () chứa d và vng góc (). Phương pháp 1: Chuyển từ bài tốn tìm thiết diện vng góc với mặt phẳng thành bài tốn tìm thiết diện song song với một đường thẳng, mà đường thẳng đó vng góc sẵn với mặt phẳng đã cho trong giả thiết tìm thiết diện; sau đó áp dụng định lý giao tuyến song song và phương pháp tìm thiết diện suy ra u cầu bài tốn. Phương pháp 2: Từ một điểm trên d, tìm đường thẳng vng góc với (); thì () là mặt phẳng xác định bởi hai đường thẳng cắt nhau d và . VII. H×nh l¨ng trơ, h×nh hép, h×nh chãp cơt. H×nh l¨ng trơ ®øng, h×nh l¨ng trơ ®Ịu, h×nh hép ®øng, h×nh hép ch÷ nhËt, h×nh lËp ph-¬ng, h×nh chãp ®Ịu, h×nh chãp cơt ®Ịu. Ngun Qc Hoµn 0913 661 886 (094 888 111 7) H 3 VIII. Vect¬ trong kh«ng gian: 1. Đònh nghóa và các phép toán Đònh nghóa, tính chất vµ các phép toán về vectơ trong không gian được xây dựng hoàn toàn tương tự như trong mặt phẳng. Lưu ý: + Qui tắc ba điểm: Cho ba điểm A, B, C bất kỳ, ta có: AB BC AC + Qui tắc hình bình hành: Cho hình bình hành ABCD, ta có: AB AD AC + Qui tắc hình hộp: Cho hình hộp ABCD.ABCD, ta có: AB AD AA' AC' + Hêï thức trung điểm đoạn thẳng: Cho I là trung điểm của đoạn thẳng AB, K tuỳ ý. Ta có: IA IB 0 ; KA KB 2KI + Hệ thức trọng tâm tam giác: Cho G là trọng tâm của tam giác ABC, K tuỳ ý. Ta có: GA GB GC 0; KA KB KC 3KG + Hệ thức trọng tâm tứ diện: Cho G là trọng tâm của tứ diện ABCD, K tuỳ ý. Ta có: GA GB GC GD 0; KA KB KC KD 4KG + Điều kiện hai vectơ cùng phương: a và b cùng phương (a 0) !k : b kaR . + Điểm M chia đoạn thẳng AB theo tỉ số k (k 1), H tuỳ ý. Ta có: HA kHB MA kMB; HM 1k . 2. Sự đồng phẳng của ba vectơ Ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng. Điều kiện để ba vectơ đồng phẳng: Cho ba vectơ a,b,c , trong đó a và b không cùng phương. Khi đó: a,b,c đồng phẳng ! m, n R: c ma nb Cho ba vectơ ,, a b c không đồng phẳng, x tuỳ ý. Khi đó: ! m, n, p R: x ma nb pc . 3. Tích vô hướng của hai vectơ Góc giữa hai vectơ trong không gian: 00 AB u, AC v (u,v) BAC (0 BAC 180 ) Tích vô hướng của hai vectơ trong không gian: + Cho u,v 0 . Khi đó: u.v u . v .cos(u,v) + u v u.v 0 + Với u 0 hoặc v 0 . Qui ước: u.v 0 . 4. Chứng minh ba điểm thẳng hàng Để chứng minh ba điểm A, B, C phân biệt thẳng hàng ta có thể làm như sau: ta chứng minh hai vectơ AB, AC cùng phương, nghĩa là AB kAC , hoặc mọi điểm M ta chứng minh MC mMA nMB với m n 1 . 5. Chứng minh bốn điểm thuộc một mặt phẳng Để chứng minh bốn điểm thuộc một mặt phẳng ta có thể làm như sau: Chứng minh: AB,AC,AD đồng phẳng tức là AB mAC nAD hoặc pAB mAC nAD 0 với 2 2 2 p m n 0 . Hoặc chọn một điểm M nào đó rồi chứng minh MD xMA yMB zMC với x y z 1 . Ngun Qc Hoµn 0913 661 886 (094 888 111 7) H 4 IX. Khoảng cách: 1. Tính khoảng cách từ một điểm đến một mặt phẳng: d (M , ()) Phương pháp: Bước 1: Xác định đoạn vng góc MH với , bằng cách tìm một mặt phẳng qua M và theo giao tuyến d, hạ M, MH d d MH Bước 2: MH được tính bằng các định lý của hình học sơ cấp Lưu ý: Khoảng cách d (M ()) còn được gọi là độ dài đoạn vng góc trong định lý ba đường vng góc Sau này ta cũng có thể tìm MH bằng cơng thức tính diện tích hay thể tích của vật thể Hoặc ta cũng có thể làm theo cách sau: Bước 1: Tìm đường thẳng a Bước 2: Tìm đường thẳng b qua M và song song với đường thẳng a và gọi H là giao điểm của đường thẳng b và mặt phẳng . Khi đó đoạn thẳng MH là đoạn thẳng cần tìm. 2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song: // , // Phương pháp: d ( , ()) , d (() , ()) Bước 1: Lấy một điểm M tùy ý trên hay trên () Bước 2: Hạ MH MH là khoảng cách cần tìm. Lưu ý: Ta cũng có thể tính MH bằng cơng thức tính thể tích. 3. Khoảng cách từ một điểm đến một đường thẳng: d (M , ()) Phương pháp: C¸ch 1. Bước 1: Từ điểm M, hạ đường vng góc MH tới đường thẳng Bước 2: Độ dài MH d M, là khoảng cách cần tìm C¸ch 2. Tìm mặt phẳng qua M và vng góc với đường thẳng tại H. Suy ra: MH d M, C¸ch 3. Sử dụng định lý ba đường vng góc C¸ch 4. Đơi lúc để tính khoảng cách d M, ta còn dùng cơng thức tính diện tích hình phẳng. 4. Khoảng cách hai đường thẳng song song: d (d , ()) , d // 5. Khoảng cách hai đường thẳng chéo nhau: a và b chéo nhau Đường thẳng cắt cả a, b và cùng vuông góc với a, b được gọi là đường vuông góc chung của a, b Nếu cắt a, b tại I, J thì IJ được gọi là đoạn vuông góc chung của a, b Phương pháp: C¸ch 1. Sử dụng định nghĩa: Chọn A a,B b sao cho AB a;AB b Tính độ dài đoạn AB. Suy ra d a,b AB C¸ch 2. Sử dụng mặt phẳng song song Tìm mặt phẳng (P) chứa b và song song với a Chọn M a, vẽ MH (P) tại H Từ H vẽ đường thẳng a // a, cắt b tại B Từ B vẽ đường thẳng song song MH, cắt a tại A AB là đoạn vuông góc chung của a và b Chú ý: d(a,b) = AB = MH = d(a,(P)) C¸ch 3. Sử dụng mặt phẳng vuông góc Tìm mặt phẳng (P) a tại O Tìm hình chiếu b của b trên (P) Kẻ OH b tại H Từ H, kẻ đường thẳng song song với a, cắt b tại B Từ B, kẻ đường thẳng song song với OH, cắt a tại A AB là đoạn vuông góc chung của a và b Chú ý: d(a,b) = AB = OH C¸ch 4. Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. C¸ch 5. Trường hợp ab Bước 1: Tìm mặt phẳng (P) chứa b và vuông góc với a tại A. Bước 2: Vẽ AB b tại B Bước 3: AB là đoạn vuông góc chung của a và b Lưu ý: Hình chiếu trong định lý 3 đường vng góc là đường vng góc chung. Chó ý: Cã nh÷ng bµi to¸n ta chØ cÇn tÝnh kho¶ng c¸ch gi÷a hai ®-êng th¼ng chÐo nhau mµ kh«ng cÇn x¸c ®Þnh ®o¹n vu«ng gãc chung. §«i khi ta cã thĨ sư dơng ph-¬ng ph¸p thĨ tÝch ®Ĩ tÝnh kho¶ng c¸ch.