1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Dynamic absorbers for systems with distributed parameters

22 219 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 5,9 MB

Nội dung

PROCEEDINGS OF THE NATIONAL CENTRE FOR SCIENTIFIC RESEARCH OF VIETNAM V o lu m e HANOI 1990 P r o c e e d in g s o f the N a tio n a l C e n tre fo r Scie ntific Reaeă rch o f V ie tn a m , Vol (1990) ( $ - ) M echanics DYNAM IC ABSO RBERS F O R S Y S T E M S W IT H D I S T R I B U T E D P A R A M E T E R S N guyen V an D a o and N g u y e n V an D in h Institute 0Ĩ Mechanics HANOI S u m m a r y In thi* p a p e r the dynam ic absorber is used to quench th e Belf-excited v ib ratio n of th e strin g , beam a n d p la te H ere, as in the c&it of th e Bystem w ith several degrees of freedom [7-11], th e friction m ech an ism h u th e decisive role in the quenching v ib tio n s For th e stro n g absorber increaaing th e friction force (À) leads to d e creaain g 'th e am plitude of »elf-excited v ib ratio n For th e weak ab»orber (m , c are sm all) th e effect of quenching will be achieved only with Borne m ean values of th e friction force D Y N A M I C A B S O R B E R F O R A V I B R A T I N G S T R I N G Let US c o n sid e r th e v ib ration of the string w ith two fixed ends at = and X = t (Fig ) It is a s s u m e d t h a t the string is acted on by the ex te rn a l force along its w h o le length w it h the ( 1) w h ic h e x c it e s th e v ib r a t io n of the string in the y-direction To q uench this v ib tio n one can U9e th e d y n a m ic a b so rb er h a n g in g in parallels w ith In d ir ec tio n y R Ữ gA ck JTi b Fig Let ụ b e th e m a ss d e n sity of the string; To is the in itial strain , we have the follow in g e q u a tio n s of m o t io n o f t h e s y s t e m p resen ted in Fig : NGUYEN van Dao and NGUYEN Van DINH Ẽ1 - j + clu - y(M)]6(z - b) -T t \ = iR ,, , \ m ũ 4- c|ti — y(è, t)Ị = —£A dy{b,t at S(x - 6), 1.2) d y ( b , t) dt where € is sm all p a m eter characterized the sm allness of the corresp on d in g terms, is the Dirac f u n ction T h e b o u n d a r y co n d itio n s are y ( , t) = y ( £ ,i) = 0, B^_y di dx2 dx2 1=0 = 3) T h e s o lu tio n of e q u a tio n s (1.2) w ith b ou n d ary d itions (1 ) is found in the form oo y{x,t) = ^ w „ { t ) Y „ ( x ) t n.= V' / \ _ • 1.4 ?l 7r yT 1(x) = sin — I , here ỈVn (t) are u n k n o w n fu n ction s of tim e which are to be d eter m in ed B y m u ltip ly in g two s i d e s ' o f (1.2) with s i n — x d z and in tegratin g on X from G t ) £ the follow in g eq u a tio n s for Wn and u w ill be obtained w n + Ô ị w n - c n u = i P i% u ~ u u —uJ7Ytl(b)Wtl = eP-2, (1.5) where Pi = - Ịy V „ ( f c ) u - jY?(k)}W u - p = _ A | U _ y„(6)Vi/„|, m cn = ) - y n (fc), w2 = - m In these eq u a tio n s the fu n ctio n s Wj (y ỹí n) are n egle cted In practice, the most im p o r ta n t case is n = U sin g the n o rm a l c o o r d in a te s £2 * (1.7) u)2 Y n (b) , u;2 r n (6) “ ““2 — vị » “2 —“ -o» U/ u>2 — i / j = ^ + u)2 - n / ( ^ - a J ) + c n i*>2 y n (6 ), 2*1 = a ’ + w2 + N ( ^ _ a )2 + 4CnU,2y ri(i)i / DYNAMIC ABSORBERS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS w e have •— j d i P + ), £1 + fc'i £1 = £2 + £2 = €C (-P H Ẩ2 i -^2-^2)» v\ ( 1.8 ) ịll /i£ •+• m ỉ ị B y m e a n s o f transform i t i o n in to th e new variables < , ,(12 , 11 Í = a i c o s f li, = - a ^ i s in i, fli = i t -f , / (1.9) Ỉ2 = £ fl2 COS $ > 2~ — Qo s in $2) $2 = ^2^ v*2I w e get 2Tl T ^ di = -eM ^ i - — r d l P ) sin i , 2m ^1^101 + —r đ í P2) = C O S * !, ( 10 ) 2m t/2 a = —€/c2 (/^1 — —-d'>P2) sin # , t / 2a V;2 = — £ fc o ( P i + — - d o P ) COS ớ2 In the first ap ;ro x im a tio n one can replace (1 ) b y their averaged e q u ation s as follows: o ^2^2 = o o o 0\1 - (?jA - 77 /13(^11a iA +'2^2a2)]» lfi * *'1*1 = 2/i - + ^ a ? ) ] , 10 v a l ipi = u2a t/-2 = 0, ( 11) 9, = ^(d, - V'n(fi))2 F ro m (1.11) w e o b ta in the sta tio n a r y s o lu tio n s : ) a = , a i 7< d e t e r m in e d by £ ( 12 ) w h i c h is sta b le if (1 ) ) Ữ! = , Ữ # d e t e r m in e d b y ^2 = ~ ^ ^ a2 = - < ?2^ (1 ) w h i c h is sta b le if Ả2 > - (/ỉ 3) a i 7^ 0, Ữ2 ^ 0; b u t th is so lu tio n is u n sta b le A) — - A\ (1 ) NGUYEN VAN DAO and NGUYEN Van DINH T h u s , in the first ap p r o x im a tio n the string vib rates C IS f \ í I \ • y ( x , i ) = a, cos( t -I- i/'t) sin — I , /i Uj = a xd x cos( u t t + t ), I1-16) i = 1, From th e form u lae ( ), ( 1 ) it follows t h a t the vib tion of the str in g d ecr eases w hen the friction (A) is increased So in the case considered increasing the friction is an effective m e t h o d of q u e n c h in g th e v ib tio n of the string ( F ig 2) A Fig.2 We co n sid er now the weak d y n a m ic absorber It is a ssu m e d th a t th e stiffness c and the mass m of th e a b so rb er are sm all T h e n , instead of (1.2) w e have th e follow ing e q u a tio n s o f m o tio n "r s =£ { R (§7 )+ | ~J'MW* -f +A u — ° cu c ) - > r mu 4- c |u — y ( , i ) j = —A u - dyj b t dt dy(b,t)' dt 6[x-b) , 1.17) T h e e q u a tio n s for Wn and u are w n + f i w n = Ớ = 1^2, here a ; = hy [ Y ỉ ( x ) d x - X ( - r (fc))2, */o hi = h3 [ Y?( x)YỈ( x) dx, (2 2 ) J2' = /í3 [ Y2(x)dx Jo T h e triviđ.1 sola': ŨIÌ [ a = of (2.21) is sta b le if ft] < and /i2 < or ii A is sufficient big T h e solu tio n a\ = 0, a Ỷ d eter m in ed by /4 _ (2) 2 _ Lã /12 * 'ô 0^2^2 -3 is sta b le ii (2 ) „, n ^1-^3 A2 > - 2hl T h e so lu tio n a — a ^ d eterm in ed by ^ — -JIA 1),a-'jaj rlj ,.3 ,2 „2 — • ' is s t able if 1) ^2‘^3 2/iị T h e n o n trivial so lu tio n a Ầ 7* 0, Ữ2 7* is alw a y s u n sta b le ^ ^ T h u s , w e o b t a in e d here the sa m e reốult as in th e p rev io u s paragraph : in creasing th e friction force (A) leads to d e c r e a s in g the a m p litu d e o f v ib r a t io n o f the string 12 N GUYEN VAN DAO and NGUYEN VAN DINH D Y N A M IC A B S O R B E R F O R B E A M In th is p a r a g p h a r e c t a n g u la r c a n tile v er b e a m of le n g t h ty cross s e c t io n , Y o u n g ’s m o d u lu s E , m o m e n t of in er tia / , m a ss d e n s it y p is sid er ed u nd er th e a ctio n o f a force d istrib u ted alon g its le n g t h as s h o w n in F ig A n o t h e r b e a m (ty i , Ẽiị J i , Pi) c o n n e c t e d w i t h th e first th rou gh an e la s tic layer (c ,A o ) is used as a d y n a m ic a b sorb er for q u e n c h in g th e se lf- e x c it e d v ib r a tio n o f th e first b e a m • Y - ' V : ’' ^1 % ■'•'A-'-' -.'7 k f 7Ỉ7^ y Fig W it h the a d o p t io n of th e e l e m e n ta r y b e a m theory, th e e q u a tio n s o f m o tio n o f the b e a m s are: d 2\j - > • ( ! ? - £ ) ■ (3.1) (é-ẳ) w ith b o u n d a r y co n d itio n s: y ( t i x) = z ( t i i ) = 0, d2y _ dz2 here € is a s m a ll p o s it iv e p aram eter U sin g the n o ta t io n s : _ dx2 at = 0, X —t (3.2) at X = 0, X= t 13 DYNAMIC ABSORBERS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS w e have for t h e w ea k absorber (c,Ao are small): I dy ( dy\3 1ã í _ d 2z dA z dz V y f d 2z ^< z \ ~ * \ d t * + l dĩ*) (3.3) dy W h e n € = th e s y s t e m of eq u a tio n s (3.3) has the solution: sin —nx(an cosc ưnt + ịn s i n cưní) , y = n (3.4) = ^ s i n ^ n x ( a n cose Jn t -f p n sina;n i), here an an d bn are c o n s t a n t s , — (t ) ■ (e ? - e2) ( ™ ) + T + A2wn ] a " + («1 - «2 ) ( ^ ) " r~2 M - ">(=) - ( ei - e ") ( ~ p ) (=)*»■ + Ằwt l a „ + l ( eỉ - e ) ( ^ ) /3» = (3.5) + T + A2wn 6„ («?-«*) ( t ■f ) ’ + ■ > ( = ) * » > We u?f n ow (3.4) as the form ulae of tran sfo rm ation in to the new variables a n , bn w it h s u p p le m e n ­ tary re la t io i.s d n cosunt -f n sin (jjnt = (3.6) r S u b s t i t u t i n g e x p r e ssio n s (3.4) into (3.3) and com p arin g the coefficients o f h a rm o n ic s sin -~nx w e o b ta in e q u a t io n s for ân, n T h en c om b in in g th em w ith (3.6) w e get th e eq u a tio n s for ả n , fl in the s t a n d a r d form s For ã ị and bị w e have u>iài = t /?■ a i - — ! h ^ a ỵ ( ị + b \ ) -f ei ( ^ ) ” ^ sin2 -h ị + (3.7) —€ I / 11^1 — —O'Ih^biịâị + èỊ) — J Z\ cos2 A v e r a g in g t h e right hand sides of (3.7) over the tim e we get “ lài = ị I uiỵhi - $d ịe] [j'j e* ( ) ~ - U>ỶJ _ + ^ l)| > (3.8) -idi -f Wj/l! - t\ ( | ) -w ? a x+ ~ u ỉ^j + ? )| I 14 NGUYEN VAN DAO and NGUYEN VAN DINH whre (e? - e7) di = (3.9) d2 = A The coordin ates O 61 corresponding to the low est frequency O play an im portant role in x, J th e vib ration o f the b ea m If the vibrations w ith high frequencies &re neglected, the eq u atio n s ( ) w ill characterixe the vib ration of the beam T h e stationary solutions o f th ese equations are 1) dị =s bị = (3.10) 2) 16 uỉịhsA = ị h ị - fda Ị e ị or = /li - f A7 = a Ị + ^ (?-«) ( ) A ô a3 ? Jâ ( ) a+ i ' ĩ - »)1 H ’ (3.11) TVivial solu tion (3.10) 1ô stable if (ô?- *)ã ( ? ) • * hi< ( (3.12) * ( f ) * A ’ + («? - «a) ( £ ) + and the solu tio n (3.11) is always stable w ith positive values o f A We have m et w ith the form ula of type (3.11) and we have seeji w h at the m inim um o f A achieves w ith an averaged value o f A (see Fig 3) It is worth m entioning th at when tw o lowest frequencies of tw o b eam s are equal: Wi = V u lYn + c( Yn - ( ) The solu tion of the equations (3.19) w ith boundary conditions (3.16) w ill be found in the form Y*(x ) = \ 7"z' j = l ( ) Zn(z) = yX >=1 j7T By m u ltip lyin g equations (3.19) w ith sin - ỵ x d x and integrating on X from to t we o b tain the follow ing expressions for unknown coefficients Z njy Y nj ElịĩlỴ — — 0, + c - p iS iw * = 0, + c-pSu,l -cY n j + Eịli (3.21) j = 1,2 16 NGUYEN VAN DAO and NGUYEN VAN DINH N ontrivial solu tio n of (3 ) corresponds to the values u>„ which satisfy the frequency equations: — c + c - pSuil El = (3 2 ) c - piSiuị — c j = , , , oo T h u s w e have a set of values of frequencies u ị , ,cô ị > d epending on j For quasilm ear eq uation s (3.13) we put oo y(t1 ~ 2Mi ~ 4^ lu,‘ v i ) A l ’ V> - w ) (3 ) here h\ = h < l j Y?(x)dx - À* I ( Y f c " ’ = f c ? / n (x )á x 0 l - z j ’ d *, (3 ) DYNAMIC ABSORBERS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS 17 From (3.29) it follows: 1) The equilibrium Ai = is stable if /lỊ < This condition is satisfied, for exam ple, w ith sufficiently great valu es o f A 2) There ex ists the v ib tio n a l regim e w ith the frequency U and am plitude A I determ ined by ỈI = h\ > If two v ib ration s w ith tw o first frequencies (3.31) u>2 are m aintained then w e have: 11 \ Ả3 = ĩ k (h‘ ~ h°w' rị> = w2, where I I h i = fc? I Y f d x - \ ' j ( Y - z 2)2dx, 0 i t h[2) = hị j Y ' d x , h; = h Ị °3 (3.33) Y?Y*dx From these it follows: ) T he equilibrium A ị = Á = is stable if h\ < 0, h \ < , for instance, if A is sufficiently great In th is case, follow ing the formulae (3.23), (3.27) the vibration of the beam does not occur 2) There ex ists the v ib tio n a l regim e w ith frequency Ui ( Ả = 0) determ ined by = hm> L if o L* L( ) •-J J A ^ ấ l ),U I A ^ J 1 (3 ) 2h; 3) There ex ists the v ib tio n a l regime w ith frequency C (A i = ) determ ined by Ư \ h ^ w ị Á ị =h-2 > if (3.35) 4) T h e v ib tio n a l regim e w ith two frequencies U>1 and u>2 is alw ays unstable It is w orth m en tionin g th a t the effect of absorber w ill disappear if the coefficient o f A in the expressions of /lỊ, h>2 vanishes, for exam ple, if 18 NGUYEN VAN DAO and NGUYEN VAN DINH A B S O R B E R F O R S E L F -E X C I T E D V I B R A T I O N OF T H E P L A T E The problem presented in the previous paragraph m ay be considered for a more com plicated system , nam ely, for th e plate Self-excited vibration of a plate (D , /Ắ, u) under the action o f the sm all force •* * - * (ir)1 s can be quench w ith the aid of a dam per which consists of another plate ( D , Pi , z) connected w ith th e m ain plate through an viscoelastic layer (c , Ao) The m otion equations for th is system arc: d 2u / du — c(u — z) — X dz\ \ dt ~ d t ) ' D iV 2+ d 2Z = (4.1) a -e(z dt where _ \7 11 w e h a v e (4 13) À in the previous paragraphs the formulae (4.11) and (4.13) show the effectiven ess o f a d ynam ic absorber w ith mean values of À In general, the effectiveness of the absorber for quenching the vib ration w ith frequency 0j nm iafound in the case when tw o natural frequencies unm and wnm o f the p la t e s co in c id e N ow , let us consider the case of a strong absorber when c, Di and fẤi are not sm a ll In this case the m o tio n o f the plates is governed by the equations: —4 ầ d 2z D ịV z + V z) = É d2u DV u + + c(u - e/i, (4.14) + c(* - u) = e/a- here (4.15) h “ ~ x ° (ãỉ ■

Ngày đăng: 08/04/2015, 15:28

TỪ KHÓA LIÊN QUAN