1. Trang chủ
  2. » Giáo án - Bài giảng

Hệ thống công thức giải nhanh vật lý 12

73 725 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 73
Dung lượng 3,15 MB

Nội dung

Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 1 CHƯƠNG I: DAO ĐỘNG CƠ BÀI 1: ĐẠI CƯƠNG DAO ĐỘNG ĐIỀU HÒA I: PHƯƠNG PHÁP 1. KHÁI NIỆM Dao động là chuyển động có giới hạn trong không gian lặp đi lặp lại quanh vị trí cân bằng. Dao động điều hòa là dao động trong đó li độ của vật là một hàm cosin( hay sin) của thời gian. 2. PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HÒA. x= Acos(t+) Trong đó: x: Li độ, li độ là khoảng cách từ vật đến vị trí cân bằng A: Biên độ ( li độ cực đại)  : vận tốc góc( rad/s)  t +  : Pha dao động ( rad/s )  : Pha ban đầu ( rad). , A là những hằng số dương;  phụ thuộc vào cách chọn gốc thời gian, gốc tọa độ. 3. PHƯƠNG TRÌNH GIA TỐC, VẬN TỐC. v = - A sin( t + ) = Acos( t +  +  2 ) = x’  v max =  A. a = -  2 Acos( t + ) = -  2 x =  2 Acos( t +  + )  a max =  2 A   = a max v max ; A = v 2 max a max . 4. CHU KỲ, TẦN SỐ. A. Chu kỳ: T = 2  = t N ( s) Trong đó:    t: là thời gian N: là số dao động thực hiện được trong khoảng thời gian t “Thời gian để vật thực hiện được một dao động hoặc thời gian ngắn nhất để trạng thái dao động lặp lại như cũ.” B. Tần số: f =  2 = N t ( Hz) Trong đó:    t: là thời gian N: là số dao động thực hiện được trong khoảng thời gian t “Tần số là số dao động vật thực hiện được trong một giây( số chu lỳ vật thực hiện trong một giây).” 5. CÔNG THỨC ĐỘC LẬP THỜI GIAN: + x = Acos( t + )  cos( t+ ) = x A  cos 2 ( t + ) = ( x A ) 2 (1) + v = -A.  sin ( t + )  sin ( t + ) = - v A.   sin 2 ( t + ) = ( v A.  ) 2 = ( v V max ) 2 (2) + a = -  2 .Acos( t + )  cos ( t + ) = - a  2 A  cos 2 ( t + ) = ( a  2 A ) 2 = ( a a max ) 2 (3) Từ (1) và (2)  cos 2 ( t + ) + sin 2 ( t + ) = ( x A ) 2 + ( v A.  ) 2 = 1  A 2 = x 2 + ( v  ) 2 ( Công thức số 1) Ta có: a = -  2 .x  x = - a  2  x 2 = a 2  4  A 2 = a 2  4 + ( v  ) 2 ( Công thức số 2) Từ (2) và (3) ta có: sin 2 ( t + ) + cos 2 ( t + ) = ( v V max ) 2 + ( a a max ) 2 = 1. ( Công thức số 3) 6. MÔ HÌNH DAO ĐỘNG 7. CÔNG THỨC LƯỢNG GIÁC QUAN TRỌNG V > 0 (+) A - A a < 0 a > 0 V T CB Xét x Xét V Xét a x < 0 V max a = 0 Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 2 1.    - sin  = sin(  + ) - cos  = cos(  + ) 2.    sin = cos( -  2 ) cos  = sin ( +  2 ) 3.    cos (a+ b) = cosa.cosb - sina .sinb cos(a - b) = cosa.cosb + sina .sinb 4. cos a + cosb = 2 cos a+ b 2 cos a - b 2 5.    sin (  + k2) = sin  cos(  + k2) = cos  6.    Cos 2 x = 1 + cos2x 2 Sin 2 x = 1 - cos2x 2 7. tan(a + b) = tana + tanb 1 - tana.tanb 8. MỘT SỐ ĐỒ THỊ CƠ BẢN. BÀI 2: BÀI TOÁN VIẾT PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HÒA I. PHƯƠNG PHÁP Bước 1: Phương trình dao động có dạng x = Acos(t + ) Bước 2: Giải A, , . - Tìm A: A = x 2 + v 2  2 = a 2  4 + v 2  2 = v max  = a max  2 = L 2 = S 4 = v 2 max a max Trong đó: o L là chiều dài quỹ đạo của dao động o S là quãng đường vật đi được trong một chu kỳ - Tìm : x t A -A Đồ thị của li độ theo thời gian đồ thị x - t Đồ thị của vận tốc theo thời gian đồ thị v - t v t A  -A  Đồ thị của gia tốc thời gian đồ thị a - t a x A -A A .  2 - A .  2 x v A.  - A.  A - A v a A.  2 - A.  2 - A.  - A.  Đ ồ thị c ủa gia tốc theo li độ đồ thị a -x Đ ồ thị c ủa vận tốc theo li độ đồ thị x -v Đ ồ thị c ủa g ia t ốc theo vận tốc đồ thị v -a t  2 A  2 A a Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 3  = 2 T = 2f = a max A = v max A = a max v max = v 2 A 2 - x 2 - Tìm : Căn cứ vào t = 0 ta có hệ sau:      x = Acos = x o v = - Asin    v > 0 nếu chuyển động theo chiều dương v < 0 nếu chuyển động theo chiều âm.     cos  = x o A sin     > 0 nếu v <0 < 0 nếu v >0   Bước 3: Thay số vào phương trình BÀI 3: ỨNG DỤNG VLG TRONG GIẢI TOÁN DAO ĐỘNG ĐIỀU HÒA 1. BÀI TOÁN TÌM THỜI GIAN NGẮN NHẤT VẬT ĐI TỪ A  B. Bước 1: Xác định góc . Bước 2: t =   =  2 .T =  O 360 O .T Trong đó: - : Là tần số góc - T : Chu kỳ -  : là góc tính theo rad;  0 là góc tính theo độ A’ A B B’  2. BÀI TOÁN XÁC ĐỊNH THỜI ĐIỂM VẬT QUA VỊ TRÍ M CHO TRƯỚC. Ví dụ: Một vật dao động điều hòa với phương trình x = 4cos( 6t +  3 ) cm. A. Xác định thời điểm vật qua vị trí x = 2 cm theo chiều dương lần thứ 2 kể từ thời điểm ban đầu. Hướng dẫn: - Vật qua vị trí x = 2cm ( +):  6t +  3 = -  3 + k.2  6t = - 2 3 + k2  t = - 1 9 + k 3 ≥ 0 Vậy k ( 1,2,3…) Vì t ≥ 0  t = - 1 9 + k 3 ≥ 0 Vậy k =( 1,2,3…) - 4 4 2 (+)  = - /3 -Vật đi qua lần thứ 2, ứng với k = 2.  t = - 1 9 + 2 3 = 5 9 s B. Thời điểm vật qua vị trí x = 2 3 cm theo chiều âm lần 3 kể từ t = 2s. Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 4 Hướng dẫn: - Vật qua vị trí x = 2 3 theo chiều âm:  6t +  3 =  6 + k2  6t = -  6 + k2  t = - 1 36 + k 3 Vì t ≥ 2  t = - 1 36 + k 3 ≥ 2 vậy k = ( 7,8,9…) - 4 4 2 3  = /6 - Vật đi qua lần thứ 3, ứng với k = 9  t = - 1 36 + 9 3 = 2,97s. 3. BÀI TOÁN XÁC ĐỊNH QUÃNG ĐƯỜNG. Loại 1: Bài toán xác định quãng đường vật đi được trong khoảng thời gian t. Bước 1: Tìm t, t = t 2 - t 1 . Bước 2: t = a.T + t 3 Bước 3: Tìm quãng đường. S = n.4.A + S 3 . Bước 4: Tìm S 3 : Để tìm được S 3 ta tính như sau: - Tại t = t 1 : x 1 = ?   v >0 v < 0 - Tại t = t 2 ; x 2 = ?   v >0 v < 0 . Căn cứ vào vị trí và chiều chuyển động của vật tại t 1 và t 2 để t ìm ra S 3 Bước 5: thay S 3 vào S để tìm ra được quãng đường. A B n.T  S 1 = n.4.A t 3 S 3 Loại 2: Bài toán xác định S max - S min vật đi được trong khoảng thời gian t ( t < T 2 ) A - A S max A. Tìm S max : S max = 2.A.sin  2 Với [ ]  = .t A - A S min B. Tìm Smin S min = 2( A - A.cos  2 ) Với [ ]  = .t Loại 3: Tìm S max - S min vật đi được trong khoảng thời gian t( T > t > T 2 ) Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 5 A - A S max A. Tìm S max S max = 2       A + A.cos 2 -  2 Với [ ]  = .t A - A S min B. Tìm Smin S min = 4A - 2.A sin 2 -  2 Với [ ]  = .t 4. BÀI TOÁN TÍNH TỐC ĐỘ TRUNG BÌNH. A. Tổng quát: v = S t Trong đó    - S: là quãng đường đi được trong khoảng thời gian t - t: là thời gian vật đi được quãng đường S - Tốc độ trung bình trong một chu kỳ v = 4A T = 2v max  B. Bài toán tính tốc độ trung bình cực đại của vật trong khoảng thời gian t: v max = S max t C. Bài toán tính tốc độ trung bình nhỏ nhất vật trong khoảng thời gian t. v min = S min t 5. BÀI TOÁN TÍNH VẬN TỐC TRUNG BÌNH. v tb = x t Trong đó:    x: là độ biến thiên độ dời của vật t: thời gian để vật thực hiện được độ dời x 6. BÀI TOÁN XÁC ĐỊNH SỐ LẦN VẬT QUA VỊ TRÍ X CHO TRƯỚC TRONG KHOẢNG THỜI GIAN “t” Ví dụ: Một vật dao động điều hòa với phương trình x = 6cos( 4t +  3 ) cm. A. Trong một giây đầu tiên vật qua vị trí cân bằng bao nhiêu lần: Hướng dẫn: Cách 1: Mỗi dao động vật qua vị trí cân bằng 2 lần ( 1 lần theo chiều âm - 1 lần theo chiều dương) 1 s đầu tiên vật thực hiện được số dao động là: f =  2 = 2Hz  Số lần vật qua vị trí cân bằng trong s đầu tiên là: n = 2.f = 4 lần. Cách 2: Vật qua vị trí cân bằng  4t +  3 =  2 + k  4t =  6 + k  t = 1 24 + k 4 - A A t = 0 Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 6 Trong một giây đầu tiên ( 0 ≤ t ≤ 1) 0 ≤ 1 24 + k 4 ≤ 1  - 0,167 ≤ k ≤ 3,83 Vậy k = (0;1;2;3) 7. BÀI TOÁN XÁC ĐỊNH PHA BAN ĐẦU CỦA DAO ĐỘNG - A A v < 0 v > 0  = 0 - A A VTB( +)   = 0 rad A/2( -) - A A  = /3 A/2 ( -)   = /3 rad - A A A/2 (+)  = - /3 A/2 ( +)   = - /3 rad - A A - A/2 (+)  = - 2  /3 - A/2 (+)   = - 2/3 rad - A A A 3 /2 (+)  = - /6 A. 3 /2 ( +)   = -  6 rad BÀI 4: CON LẮC LÒ XO I. PHƯƠNG PHÁP 1. CẤU TẠO Gồm một lò xo có độ cứng K, khối lượng lò xo không đáng kể. Vật nặng khối lượng m Giá đỡ 2. THÍ NGHIỆM - Thí nghiệm được thực hiện trong điều kiện chuẩn, không ma sát với môi trường. - Kéo vật ra khỏi vị trí cân bằng một khoảng A và thả không vận tốc đầu, ta có: Vật thực hiện dao động điều hòa với phương trình: x = Acos( t + ) Trong đó: - x: là li độ (cm hoặc m) - A: là biên độ ( cm hoặc m). - t + : pha dao động ( rad) -  là pha ban đầu (rad). - : Tần số góc ( rad/s) 3. CHU KỲ - TẦN SỐ A. Tần số góc - ( rad/s)   = k m ( rad/s). Trong đó:    K: Độ cứng của lò xo( N/m) m: Khối lượng của vật ( kg) B. Chu kỳ - T (s): Thời gian để con lắc thực hiện một dao động  T = 2  = 2 m k ( s); C. Tần số - f( Hz): Số dao động con lắc thực hiện được trong 1s  f =  2 = 1 2 k m ( Hz). K m Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 7 4. BÀI TOÁN K Gắn m 1 T 1 Gắn m 2 T 2  Gắn m =(m 1 + m 2 )   Gắn m =(m 1 + m 2 )  f = f 1 .f 2 f 1 2 + f 2 2 Bài toán 1 T 2 = T 1 2 + T 2 2 Bài toán 2 Với con lắc lò xo treo thẳng đứng ta có công thức sau: ( P = F dh  mg = kl  m k = l g =  2 )  T = 2 l g s; f = 1 2 g l Hz BÀI 5: CẮT - GHÉP LÒ XO I. PHƯƠNG PHÁP 1. CẮT GHÉP LÒ XO Cho lò xo k o có độ dài l o , cắt lò xo làm n đoạn, tìm độ cứng của mỗi đoạn. Ta có công thức tổng quát sau: K o l o = K 1 l 1 = K 2 l 2 = ….= K n l n Trường hợp cắt làm hai đoạn: K o l o = K 1 l 1 = K 2 l 2  K 1 K 2 = l 2 l 1 Nhận xét: Lò xo có độ dài tăng bao nhiêu lần thì độ cứng giảm đi bấy nhiêu lần và ngược lại. l o , K o l 1 , K 1 L 2 , K 2 L 3 , K 3 2. GHÉP LÒ XO a. Trường hợp ghép nối tiếp: K 1 K 2 m K 1 K 2 Bài toán liên quan thường gặp Ta có: 1 K = 1 K 1 + 1 K 2  K = K 1 . K 2 K 1 + K 2  T = 2 m( K 1 + K 2 ) K 1 .K 2 ( s)  f = 1 2 K 1 .K 2 m(K 1 + K 2 ) ( Hz) m K 1 T 1 K 2 T 2  K 1 nt K 2   K 1 nt K 2  f = f 1 .f 2 f 1 2 + f 2 2 Bài toán 1 T 2 = T 1 2 + T 2 2 Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 8 b. Trường hợp ghép song song K 1 K 2 K 1 K 2 K 1 K 2 Bài toán liên quan thường gặp Khi ghép song song ta có: K = K 1 + K 2  T = 2 m K 1 + K 2 ( s )  f = 1 2 K 1 + K 2 m (Hz) m K 1 T 1 K 2 T 2  K 1 // K 2   K 1 nt K 2  f 2 = f 1 2 + f 2 2 Bài toán 2 T = T 1 .T 2 T 1 2 + T 2 2 BÀI 6: CHIỀU DÀI LÒ XO - LỰC ĐÀN HỒI - LỰC PHỤC HỒI I. PHƯƠNG PHÁP 1. CON LẮC LÒ XO TREO THẲNG ĐỨNG TH1:  l >A + F dh = 0 Vị trí lò xo không biến dạng F ph = 0 Vị trí cân bằng l o  l l - A A - A A TH2:  l ≤ A l o A. Chiều dài lò xo: - Gọi l o là chiều dài tự nhiên của lò xo - l là chiều dài khi con lắc ở vị trí cân bằng: l = l o +l - A là biên độ của con lắc khi dao động. Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 9 - Gốc tọa độ tại vị trí cân bằng, chiều dương hướng xuống dưới.       L max =l o +l+A L min =l 0 +l-A B. Lực đàn hồi: F dh = - Kx ( N) ( Nếu xét về độ lớn của lực đàn hồi). F dh = K.( l + x) - F dhmax = K(l + A) - F dhmin =    K ( l - A) Nếu l > A 0 Nếu l ≤ A (F dhmin tại vị trí lò xo không biến dạng) C. Lực phục hồi ( lực kéo về): F ph = ma = m (-  2 .x) = - K.x Nhận xét: Trường hợp lò xo treo thẳng đứng lực đàn hồi và lực phục hồi khác nhau. Chú ý: Trong trường hợp A > l thì lò xo sẽ bị nén. - F nén = - K( |x| - l) với |x| ≥ l. - F nenmax = K.( A - l) Tìm thời gian lò xo bị nén, giãn trong một chu kỳ. - Gọi  nén là góc nén trong một chu kỳ. -  nén = 2. Trong đó: cos. = l A - t nén =  nén  t giãn =  dãn  = 2 -  nén  = T - t dãn 2. XÉT CON LẮC LÒ XO NẰM NGANG. Đối với con lắc lò xo nằm ngang ta giải bình thường như con lắc lò xo treo thẳng đứng nhưng: - l = 0.       l = l o l max = l + A l min = l - A     F dhmax = K.A F dhmin = 0 - Độ lớn lực phục hồi băng với độ lớn lực đàn hồi. F ph = F dh = K.x. BÀI 7: NĂNG LƯỢNG CON LẮC LÒ XO I. PHƯƠNG PHÁP Năng lượng con lắc lò xo: W = W d + W t Trong đó: W: là cơ năng của con lắc lò xo W d : Động năng của con lắc ( J ) W d = 1 2 m.v 2 W t : Thế năng của con lắc ( J ) W t = 1 2 K.x 2 K m Mô hình CLLX *** W d = 1 2 mv 2 = 1 2 m(-Asin(t+)) 2 = 1 2 m 2 A 2 sin 2 (t + ).  w dmax = 1 2 m 2 A 2 = 1 2 m.v o 2 *** W t = 1 2 Kx 2 = 1 2 K( Acos (t + ) ) 2 = 1 2 KA 2 cos 2 (t + ).  W t max = 1 2 kA 2  W = W d + W t = 1 2 m 2 A 2 sin 2 (t + ) + 1 2 KA 2 cos 2 (t + ) = 1 2 m 2 A 2 ( sin 2 (t + ) + cos 2 (t + ) ) = 1 2 m 2 A 2 = const.  Cơ năng luôn bảo toàn. Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166.01248 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 10 *** Tổng kết: W = W d + W t = 1 2 m.v 2 + 1 2 K.x 2 = W dmax = 1 2 m 2 A 2 = 1 2 m.v o 2 = W tmax = 1 2 kA 2 W W 0 = 1 / 2 KA 2 W 0 / 2 t(s) 0 W ñ W t Đồ thị năng lượng của CLLX Ta lại có: W d = 1 2 m 2 A 2 sin 2 (t + ) = 1 2 m 2 A 2 ( 1-cos(2t+2) 2 ) = 1 4 m 2 A 2 + 1 4 m 2 A 2 cos(2t+2) Đặt T d là chu kỳ của động năng  T’ = 2 ’ = 2 2 = T 2 .  Chu kỳ động năng = chu kỳ thế năng = T 2 Đặt f d là tần số của động năng:  f d = 1 T d = 2 T = 2f.  Tần số động năng = tần số của thế năng = 2f Thời gian liên tiếp để động năng và thế năng bằng nhau: t = T 4 . Một số chú ý trong giải nhanh bài toán năng lượng: Công thức 1: Vị trí có W d = n.W t  x =  A n + 1 Công thức 2: Tỉ số gia tốc cực đại và gia tốc tại vị trí có W d = n.W t  a max a =  n + 1 Công thức 3: Vận tốc tại vị trí có W t = n.W d  v =  Vo n + 1 BÀI 8: CON LẮC ĐƠN I. PHƯƠNG PHÁP 1. CẤU TẠO Gồm sợi dây nhẹ không dãn, đầu trên được treo cố định đầu dưới được gắn với vật nặng có khối lượng m 2. THÍ NGHIỆM Kéo con lắc lệch khỏi vị trí cân bằng góc  o rồi buông tay không vận tốc đầu trong môi trường không có ma sát ( mọi lực cản không đáng kể) thì con lắc đơn dao động điều hòa với biên độ góc  o (  0 ≤ 10 o ). 3. PHƯƠNG TRÌNH DAO ĐỘNG:  o S o l l [...]... Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012   C1 2 C1 nt C2 C1 // C2 L   =  = 1 2 12 2 + 2 2 12 + 2 C1 f1 C2 1 C2 L f2  C1 nt C2   C1 // C2  Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! f2 = f12 + f22 f = f1.f2 f12 + f22 HP 33 HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN... chú ý trong giải nhanh bài toán năng lượng: Nếu con lắc đơn dao động điều hòa o ≤ 10o thì ta có hệ thống công thức làm tròn sau:(  tính theo rad) Với  rất nhỏ ta có: sin  =   cos  = 1 - 2sin2 2  = cos  = 1 2 2 Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 12 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU... của vật 1 - m2 : là khối lượng của vật 2 - m = (m1 + m2 ) là khối lượng của hai vật khi dính vào nhau: - v1 là vận tốc của vật 1 trước va chạm - v2 là vận tốc vật 2 trước va chạm - V là vận tốc của hai vật khi dính sau va chạm Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 20 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12. .. Khởi Đầu Ước Mơ! Wñ Wt t(s) HP 30 HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com Tổng Kết W = Wd + Wt 1 1 1 1 1 1 1 q2 1 2 = Cu21 + Li12 = Cu22 + Li22 = qu + Li2 = + Li 2 2 2 2 2 2 2C 2 2 1Q 1 = Wdmax = o = C.Uo2 2 C 2 1 = Wtmax = LIo2 2  Ta có một số hệ thức sau: LIo2 - Li2 = Cu2  L... Khởi Đầu Ước Mơ! HP 29 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Bài toán 1 C1 T2  C1 nt C2   C1 // C2  7 Bảng qui đổi đơn vị Stt 1 2 3 4 5 6 C1 f1 C2 L T1 C2 L Bài toán 2 f2 T1.T2 T12 + T22  C1 nt C2  T2 = T12 + T22 T=  C1 // C2  Qui đổi nhỏ ( ước) Ký hiệu Qui đổi m (... năng lượng của dao động, các bạn học sinh phải linh hoạt khi giải các bài toán kiểu vậy.” 3 TỔNG HỢP NHIỀU DAO ĐỘNG Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 17 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Đề bài: Một vật thực hiện đồng thời n dao động thành phần với: x1 = A1cos(t... là họa âm bậc m với m = (1;3;5;7 …)  l = m 5 CÁC CÔNG THỨC LOGARIT CƠ BẢN: 1 loga b = x  b = ax 3 lgb = x  b = 10x a 2 lg( a.b) = lg a + lgb 4 log = lga - lgb b  2 Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ!  4 HP 28 HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com CHƯƠNG III: SÓNG... (R+h)2 2.3 Bái toán tính thời gian nhanh hay chậm của đồng hồ con lắc: Bài toán 2: T = 2 Bài toán 3: h h R R R-h Đồng hồ quả lắc được đưa lên độ cao h Đồng hồ quả lắc được đưa xuống độ sâu h Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 15 HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com... sóng cơ học truyền trong môi trường rắn lỏng khí Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 27 Ex: Nguyễn Hồng Khánh _ HKP Mobile: 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 - Một vật dao động phát ra âm gọi là nguồn âm - Sóng âm có thể truyền trong môi trường đàn hồi ( rắn lỏng khí…) - Sóng âm không truyền được trong... 09166. 0124 8 Email: Khanhcaphe@gmail.com HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 2 Sóng trung 100  1000 m 3 Sóng ngắn 10  100 m 4 Sóng cực ngắn 0,01  10 m - Bị tầng điện ly hấp thụ ban ngày, phản xạ ban đêm lên ban đêm nghe radio rõ hơn ban ngày - Chủ yếu thông tin trong phạm vi hẹp - Bị tầng điện ly và mặt đất phản xạ - Máy phát sóng ngắn công suất . HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166. 0124 8 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Email: Khanhcaphe@gmail.com Giáo Dục Hồng Phúc - Nơi Khởi Đầu Ước Mơ! HP 12 . tốc của vật khi vật đi được quãng đường S Ta có: W = W d + W t + A ms Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166. 0124 8 TÀI. A a Ex: Nguyễn Hồng Khánh _ HKP HỆ THỐNG CÔNG THỨC - LÝ THUYẾT GIẢI NHANH VẬT LÝ 12 Mobile: 09166. 0124 8 TÀI LIỆU CHUẨN LUYỆN THI ĐẠI HỌC 2 012 Email: Khanhcaphe@gmail.com Giáo Dục

Ngày đăng: 14/02/2015, 15:00

TỪ KHÓA LIÊN QUAN

w