1. Trang chủ
  2. » Giáo án - Bài giảng

Bồi dưỡng học sinh giỏi toán 7

44 297 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 1,08 MB

Nội dung

Giáo án : Bồi dỡng học sinh giỏi lớp7 Ngày soạn : 16/1/2012 Buổi 1 Đề khảo sát Cõu 1 : a, cho A = 4 + 2 2 + 2 3 + 2 4 + + 2 20 Hỏi A có chia hết cho 128 không? b, Tính giá trị biểu thức 104.2 65.213.2 10 1212 + + 49 1010 2.3 5.311.3 + Bài 2 : a, Cho A = 3 + 3 2 + 3 3 + + 3 2009 Tìm số tự nhiên n biết rằng 2A + 3 = 3 n b, Tìm số tự nhiên có ba chữ số chia hết cho 5 và 9 biết rằng chữ số hàng chục bằng trung bình cộng của hai chữ số kia Bài 3 : Cho p và p + 4 là các số nguyên tố( p > 3) . Chứng minh rằng p + 8 là hợp số Bài 4 : Tìm hai số tự nhiên biết tổng của chúng bằng 84 , ƯCLN của chúng bằng 6. Bài 5: Gọi A và B là hai điểm trên tia Ox sao cho OA = 4 cm ; OB = 6 cm . Trên tia BA lấy điểm C sao cho BC = 3 cm . So sánh AB với AC Hớng dẫn chấm Bài Hớng dẫn chấm Điểm 1 a, 2A A = 2 21 2 7 A 128 b, = 104.2 78.2 10 12 + 16.3 16.3 9 10 = 3 + 3 = 6 0.5 0.5 0.5 0.5 2 a, Tìm đợc n = 2010 b, Gọi số phải tìm là abc theo bài ra ta có a + b + c 9 và 1 0.5 1 Giáo án : Bồi dỡng học sinh giỏi lớp7 2b = a + c nên 3b 9 b 3 vậy b { } 9;6;3;0 abc 5 c { } 5;0 Xét số abo ta đợc số 630 Xét số 5ab ta đợc số 135 ; 765 0.5 3 P có dạng 3k + 1; 3k + 2 k N Dạng p = 3k + 2 thì p + 4 là hợp số trái với đề bài p = 3k + 1 p + 8 = 3k + 9 3 p + 8 là hợp số 0.5 0.5 0.5 0.5 4 Gọi 2 số phải tìm là a và b ( a b) ta có (a,b) = 1 nên a = 6a / b= 6b / trong đó (a / ,b / ) = 1 ( a,b,a / ,b / N) a / + b / = 14 a / 1 3 5 b / 13 11 9 a 6 18 30 b 78 66 54 0.5 0.5 1 5 x O B C A Hai điểm A và B trên tia Ox mà OA< OB (4<6) nên điểm A năm giữa O và B suy ra AB = OB OA AB = 6 4 = 2 (cm) Hai điểm Avà C trên tia BA mà BA < BC ( 2<3 ) nên điểm A năm giữa hai điểm B và C Suy ra AC = BC BA = 3 2 = 1 (cm) Vậy AB > AC ( 2 >1) 0.5 0.5 0.5 0.5 2 Gi¸o ¸n : Båi dìng häc sinh giái líp7 Ngµy so¹n : 23/1/ 2012 Bi 2: ¤n tËp sè h÷u tØ sè thùc PhÇn 1: Lý thut 1. Céng , trõ , nh©n, chia sè h÷u tØ Víi x= a m , y= b m ( a,b,m ∈ Z m 0 ≠ ) a b a b x y m m m a b a b x y m m m + +=+= − −= −= , ( 0) . . . . . : : . . a c x y y b d a c a c x y b d b d a c a d a d x y b d b c b c = = ≠ = = = = = 2,Gi¸ tri tut ®èi cđa mét sè h÷u tØ +/ Víi x Q∈ Ta cã  x nếu x ≥ 0 x =   -x nếu x < 0 Nhận xét : Với mọi x ∈ Q, ta có: x≥ 0, x = -xvà x≥ x +/ Víi x,y Q∈ Ta cã x y x y+ ≤ + ( DÊu b»ng x¶y ra khi cïng dÊu nghÜa lµ x.y 0≥ ) x y− ≥ x y− ( // // )… PhÇn II: Bµi tËp vËn dơng Bµi 1. Thùc hiƯn phÐp tÝnh: 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + 1 1 1 1 1 3 5 7 49 ( ) 4.9 9.14 14.19 44.49 89 − − − − − + + + + 3 Giáo án : Bồi dỡng học sinh giỏi lớp7 = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 49) ( ). 5 4 9 9 14 14 19 44 49 12 + + + + + + + + + = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 + = = Bi 2: Thc hin phộp tớnh: ( ) ( ) 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 2 .3 4 .9 5 .7 25 .49 A 125.7 5 .14 2 .3 8 .3 = + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 12 5 6 2 10 3 5 2 6 3 9 3 2 4 5 12 5 12 4 10 3 4 12 6 12 5 9 3 9 3 3 12 4 10 3 12 5 9 3 3 10 3 12 4 12 5 9 3 2 .3 4 .9 5 .7 25 .49 125.7 5 .14 2 .3 8 .3 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A = + + = + + = + + = = = : Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi Giải a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 0 => x - 2. + Nếu x - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn 4 Giáo án : Bồi dỡng học sinh giỏi lớp7 b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1 + Nếu 2006 x 2007 thì: A = x 2006 + 2007 x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013 Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007 Cách 2 : Dựa vào hai số đối nhau có giá trị tuyệt đối bằng nhau - GV: Gọi học sinh trình bày Bi 4: Tỡm x bit: a. ( ) 1 4 2 3,2 3 5 5 x + = + b. ( ) ( ) 1 11 7 7 0 x x x x + + = - GV: Hớng dẫn giải a, ( ) 1 2 3 1 2 3 1 7 2 3 3 1 5 2 3 3 1 4 2 1 4 16 2 3,2 3 5 5 3 5 5 5 1 4 14 3 5 5 1 2 3 x x x x x x x x = = = + = = + = + = + + = + + = = b) ( ) ( ) ( ) ( ) 1 11 1 10 7 7 0 7 1 7 0 x x x x x x x + + + = = 5 Giáo án : Bồi dỡng học sinh giỏi lớp7 ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x + ữ + = = = = = = = Bài tập về nhà : Bài 1,Cho 1,11 0,19 1,3.2 1 1 ( ) : 2 2,06 0,54 2 3 7 1 23 (5 2 0,5) : 2 8 4 26 A B + = + + = a, Rút gọn A và B b, Tìm x Z để A < x < B. Bài 2: Tìm giá trị nhỏ nhất của biểu thức M= 2002 2001x x + 6 Giáo án : Bồi dỡng học sinh giỏi lớp7 Ngày soạn : 2 /2/2012 Buổi 3: Giá trị tuyệt đối của một số hữu tỉ. CI.Lý thuyết 1/ Định nghĩa +/ Với x Q Ta có x neỏu x 0 x = -x neỏu x < 0 2, Tính chất : Vụựi moùi x Q, ta coự: x 0, x = -xvaứ x x +/ Với x,y Q Ta có x y x y+ + ( Dấu bằng xảy ra khi cùng dấu nghĩa là x.y 0 ) x y x y ( // // ) II.Bài tập Bài 1: Tính giá trị của biểu thức a, A= 3x 2 - 2x+1 với x= 1 2 Ta có x= 1 2 suy ra x= 1 2 hoặc x= 1 2 HS tính giá trị trong 2 trờng hợp +/ Với x= 1 2 thì A= 3 4 +/ Với x= 1 2 thì A= 11 4 b, B= 3 2 6 3 2 4x x x + + với x= -2/ 3 c, C= 2 3x y với x=1/2 và y=-3 d, D= 2 2 31x x với x=4 e, E= 2 5 7 1 3 1 x x x + với x= 1 2 (về nhà ) Tơng tự phần a giáo viên yêu cầu học sinh làm và chữa phần b và c KQ: B=20/ 9 C= -8 D = -5 Bài 2: Tìm x biết a, 6527 =++ xx 7x =1-2x Do 7x 0 với mọi x nên xét với 1 2x 0 2 1 x 7 Giáo án : Bồi dỡng học sinh giỏi lớp7 Tr ờng hợp 1: x-7 = 1-2x => 3x =8 => x= 3 8 (loại do không thoả mãn điều kiện x 2 1 ) Tr ờng hợp 2: x 7 = 2x -1 x = - 6( thoả mãn điều kiện của x) b, 2 3 2x x x = c, xxx 313 =+++ GV: yêu cầu học sinh làm gọi lên bảng trình bày Bài 3: Tìm x và y biết a, 1 2 2 3 2 x = b, 7,5 3 5 2 4,5x = c, 3 4 5 5 0x y + + = GV: Tổ chức cho học sinh làm bài - Học sinh lên bảng trình bày Bài 4 Tìm giá trị nhỏ nhất của biểu thức a, A= 3,7 4,3 x+ Ta có 4,3 0x với mọi x 4,3 3,7 3,7x + Hay A 3,7 Dấu bằng xảy ra khi và chỉ khi 4,3 0 4,3 0 4,3 x x x = = = Vậy giá tri nhỏ nhất của A= 3,7 khi x= 4,3 Tơng tự giáo viên cho học sinh làm phần b, c b, B= 3 8, 4 24,2x + c, C= 4 3 5 7,5 17,5x y + + + Bài tập về nhà Bài 1: Tìm giá trị lớn nhất của biểu thức sau , 5,5 2 1,5 , 10,2 3 14 , 4 5 2 3 12 a D x b E x c F x y = = = + ` 8 Giáo án : Bồi dỡng học sinh giỏi lớp7 Ngày soạn : 10 /2/2012 Buổi 4: Giá trị tuyệt đối của một số hữu tỉ.(tiếp theo) I. Lý thuyết 1/ Định nghĩa +/ Với x Q Ta có x neỏu x 0 x = -x neỏu x < 0 2, Tính chất Vụựi moùi x Q, ta coự: x 0, x = -xvaứ x x +/ Với x,y Q Ta có x y x y+ + ( Dấu bằng xảy ra khi cùng dấu nghĩa là x.y 0 ) x y x y ( // // ) II. Bài tập : Bài 1: Tìm tất cả các số a thoả mãn một trong các điều kiện sau: a) a = |a|; b) a < |a|; c) a > |a|; d) |a| = - a; e) a |a|. Bài 2: Bổ sung thêm các điều kiện để các khẳng định sau là đúng: a) |a| = |b| a = b; b) a > b |a| > |b|. Bài 3: Cho |x| = |y| và x < 0, y > 0. Trong các khẳng định sau, khẳng định nào sai a) x 2 y > 0; b) x + y = 0; c) xy < 0; d) ;0 11 = yx d) .01 =+ y x Bài 4: Tìm giá trị của các biểu thức sau: a) B = 2|x| - 3|y| với x = 1/2; y = -3. b) C = 2|x 2| - 3|1 x| với x = 4; Bài 5: Rút gọn các biểu thức sau: a) |a| + a; b) |a| - a; c) |a|.a; d) |a|:a; e) 3(x 1) 2|x + 3|; g) 2|x 3| - |4x - 1|. Bài 6: Tìm x trong các đẳng thức sau: a) |2x 3| = 5; b) |2x 1| = |2x + 3|; c) |x 1| + 3x = 1; d) |5x 3| - x = 7. Bài 7: Tìm các số a và b thoả mãn một trong các điều kiện sau: a) a + b = |a| + |b|; b) a + b = |b| - |a|. Bài 8: Có bao nhiêu cặp số nguyên (x; y) thoả mãn một trong các điều kiện sau: a) |x| + |y| = 20; b) |x| + |y| < 20. Bài 9: Điền vào chỗ trống () các dấu = ,, để các khẳng định sau đúng với mọi a và b. 9 Giáo án : Bồi dỡng học sinh giỏi lớp7 Hãy phát biểu mỗi khẳng định đó thành một tính chất và chỉ rõ khi nào xảy ra dấu đẳng thức ? a) |a + b||a| + |b|; b) |a b||a| - |b| với |a| |b|; c) |ab||a|.|b|; d) . || || b a b a Bài 10: Tìm giá trị nhỏ nhất của biểu thức: a) A = 2|3x 2| - 1; b) B = 5|1 4x| - 1; c) C = x 2 + 3|y 2| - 1; d) D = x + |x|. Bài 11: Tìm giá trị lớn nhất của các biểu thức: a) A = 5 - |2x 1|; b) B = ; 3|1| 1 +x Bài 12: Tìm giá trị lớn nhất của biểu thức C = (x + 2)/|x| với x là số nguyên. Bài 13: Cho |a c| < 3, |b c| < 2. Chứng minh rằng: |a b| < 5. Bài 14: Đa biểu thức A sau đây về dạng không chứa dấu giá trị tuyệt đối: A = |2x + 1| + |x - 1| - |x 2|. 10 [...]... 3; 4; 6; 10} thì A Z b (0,5đ) 76 + 75 74 = 74 (72 + 7 1) = 74 55 55 30 2 4 4 6 8 10 Giáo án : Bồi dỡng học sinh giỏi lớp7 Ngày dạy : 05/ 1/11 I Mục tiêu - Kiến thức : - Kiểm tra khảo sát chất lợng học sinh qua đề thi tham khảo, đánh giá việc nắm kiến thức của học sinh - Kỹ năng : - Rèn cho học sinh kĩ năng tính toán , kĩ năng trình bày - Thái độ : - Có ý thức tự học tự nghiên cứu nghiêm túc II/... tổng 6 33 Giáo án : Bồi dỡng học sinh giỏi lớp7 Tuần 21 Buổi14 Ngày dạy : 12/1/11 I Mục tiêu Kiến thức : - Kiểm tra khảo sát chất lợng học sinh qua đề thi tham khảo, đánh giá việc nắm kiến thức của học sinh Kỹ năng : - Rèn cho học sinh kĩ năng tính toán , kĩ năng trình bày Thái độ : - Có ý thức tự học tự nghiên cứu nghiêm túc II/ Chuẩn bị - Giáo viên: Soạn đề kiểm tra - Học sinh: Ôn tập lại nội... (23 ) 16 GV : Yêu cầu học sinh làm và gọi học sinh lên bảng trình bày Bài 3: Thực hiện phép tính : 1 2 1 1 a- 6. 3. + 1 : ( 1 3 3 3 3 b- ) 2 2 3 2003 ( 1) 3 4 2 3 2 5 5 12 11 Giáo án : Bồi dỡng học sinh giỏi lớp7 ? Hãy nêu thứ tự thực hiện phép tính GV: yêu cầu học sinh làm bài , gọi học sinh trình bày Bài 4: Tính a, b, ( ) 0 8 3 4 1 15 1 6 7 15 + 3 9 3 12... a4 = a5 vô lý Vậy có ít nhất 2002 div 4 + 1= 501 số bằng nhau 27 Giáo án : Bồi dỡng học sinh giỏi lớp7 Ngày dạy :29/12/10 / Mục tiêu Kiến thức : - Kiểm tra khảo sát chất lợng học sinh qua đề thi tham khảo, đánh giá việc nắm kiến thức của học sinh Kỹ năng : - Rèn cho học sinh kĩ năng tính toán , kĩ năng trình bày Thái độ : - Có ý thức tự học tự nghiên cứu nghiêm túc II/ Chuẩn bị - Thày : soạn đề kiểm... viên: Soạn đề kiểm tra - Học sinh: Ôn tập lại nội dung các kiến thức III/ Tiến trình tiết dạy : Đề thi học sinh giỏi Môn: Toán 7 Thời gian làm bài: 120 phút (không kể giao đề) Đề 1.3 A/ Phần đề chung Câu 1 (2,5điểm): a (1 ,75 đ) Tính tổng: M = 3 b 1 1 1 76 1 4 5 ì ì4 + 4 17 762 139 76 2 4 17. 762 139 (0 ,75 đ) Tính giá trị của đa thức sau tại x = -1 x2 + x4 + x6 + x8 + + x100 Câu 2 (1điểm): a b 3x y 3 x... trong chúng đều lập nên một tỉ lệ thức CMR: trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau Bài 15: Có 130 học sinh thuộc ba lớp 7A, 7B, 7C của một trờng cùng tham gia trồng cây Mỗi học sinh của 7A, 7B, 7C theo thứ tự trồng đợc 2 cây, 3 cây, 4 cây Hỏi mỗi lớp có bao nhiêu học sinh tham gia trồng cây biết rằng số cây trồng đợc của ba lớp bằng nhau ? Hớng dẫn giải : Bài 11: ( a + b )( a + b )... án : Bồi dỡng học sinh giỏi lớp7 Câu 5 A (2điểm): Dành cho học sinh chuyên b (1đ) Chứng minh rằng đa thức sau không có nghiệm: P(x) = 2x2 + 2x + c 5 4 (1đ) Chứng minh rằng: 2454.5424.210 chia hết cho 72 63 Câu 5 B (2điểm): Dành cho học sinh không chuyên a (1đ) Tìm nghiệm của đa thức 5x2 + 10x b (1đ) Tìm x biết: 5(x-2)(x+3) = 1 đáp án 1.3 I Phần đề chung Câu 1 (2,5đ) a (2đ) 1 1 1 ;b= ;c= 76 2 139 4 17 3... Ngày dạy : 17/ 11 Buổi 7 Chuyên đề: biểu thức đại số ( tiết 1) I Mục tiêu Kiến thức : Nắm đợc các kiến thức liên quan để giải các dạng toán cơ bản nhất : 14 Giáo án : Bồi dỡng học sinh giỏi lớp7 Tính giá trị của một biểu thức Thực hiện phép tính một cách hợp lý Bài toán về dãy có quy luật Một số bài toán khác về biểu thức đại số Kĩ năng : Giải đợc hoàn chỉnh, nhanh và chính xác các bài toán cơ bản Biết... 3 điểm E, A, F thẳng hàng 28 Giáo án : Bồi dỡng học sinh giỏi lớp7 B/ Phần đề riêng Câu 5 A (2điểm): (Dành cho học sinh chuyên toán) a (1,5đ) Tính tổng 3n1 + 1 S = 1 + 2 + 5 + 14 + + (với n Z+) 2 b (0,5đ) Cho đa thức f(x) = x4 + 2x3 2x2 6x + 5 Trong các số sau: 1, -1, 5, -5 số nào là nghiệm của đa thức f(x) Câu 5 B (2điểm): (Dành cho học sinh không chuyên toán) a (1,5đ) Tìm x Z để A có giá trị... : 25 Giáo án : Bồi dỡng học sinh giỏi lớp7 5a + 3b 5c + 3d 7a 2 + 3ab 7c 2 + 3cd = = ; b) 5a 3b 5c 3d 11a 2 8b 2 11c 2 8d 2 a c 2a +13b 2c +13d = Cho tỉ lệ thức: ; Chứng minh rằng: = 3a 7b 3c 7d b d 3 a b c a +b +c a Cho b = c = d CMR: ữ = ; với giả thiết các tỉ số đều có d b +c +d a a a3 a 2008 Cho dãy tỉ số bằng nhau: a 1 = a 2 = a = = a 2 3 4 2009 a) Bài 5: Bài 6: Bài 7: CMR: Ta có đẳng . 9 3 2 .3 4 .9 5 .7 25 .49 125 .7 5 .14 2 .3 8 .3 2 .3 2 .3 5 .7 5 .7 2 .3 2 .3 5 .7 5 .2 .7 2 .3 . 3 1 5 .7 . 1 7 2 .3 . 3 1 5 .7 . 1 2 5 .7 . 6 2 .3 .2 2 .3 .4 5 .7 .9 1 10 7 6 3 2 A = + + . 7 0 x x x x x x x + + + = = 5 Giáo án : Bồi dỡng học sinh giỏi lớp7 ( ) ( ) ( ) 1 10 1 10 7 0 1 ( 7) 0 7 0 7 ( 7) 1 8 7 1 7 0 10 x x x x x x x x x x + ữ + = = = = =. án : Bồi dỡng học sinh giỏi lớp7 ? Hãy nêu thứ tự thực hiện phép tính - GV: yêu cầu học sinh làm bài , gọi học sinh trình bày Bài 4: Tính a, ( ) 4 8 0 15 12 6 . 3 1 .9. 3 1 15 4 . 7 3 +

Ngày đăng: 06/02/2015, 01:00

TỪ KHÓA LIÊN QUAN

w