SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH KỲ THI TUYỂN SINH LỚP 10- THPT CHUYÊN Năm học 2010- 2011 Môn thi: TOÁN (Thời gian : 150 phút – không kể thời gian phát đề) Câu 1: (4 điểm) 1) Giải hệ phương trình 1 + y = 1 x +1 2 + 5y = 3 x +1 2) Giải phương trình : ( ) 2 2 2 2x - x + 2x - x -12 = 0 Câu 2: ( 3 điểm) Cho phương trình x 2 – 2 ( 2m + 1) x + 4 m 2 + 4 m – 3 = 0 ( x là ẩn số ) Tìm m để phương trình có hai nghiệm phân biệt ( ) 1 2 1 2 ,x x x x< thỏa 2 1 2 x = x Câu 3: (2 điểm ) Thu gọn biểu thức: A= 7 + 5 + 7 - 5 - 3 - 2 2 7 + 2 11 Câu 4: ( 4 điểm ) Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chứng minh rằng : a) · · ABP = AMB b)MA.MP =BA.BM Câu 5 : ( 3 điểm ) a) Cho phương trình 2 2x + mx + 2n + 8 = 0 ( x là ẩn số và m, n là các số nguyên).Giả sử phương trình có các nghiệm đều là số nguyên. Chứng minh rằng 2 2 m + n là hợp số b) Cho hai số dương a,b thỏa 100 100 101 101 102 102 a + b = a + b = a + b .Tính P= 2010 2010 a + b Câu 6 : ( 2 điểm ) Cho tam giác OAB vuông cân tại O với OA=OB =2a.Gọi (O) là đường tròn tâm O bán kính a.Tìm điểm M thuộc (O) sao cho MA+2MB đạt giá trị nhỏ nhất Câu 7: ( 2 điểm) Cho a , b là các số dương thỏa ≤ 2 2 2 a + 2b 3c .Chứng minh ≥ 1 2 3 + a b c HẾT ĐÁP ÁN Câu Hướng dẫn chấm Điểm Câu 1 Câu:1: ( 4 điểm 1) Giải hệ phương trình 1 + y = 1 x +1 2 + 5y = 3 x +1 1 + y = 1 x +1 2 + 5y = 3 x +1 ⇔ 2 2y = 2 x+1 2 +5y =3 x+1 − − − 3y =1 2 +5y =3 x+1 ⇔ 1 x = 2 1 y = 3 ⇔ 0,5 x4 đ 2) Giải phương trình : ( ) 2 2 2 2x - x + 2x - x -12 = 0 Đặt 2 2t x x= − , pt trở thành: t 2 + t - 12 = 0 ⇔ t=3 hay t=-4 t =3 => 2 3 2 3 1 2 x x x hay x− = ⇔ = − = t= -4 => 2 2 4x x− = − ( vô nghiệm) Vậy pt có hai nghiệm là x =- 1 , x =3/2 0,5 đ 0,5 đ 0,5 đ 0,5 đ Câu 2 (3 đ) Câu 2 : (3 điểm ) Cho phương trình x 2 – 2 ( 2m + 1) x + 4 m 2 + 4 m – 3 = 0 ( x là ẩn số ) (*) Tìm m để phương trình có hai nghiệm phân biệt ( ) 1 2 1 2 ,x x x x< thỏa 2 1 2 x = x ’= ( ) ( ) 2 2 2 1 4 4 3 4 0m m m+ − + − = > , với mọi 1 Vậy (*) luôn có 2 nghiệm phân biệt với mọi m 0,5 đ 1 x =2m-1 ; 2 x =2m+3 2 1 2 x = x ⇔ 2m 1 2 2m 3− = + ⇔ ( ) ( ) 7 2 1 2 2 3 2 5 2 1 2 2 3 6 m m m m m m = − − = + ⇔ − = − + = − 0.5 đ 0,5 đ 1,5 đ Câu 3 Câu 3 : ( 2 điểm) Thu gọn biểu thức: A= 7 + 5 + 7 - 5 - 3 - 2 2 7 + 2 11 ( 2 đ) Câu 4 ( 4 đ) Xét M = 7 + 5 + 7 - 5 7 + 2 11 Ta có M > 0 và 2 14 2 44 2 7 2 11 M + = = + , suy ra M = 2 A= 2 -( 2 -1)=1 1 đ 1 đ Câu 4 : ( 4 điểm) Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chứng minh rằng : a) · · ABP = AMB b)MA.MP =BA.BM x x = = M P O C B A . GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH KỲ THI TUYỂN SINH LỚP 10- THPT CHUYÊN Năm học 2 010- 2011 Môn thi: TOÁN (Thời gian : 150 phút – không kể thời gian phát đề) Câu 1: (4 điểm) 1) Giải hệ. phương trình có các nghiệm đều là số nguyên. Chứng minh rằng 2 2 m + n là hợp số b) Cho hai số dương a,b thỏa 100 100 101 101 102 102 a + b = a + b = a + b .Tính P= 2 010 2 010 a + b Câu 6 : ( 2. giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chứng minh rằng : a) · · ABP = AMB b)MA.MP =BA.BM Câu 5 :