Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 42 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
42
Dung lượng
2,81 MB
Nội dung
Tuyển tập đề thi HSG Toán 8 Năm học: 2011-2012 ĐỀ THI SỐ 1 Câu 1: (4,0 điểm) Phân tích các đa thức sau thành nhân tử : a) 3x 2 – 7x + 2; b) a(x 2 + 1) – x(a 2 + 1). Câu 2: (5,0 điểm) Cho biểu thức : 2 2 2 2 3 2 4 2 3 ( ) : ( ) 2 4 2 2 x x x x x A x x x x x + − − = − − − − + − a) Tìm ĐKXĐ rồi rút gọn biểu thức A ? b) Tìm giá trị của x để A > 0? c) Tính giá trị của A trong trường hợp : |x - 7| = 4. Câu 3: (5,0 điểm) a) Tìm x,y,z thỏa mãn phương trình sau : 9x 2 + y 2 + 2z 2 – 18x + 4z - 6y + 20 = 0. b) Cho 1 x y z a b c + + = và 0 a b c x y z + + = . Chứng minh rằng : 2 2 2 2 2 2 1 x y z a b c + + = . Câu 4: (6,0 điểm) Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ? b) Chứng minh rằng : CH.CD = CB.CK c) Chứng minh rằng : AB.AH + AD.AK = AC 2 . HƯỚNG DẪN CHẤM THI Nội dung đáp án Điểm Bài 1 a 2,0 3x 2 – 7x + 2 = 3x 2 – 6x – x + 2 = 1,0 = 3x(x -2) – (x - 2) 0,5 = (x - 2)(3x - 1). 0,5 b 2,0 a(x 2 + 1) – x(a 2 + 1) = ax 2 + a – a 2 x – x = 1,0 = ax(x - a) – (x - a) = 0,5 Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 1 Tuyển tập đề thi HSG Toán 8 Năm học: 2011-2012 = (x - a)(ax - 1). 0,5 Bài 2: 5,0 a 3,0 ĐKXĐ : 2 2 2 3 2 0 4 0 0 2 0 2 3 3 0 2 0 x x x x x x x x x x − ≠ − ≠ ≠ + ≠ ⇔ ≠ ± ≠ − ≠ − ≠ 1,0 2 2 2 2 2 2 2 2 3 2 4 2 3 (2 ) 4 (2 ) (2 ) ( ) :( ) . 2 4 2 2 (2 )(2 ) ( 3) x x x x x x x x x x A x x x x x x x x x + − − + + − − − = − − = = − − + − − + − 1,0 2 4 8 (2 ) . (2 )(2 ) 3 x x x x x x x + − = − + − 0,5 2 4 ( 2) (2 ) 4 (2 )(2 )( 3) 3 x x x x x x x x x + − = = − + − − 0,25 Vậy với 0, 2, 3x x x≠ ≠ ± ≠ thì 2 4x 3 A x = − . 0,25 b 1,0 Với 2 4 0, 3, 2 : 0 0 3 x x x x A x ≠ ≠ ≠ ± > ⇔ > − 0,25 3 0x⇔ − > 0,25 3( )x TMDKXD⇔ > 0,25 Vậy với x > 3 thì A > 0. 0,25 c 1,0 7 4 7 4 7 4 x x x − = − = ⇔ − = − 0,5 11( ) 3( ) x TMDKXD x KTMDKXD = ⇔ = 0,25 Với x = 11 thì A = 121 2 0,25 Bài 3 5,0 a 2,5 9x 2 + y 2 + 2z 2 – 18x + 4z - 6y + 20 = 0 ⇔ (9x 2 – 18x + 9) + (y 2 – 6y + 9) + 2(z 2 + 2z + 1) = 0 1,0 ⇔ 9(x - 1) 2 + (y - 3) 2 + 2 (z + 1) 2 = 0 (*) 0,5 Do : 2 2 2 ( 1) 0;( 3) 0;( 1) 0x y z− ≥ − ≥ + ≥ 0,5 Nên : (*) ⇔ x = 1; y = 3; z = -1 0,25 Vậy (x,y,z) = (1,3,-1). 0,25 b 2,5 Từ : ayz+bxz+cxy 0 0 a b c x y z xyz + + = ⇔ = 0,5 ⇔ ayz + bxz + cxy = 0 0,25 Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 2 Tuyển tập đề thi HSG Toán 8 Năm học: 2011-2012 Ta có : 2 1 ( ) 1 x y z x y z a b c a b c + + = ⇔ + + = 0,5 2 2 2 2 2 2 2( ) 1 x y z xy xz yz a b c ab ac bc ⇔ + + + + + = 0,5 2 2 2 2 2 2 2 1 x y z cxy bxz ayz a b c abc + + ⇔ + + + = 0,5 2 2 2 2 2 2 1( ) x y z dfcm a b c ⇔ + + = 0,25 Bài 4 6,0 O F E K H C A D B 0,25 a 2,0 Ta có : BE ⊥ AC (gt); DF ⊥ AC (gt) => BE // DF 0,5 Chứng minh : ( )BEO DFO g c g∆ = ∆ − − 0,5 => BE = DF 0,25 Suy ra : Tứ giác : BEDF là hình bình hành. 0,25 b 2,0 Ta có: · · · · ABC ADC HBC KDC= ⇒ = 0,5 Chứng minh : ( )CBH CDK g g∆ ∆ −: 1,0 . . CH CK CH CD CK CB CB CD ⇒ = ⇒ = 0,5 b, 1,75 Chứng minh : AF ( )D AKC g g∆ ∆ −: 0,25 AF . A . AK AD AK F AC AD AC ⇒ = ⇒ = 0,25 Chứng minh : ( )CFD AHC g g∆ ∆ −: 0,25 CF AH CD AC ⇒ = 0,25 Mà : CD = AB . . CF AH AB AH CF AC AB AC ⇒ = ⇒ = 0,5 Suy ra : AB.AH + AB.AH = CF.AC + AF.AC = (CF + AF)AC = AC 2 (đfcm). 0,25 ĐỀ SỐ 2 Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 3 Tuyển tập đề thi HSG Toán 8 Năm học: 2011-2012 Câu1. a. Phân tích các đa thức sau ra thừa số: 4 x 4+ ( ) ( ) ( ) ( ) x 2 x 3 x 4 x 5 24+ + + + − b. Giải phương trình: 4 2 x 30x 31x 30 0− + − = c. Cho a b c 1 b c c a a b + + = + + + . Chứng minh rằng: 2 2 2 a b c 0 b c c a a b + + = + + + Câu2. Cho biểu thức: 2 2 x 2 1 10 x A : x 2 x 4 2 x x 2 x 2 − = + + − + ÷ ÷ − − + + a. Rút gọn biểu thức A. b. Tính giá trị của A , Biết |x| = 1 2 . c. Tìm giá trị của x để A < 0. d. Tìm các giá trị nguyên của x để A có giá trị nguyên. Câu 3. Cho hình vuông ABCD, M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME ⊥ AB, MF ⊥ AD. a. Chứng minh: DE CF= b. Chứng minh ba đường thẳng: DE, BF, CM đồng quy. c. Xác định vị trí của điểm M để diện tích tứ giác AEMF lớn nhất. Câu 4. a. Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng: 1 1 1 9 a b c + + ≥ b. Cho a, b d¬ng vµ a 2000 + b 2000 = a 2001 + b 2001 = a 2002 + b 2002 Tinh: a 2011 + b 2011 HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP 8 Câu Đáp án Điểm Câu 1 (6 điểm) a. x 4 + 4 = x 4 + 4x 2 + 4 - 4x 2 = (x 4 + 4x 2 + 4) - (2x) 2 = (x 2 + 2 + 2x)(x 2 + 2 - 2x) ( x + 2)( x + 3)( x + 4)( x + 5) - 24 = (x 2 + 7x + 11 - 1)( x 2 + 7x + 11 + 1) - 24 = [(x 2 + 7x + 11) 2 - 1] - 24 = (x 2 + 7x + 11) 2 - 5 2 = (x 2 + 7x + 6)( x 2 + 7x + 16) = (x + 1)(x + 6) )( x 2 + 7x + 16) (2 điểm) b. 4 2 x 30x 31x 30 0− + − = <=> ( ) ( ) ( ) 2 x x 1 x 5 x 6 0− + − + = (*) Vì x 2 - x + 1 = (x - 1 2 ) 2 + 3 4 > 0 x∀ (*) <=> (x - 5)(x + 6) = 0 x 5 0 x 5 x 6 0 x 6 − = = ⇔ + = = − (2 điểm) Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 4 Tuyển tập đề thi HSG Toán 8 Năm học: 2011-2012 HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP 8 c. Nhân cả 2 vế của: a b c 1 b c c a a b + + = + + + với a + b + c; rút gọn ⇒ đpcm (2 điểm) Câu 2 (6 điểm) Biểu thức: 2 2 x 2 1 10 x A : x 2 x 4 2 x x 2 x 2 − = + + − + ÷ ÷ − − + + a. Rút gọn được kq: 1 A x 2 − = − (1.5 điểm) b. 1 x 2 = 1 x 2 ⇒ = hoặc 1 x 2 − = 4 A 3 ⇒ = hoặc 4 A 5 = (1.5 điểm) c. A 0 x 2< ⇔ > (1.5 điểm) d. { } 1 A Z Z x 1;3 x 2 − ∈ ⇔ ∈ ⇒ ∈ − (1.5 điểm) Câu 3 (6 điểm) HV + GT + KL (1 điểm) a. Chứng minh: AE FM DF= = ⇒ AED DFC∆ = ∆ ⇒ đpcm (2 điểm) b. DE, BF, CM là ba đường cao của EFC∆ ⇒ đpcm (2 điểm) c. Có Chu vi hình chữ nhật AEMF = 2a không đổi ME MF a⇒ + = không đổi AEMF S ME.MF⇒ = lớn nhất ⇔ ME MF= (AEMF là hình vuông) M⇒ là trung điểm của BD. (1 điểm) Câu 4: (2 điểm) a. Từ: a + b + c = 1 ⇒ 1 b c 1 a a a 1 a c 1 b b b 1 a b 1 c c c = + + = + + = + + 1 1 1 a b a c b c 3 a b c b a c a c b 3 2 2 2 9 ⇒ + + = + + + + + + ÷ ÷ ÷ ≥ + + + = (1 điểm) Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 5 Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 HNG DN CHM THI HC SINH GII LP 8 Du bng xy ra a = b = c = 1 3 b. (a 2001 + b 2001 ).(a+ b) - (a 2000 + b 2000 ).ab = a 2002 + b 2002 (a+ b) ab = 1 (a 1).(b 1) = 0 a = 1 hoặc b = 1 Với a = 1 => b 2000 = b 2001 => b = 1 hoặc b = 0 (loại) Với b = 1 => a 2000 = a 2001 => a = 1 hoặc a = 0 (loại) Vậy a = 1; b = 1 => a 2011 + b 2011 = 2 (1 im) Đề thi S 3 Câu 1 : (2 điểm) Cho P= 8147 44 23 23 + + aaa aaa a) Rút gọn P b) Tìm giá trị nguyên của a để P nhận giá trị nguyên Câu 2 : (2 điểm) a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phơng của chúng chia hết cho 3. b) Tìm các giá trị của x để biểu thức : P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó . Câu 3 : (2 điểm) a) Giải phơng trình : 18 1 4213 1 3011 1 209 1 222 = ++ + ++ + ++ xxxxxx b) Cho a , b , c là 3 cạnh của một tam giác . Chứng minh rằng : A = 3 + + + + + cba c bca b acb a Câu 4 : (3 điểm) Cho tam giác đều ABC , gọi M là trung điểm của BC . Một góc xMy bằng 60 0 quay quanh điểm M sao cho 2 cạnh Mx , My luôn cắt cạnh AB và AC lần lợt tại D và E . Chứng minh : a) BD.CE= 4 2 BC b) DM,EM lần lợt là tia phân giác của các góc BDE và CED. c) Chu vi tam giác ADE không đổi. Câu 5 : (1 điểm) Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dơng và số đo diện tích bằng số đo chu vi . đáp án đề thi học sinh giỏi Câu 1 : (2 đ) a) (1,5) a 3 - 4a 2 - a + 4 = a( a 2 - 1 ) - 4(a 2 - 1 ) =( a 2 - 1)(a-4) Gv: Nguyn Vn Tỳ Trng THCS Thanh M 6 Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 =(a-1)(a+1)(a-4) 0,5 a 3 -7a 2 + 14a - 8 =( a 3 -8 ) - 7a( a-2 ) =( a -2 )(a 2 + 2a + 4) - 7a( a-2 ) =( a -2 )(a 2 - 5a + 4) = (a-2)(a-1)(a-4) 0,5 Nêu ĐKXĐ : a 4;2;1 aa 0,25 Rút gọn P= 2 1 + a a 0,25 b) (0,5đ) P= 2 3 1 2 32 += + aa a ; ta thấy P nguyên khi a-2 là ớc của 3, mà Ư(3)= { } 3;3;1;1 0,25 Từ đó tìm đợc a { } 5;3;1 0,25 Câu 2 : (2đ) a)(1đ) Gọi 2 số phải tìm là a và b , ta có a+b chia hết cho 3 . 0,25 Ta có a 3 +b 3 =(a+b)(a 2 -ab+b 2 )=(a+b) [ ] abbaba 3)2( 22 ++ = =(a+b) [ ] abba 3)( 2 + 0,5 Vì a+b chia hết cho 3 nên (a+b) 2 -3ab chia hết cho 3 ; Do vậy (a+b) [ ] abba 3)( 2 + chia hết cho 9 0,25 b) (1đ) P=(x-1)(x+6)(x+2)(x+3)=(x 2 +5x-6)(x 2 +5x+6)=(x 2 +5x) 2 -36 0,5 Ta thấy (x 2 +5x) 2 0 nên P=(x 2 +5x) 2 -36 -36 0,25 Do đó Min P=-36 khi (x 2 +5x) 2 =0 Từ đó ta tìm đợc x=0 hoặc x=-5 thì Min P=-36 0,25 Câu 3 : (2đ) a) (1đ) x 2 +9x+20 =(x+4)(x+5) ; x 2 +11x+30 =(x+6)(x+5) ; x 2 +13x+42 =(x+6)(x+7) ; 0,25 ĐKXĐ : 7;6;5;4 xxxx 0,25 Phơng trình trở thành : 18 1 )7)(6( 1 )6)(5( 1 )5)(4( 1 = ++ + ++ + ++ xxxxxx 18 1 7 1 6 1 6 1 5 1 5 1 4 1 = + + + + + + + + xxxxxx 18 1 7 1 4 1 = + + xx 0,25 18(x+7)-18(x+4)=(x+7)(x+4) (x+13)(x-2)=0 Từ đó tìm đợc x=-13; x=2; 0,25 Gv: Nguyn Vn Tỳ Trng THCS Thanh M 7 Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 b) (1đ) Đặt b+c-a=x >0; c+a-b=y >0; a+b-c=z >0 Từ đó suy ra a= 2 ; 2 ; 2 yx c zx b zy + = + = + ; 0,5 Thay vào ta đợc A= +++++= + + + + + )()()( 2 1 222 y z z y x z z x y x x y z yx y zx x zy 0,25 Từ đó suy ra A )222( 2 1 ++ hay A 3 0,25 Câu 4 : (3 đ) a) (1đ) Trong tam giác BDM ta có : 1 0 1 120 MD = Vì 2 M =60 0 nên ta có : 1 0 3 120 MM = Suy ra 31 MD = Chứng minh BMD CEM (1) 0,5 Suy ra CE CM BM BD = , từ đó BD.CE=BM.CM Vì BM=CM= 2 BC , nên ta có BD.CE= 4 2 BC 0,5 b) (1đ) Từ (1) suy ra EM MD CM BD = mà BM=CM nên ta có EM MD BM BD = Chứng minh BMD MED 0,5 Từ đó suy ra 21 DD = , do đó DM là tia phân giác của góc BDE Chứng minh tơng tự ta có EM là tia phân giác của góc CED 0,5 c) (1đ) Gọi H, I, K là hình chiếu của M trên AB, DE, AC Chứng minh DH = DI, EI = EK 0,5 Tính chu vi tam giác bằng 2AH; Kết luận. 0,5 Câu 5 : (1đ) Gọi các cạnh của tam giác vuông là x , y , z ; trong đó cạnh huyền là z (x, y, z là các số nguyên dơng ) Ta có xy = 2(x+y+z) (1) và x 2 + y 2 = z 2 (2) 0,25 Từ (2) suy ra z 2 = (x+y) 2 -2xy , thay (1) vào ta có : z 2 = (x+y) 2 - 4(x+y+z) z 2 +4z =(x+y) 2 - 4(x+y) z 2 +4z +4=(x+y) 2 - 4(x+y)+4 (z+2) 2 =(x+y-2) 2 , suy ra z+2 = x+y-2 0,25 z=x+y-4 ; thay vào (1) ta đợc : Gv: Nguyn Vn Tỳ Trng THCS Thanh M 8 3 2 1 2 1 x y E D M C B A Tuyển tập đề thi HSG Tốn 8 Năm học: 2011-2012 xy=2(x+y+x+y-4) xy-4x-4y=-8 (x-4)(y-4)=8=1.8=2.4 0,25 Tõ ®ã ta t×m ®ỵc c¸c gi¸ trÞ cđa x , y , z lµ : (x=5,y=12,z=13) ; (x=12,y=5,z=13) ; (x=6,y=8,z=10) ; (x=8,y=6,z=10) 0,25 ĐỀ THI SỐ 4 Câu1( 2 đ): Phân tích đa thức sau thành nhân tử ( ) ( ) ( ) ( ) 1 3 5 7 15A a a a a= + + + + + Câu 2( 2 đ): Với giá trò nào của a và b thì đa thức: ( ) ( ) 10 1x a x− − + phân tích thành tích của một đa thức bậc nhất có các hệ số nguyên Câu 3( 1 đ): tìm các số nguyên a và b để đa thức A(x) = 4 3 3x x ax b− + + chia hết cho đa thức 2 ( ) 3 4B x x x= − + Câu 4( 3 đ): Cho tam giác ABC, đường cao AH,vẽ phân giác Hx của góc AHB và phân giác Hy của góc AHC. Kẻ AD vuông góc với Hx, AE vuông góc Hy. Chứng minh rằngtứ giác ADHE là hình vuông Câu 5( 2 đ): Chứng minh rằng 2 2 4 2 1 1 1 1 1 2 3 4 100 P = + + + + < Đáp án và biểu điểm Câu Đáp án Biểu điểm 1 2 đ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 1 3 5 7 15 8 7 8 15 15 8 22 8 120 8 11 1 8 12 8 10 2 6 8 10 A a a a a a a a a a a a a a a a a a a a a a a = + + + + + = + + + + + = + + + + = + + − = + + + + = + + + + 0,5 đ 0,5 đ 0,5 đ 0,5 đ 2 2 đ Giả sử: ( ) ( ) ( ) ( ) 10 1 ;( , )x a x x m x n m n Z− − + = − − ∈ ( ) ( ) { 2 2 10 . 10 1 10 10 1 m n a m n a x a x a x m n x mn + = + = + ⇔ − + + + = − + + ⇔ Khử a ta có : mn = 10( m + n – 10) + 1 0,25 đ 0,25 đ 0,25 đ 0,25 đ Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 9 Tuyển tập đề thi HSG Tốn 8 Năm học: 2011-2012 10 10 100 1 ( 10) 10 10) 1 mn m n m n n ⇔ − − + = ⇔ − − + = vì m,n nguyên ta có: { { 10 1 10 1 10 1 10 1 m m n n v − = − =− − = − =− suy ra a = 12 hoặc a =8 0,25 đ 0,25 đ 0,25 đ 0,25 đ 3 1 đ Ta có: A(x) =B(x).(x 2 -1) + ( a – 3)x + b + 4 Để ( ) ( )A x B xM thì { { 3 0 3 4 0 4 a a b b − = = + = =− ⇔ 0,5 đ 0,5 đ 4 3 đ Tứ giác ADHE là hình vuông Hx là phân giác của góc · AHB ; Hy phân giác của góc · AHC mà · AHB và · AHC là hai góc kề bù nên Hx và Hy vuông góc Hay · DHE = 90 0 mặt khác · · ADH AEH = = 90 0 Nên tứ giác ADHE là hình chữ nhật ( 1) Do · · · · · · 0 0 0 0 90 45 2 2 90 45 2 2 AHB AHD AHC AHE AHD AHE = = = = = = ⇒ = Hay HA là phân giác · DHE (2) Từ (1) và (2) ta có tứ giác ADHE là hình vuông 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,5 đ 0,5 đ 0,25 đ 0,25 đ 0,25 đ 5 2 đ 2 2 4 2 1 1 1 1 2 3 4 100 1 1 1 1 2.2 3.3 4.4 100.100 1 1 1 1 1.2 2.3 3.4 99.100 1 1 1 1 1 1 2 2 3 99 100 1 99 1 1 100 100 P = + + + + = + + + + < + + + + = − + − + + − = − = < 0,5 đ 0,5 đ 0,5 đ 0,5 đ Gv: Nguyễn Văn Tú Trường THCS Thanh Mỹ 10 [...]... DEC ABC B D C 5BF 5BF 5BF BD BA 5 BF = BC = 8 BD = 8 BD = 8 BD = 8 7CE 7CE 7CE CD CA 7 = = CD = CD = CD = 8 8 8 CE CB 8 AE AB 5 7AE = 5AF 7(7 CE) = 5(5 BF) 7CE 5BF = 24 = = AF AC 7 CD BD = 3 (3) Ta li cú CD + BD = 8 (4) (3) & (4) BD = 2,5 S 6 Bi 1(3 im): Tỡm x bit: a) x2 4x + 4 = 25 x 17 x 21 x + 1 + + =4 b) 1990 1 986 1004 c) 4x 12.2x + 32 = 0 1 1 1 + + = 0 x... Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 T giỏc BDEC cú din tớch nh nht 1 1 1 1 Ta cú: SADE = AD.AE = AD.BD = AD(AB AD)= (AD2 AB.AD) (0,25) 2 2 2 2 2 2 1 AB 1 AB 2 AB2 AB AB AB2 = (AD2 2 AD + )+ = (AD ) + (0,25) 2 2 2 4 4 8 8 2 3 AB2 AB2 Vy SBDEC = SABC SADE = AB2 khụng i (0,25) 8 2 8 3 Do ú min SBDEC = AB2 khi D, E ln lt l trung im AB, AC (0,25) 8 S 20 Bài 1: Phân tích đa thức thành nhân tử:... Nguyn Vn Tỳ 18 0,5 0,5 Trng THCS Thanh M Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 0,5 1 1 1 1 2 )=2 + = t ú cú (OM + ON) ( + AB CD AB CD MN b, (2 im) S AOB OB S BOC OB S S = = AOB = BOC S AOB S DOC = S BOC S AOD , S S AOD OD OD S AOD S DOC DOC Chng minh c S AOD = S BOC S AOB S DOC = ( S AOD ) 2 Thay s cú 20 082 .20092 = (SAOD)2 SAOD = 20 08. 2009 Do ú SABCD= 20 082 + 2.20 08. 2009 + 20092 = (20 08 + 2009)2... a) (1) DE cú di nh nht t AB = AC = a khụng i; AE = BD = x (0 < x < a) p dng nh lý Pitago vi ADE vuụng ti A cú: DE2 = AD2 + AE2 = (a x)2 + x2 = 2x2 2ax + a2 = 2(x2 ax) a2 a2 a2 a2 = 2(x )2 + 4 2 2 a Ta cú DE nh nht DE2 nh nht x = 2 a BD = AE = D, E l trung im AB, AC 2 b) (1) Gv: Nguyn Vn Tỳ 33 1 C 2 F D B D C A E (0,25) (0,25) (0,25) (0,25) Trng THCS Thanh M Tuyn tp thi HSG Toỏn 8 Nm hc:... ( x ) = ( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 20 08 = ( x 2 + 10 x + 16 ) ( x 2 + 10 x + 24 ) + 20 08 Đặt t = x + 10 x + 21 (t 3; t 7) , biểu thức P(x) đợc viết lại: 0,5 0,5 0,5 2 P( x) = ( t 5 ) ( t + 3) + 20 08 = t 2 2t + 1993 4 Do đó khi chia t 2 2t + 1993 cho t ta có số d là 1993 Gv: Nguyn Vn Tỳ 26 0,5 4,0 Trng THCS Thanh M Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 4.1 + Hai tam giác ADC và... Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 S 19 Bi 1: (3) a) Phõn tớch a thc x3 5x2 + 8x 4 thnh nhõn t b) Tỡm giỏ tr nguyờn ca x A M B bit A = 10x2 7x 5 v B = 2x 3 c) Cho x + y = 1 v x y 0 Chng minh rng 2( x y) x y 3 + 2 2 =0 3 y 1 x 1 x y + 3 Bi 2: (3) Gii cỏc phng trỡnh sau: a) (x2 + x)2 + 4(x2 + x) = 12 b) x+1 x+ 2 x+ 3 x+ 4 x+ 5 x+ 6 + + = + + 20 08 2007 2006 2005 2004 2003 Bi 3: (2) Cho hỡnh... ly F sao cho AE = CF a) Chng minh EDF vuụng cõn b) Gi O l giao im ca 2 ng chộo AC v BD Gi I l trung im EF Chng minh O, C, I thng hng Bi 4: (2 )Cho tam giỏc ABC vuụng cõn ti A Cỏc im D, E theo th t di chuyn trờn AB, AC sao cho BD = AE Xỏc nhv trớ im D, E sao cho: a/ DE cú di nh nht b/ T giỏc BDEC cú din tớch nh nht Hớng dẫn chấm và biểu điểm Bi 1: (3 im) a) ( 0,75) b) (0,75) Xột x3 - 5x2 + 8x - 4 =... 2 0,5 2 1 1 1 1 2 8 x + ữ + 4 x 2 + 2 ữ 4 x 2 + 2 ữ x + ữ = ( x + 4 ) (2) x x x x Điều kiện để phơng trình có nghiệm: x 0 2 2 1 1 2 2 1 2 1 (2) 8 x + ữ + 4 x + 2 ữ x + 2 ữ x + ữ = ( x + 4 ) x x x x 0,25 2 1 1 2 2 8 x + ữ 8 x 2 + 2 ữ = ( x + 4 ) ( x + 4 ) = 16 x x x = 0 hay x = 8 và x 0 Vậy phơng trình đã cho có một nghiệm x = 8 3 0,5 0,25 2.0 3.1 3.2... +1 Bi 2: a, Cho a, b, c tho món: a+b+c = 0 v a2 + b2 + c2= 14 Tớnh giỏ tr ca A = a4+ b4+ c4 b, Cho a, b, c 0 Tớnh giỏ tr ca D = x2011 + y2011 + z2011 Bit x,y,z tho món: Bi 3: x2 + y 2 + z 2 x2 y 2 z 2 = 2+ 2+ 2 a2 + b2 + c2 a b c a, Cho a,b > 0, CMR: b, Cho a,b,c,d > 0 CMR: 1 1 4 + a b a+b ad d b bc ca 0 + + + d +b b+c c+a a+d Gv: Nguyn Vn Tỳ 21 Trng THCS Thanh M Tuyn tp thi HSG Toỏn 8 Bi 4: Nm... Thanh M Tuyn tp thi HSG Toỏn 8 Nm hc: 2011-2012 x + 7 x + 6 = x + x + 6 x + 6 = x ( x + 1) + 6 ( x + 1) 2 0.5 2 = ( x + 1) ( x + 6 ) 1.2 0,5 (1,25 điểm) x 4 + 20 08 x 2 + 2007 x + 20 08 = x 4 + x 2 + 2007 x 2 + 2007 x + 2007 + 1 0,25 = x + x + 1 + 2007 ( x + x + 1) = ( x + 1) x + 2007 ( x + x + 1) 4 2 2 2 2 2 2 0,25 = ( x + x + 1) ( x x + 1) + 2007 ( x + x + 1) = ( x + x + 1) ( x x + 20 08 ) 2 2 2 2 2 . a) ta có: µ B = β , µ C = ω ⇒ AEF ∆ DBF ∆ DEC ∆ ABC ∆ ⇒ BD BA 5 5BF 5BF 5BF BD BD BD BF BC 8 8 8 8 CD CA 7 7CE 7CE 7CE CD CD CD CE CB 8 8 8 8 AE AB 5 7AE 5AF 7(7 CE) 5(5 BF) 7CE 5BF 24 AF. ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 1 3 5 7 15 8 7 8 15 15 8 22 8 120 8 11 1 8 12 8 10 2 6 8 10 A a a a a a a a a a a a a a a a a a a a a a a = + + + + + = + + + + + =. đợc : Gv: Nguyn Vn Tỳ Trng THCS Thanh M 8 3 2 1 2 1 x y E D M C B A Tuyển tập đề thi HSG Tốn 8 Năm học: 2011-2012 xy=2(x+y+x+y-4) xy-4x-4y= -8 (x-4)(y-4) =8= 1 .8= 2.4 0,25 Tõ ®ã ta t×m ®ỵc c¸c gi¸