DB rHI THtrDAr Hec rAx r NAtrr 2or3 Mdn: TOAN; Kh0i: B ;D Thdi gian ldm bdi: I B0 phut, khdng ke thdt gian phdt di pHArv cHUNG cHo rAr cA rni srNu g,a aEmS Cf,u I Q,O Afem)Cho hdm sd y = l+ x-l . l. KJrio s6t sp biiin thiOn vd vC dd th! (C) cfia'hdm sti. : 2. Tim OiCm U tr6n (C) sao cho titip tuy6n cria (C) tai Vt c6t cfc dudrng ti$m c$n tpi hai ai6m e vi B th6a mdn AB: Jn . Cf,u II (2,0 ctidm) I sin 2x - zsin x. I . Giei phucrng trinh: r tan.r + ,12 sin .r + cos.r dudng tron (T): xz + y' - x-9y+18 = 0 ve hai, di€m (T) sao cho ABCD ld mQt hinh binh hdnh. Vitit phuong TRTIONG THPT CHUYEN H+TiNrr \\ + 3xt y :l -2x - 3 Cflu III 1t,O dtdmlTinh tich phdn: 1= Jxsint 3xdx. A Ciu IV g,O mdml Cho hinh ch6p S.ABCD c6 tf6y ln hinh vu6ng cgnh a, hinh chitiu vuOng g6c cria Sten d6y trirng vdi trgng tam cria tam giric ABD, c4nh SB tp voi il6y mQt g6c 60". Tinh the tfch khdi ch6p S.ABCDvd khoang c6ch giiia hai dutmg thing SA, CD. ' Cfl,+V lt,OAid^)Choc6cstith$cayth6amdndiAuki$n 4x2 +2ry*y'=3.Timgi6trilonnhdtvigi6 tri nh6 nhAt cria bi6u thrlc P = x2 +2"y - y' pnAN nftNc (3,0 ilidmlz Thi sinh chi tlugc lim m$t trong hai phin (phAn A ho{c B) A. Theo chuong trinh ChuAn Ciu VI.a 1ZP Aieml I . Trong mpt phing vdi h€ tqa dQ pxy, cho tam gi6c ABC. c6 ttinh A(3; 4), trgc tdm H(l ; 3) vd t6m . ducrng trdn ngogi tii5p l(2; O;. Vii5t phuong trinh ttuong thing BC. 2. Trong khdng gian vOi hQ tqa dQ Oxyz, cho cdc tli6m e1t; 4; -3), B(4; 0; l) ,vd duong thing c,t= 6 ='=1. =+.X6cfuhc6cifi6mC,DsaochoABCDhhinhthoibi6ttgngDnimtr6nd. . t -: z r 3 x alni*zi_S) CAu VII.a 1t,o aidm|Ciai UAtphuong trinh: log, +. rcgr-I1>-Z - ,rx -i'+r L(3;-f) 1). B. Theo chu{rng frinh Neng cao Cfiu VI.b (2,0 iti6m) l. Trong m[t phing vdi he tga d0 Oxy, cho A(4;t), B(3; -l). Gsi C, D li hai di6m thu$c trinh duong th[ng CD. in e d, * .2 = Y;2 ='*=' vi m[t phang 2. Trong kh6ng gian voi h$ tqa dQ Oxyz, cho tludng thi I Z _ I (p): 2x+ 2y - z -4 = 0 . Tam gi6c ABC c6 dinh A(-l ;2; l'), o6c dirrh B, c nim tr6n (P) vd trgng tiim G nim tr0n d. Tfnh dO dei ducrngtrung tuy6n cia tam gi6c ABC kd tir tlinh A. Cf,u VII.b 1t,o mdmlOiut ono*rg trinh: logr(x- 2)2 + logo ;z:; + 3 = 0. Thi sinh khilngilugt'c sth dqrng tdi liPu. Cdn b0 c9! thi khbng gidi thich gi thAm. Hovit€nthisinhi, ; ;S6b6odanh f z*t 2. Giei hg phuo-ng trinh: I L"Y' . tli6m e1t; 4; -3 ), B( 4; 0; l) ,vd duong thing c,t= 6 =' =1. =+.X6cfuhc6cifi6mC,DsaochoABCDhhinhthoibi6ttgngDnimtr6nd. . t -: z r 3 x alni*zi_S) CAu VII.a 1t,o aidm|Ciai. ve hai, di€m (T) sao cho ABCD ld mQt hinh binh hdnh. Vitit phuong TRTIONG THPT CHUYEN H+TiNrr \ + 3xt y :l -2 x - 3 Cflu III 1t,O dtdmlTinh tich phdn: 1= Jxsint 3xdx. A Ciu. DB rHI THtrDAr Hec rAx r NAtrr 2or3 Mdn: TOAN; Kh0i: B ;D Thdi gian ldm bdi: I B0 phut, khdng ke thdt gian phdt di pHArv cHUNG cHo rAr cA rni