Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
2,37 MB
Nội dung
GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An ôn tập vào lớp 10 năm học 2011-2012 (su tầm) Bài 1: Cho biểu thức : + + + + = 6 5 3 2 aaa a P a2 1 a) Rút gọn P b) Tìm giá trị của a để P<1 Bài 2: Cho biểu thức : P= + + + a a aa a a aa 1 1 . 1 1 a) Rút gọn P b) Tìm a để P< 347 Bài 3: Cho biểu thức: P = + + + 1 3 22 : 9 33 33 2 x x x x x x x x a) Rút gọn P b) Tìm x để P< 2 1 c) Tìm giá trị nhỏ nhất của P Bài 4 : 1) Đơn giản biểu thức : P = 14 6 5 14 6 5+ + . 2) Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + a) Rút gọn biểu thức Q. b) Tìm x để Q > - Q. c) Tìm số nguyên x để Q có giá trị nguyên. H ớng dẫn : 1. P = 6 2. a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : Q = 1 2 x . b) Q > - Q x > 1. c) x = { } 3;2 thì Q Z Bài 5 : Cho biểu thức P = 1 x x 1 x x + + a) Rút gọn biểu thức sau P. b) Tính giá trị của biểu thức P khi x = 1 2 . H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : P = x x + 1 1 . b) Với x = 1 2 thì P = - 3 2 2 . 1 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An Bài 6 : Cho biểu thức : A = 1 1 1 1 + + x x x xx a) Rút gọn biểu thức sau A. b) Tính giá trị của biểu thức A khi x = 4 1 c) Tìm x để A < 0. d) Tìm x để A = A. H ớng dẫn : a) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : A = 1x x . b) Với x = 4 1 thì A = - 1. c) Với 0 x < 1 thì A < 0. d) Với x > 1 thì A = A. Bài 7 : Cho biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + a) Rút gọn biểu thức sau A. b) Xác định a để biểu thức A > 2 1 . H ớng dẫn : a) ĐKXĐ : a > 0 và a 9. Biểu thức rút gọn : A = 3 2 +a . b) Với 0 < a < 1 thì biểu thức A > 2 1 . Bài 8 : Cho biểu thức: A = 2 2 x 1 x 1 x 4x 1 x 2003 . x 1 x 1 x 1 x + + + ữ + . 1) Tìm điều kiện đối với x để biểu thức có nghĩa. 2) Rút gọn A. 3) Với x Z ? để A Z ? H ớng dẫn : a) ĐKXĐ : x 0 ; x 1. b) Biểu thức rút gọn : A = x x 2003+ với x 0 ; x 1. c) x = - 2003 ; 2003 thì A Z . Bài 9 : Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . a) Rút gọn A. b) Tìm x để A < 0. c) Tìm x nguyên để A có giá trị nguyên. H ớng dẫn : 2 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 1 + x x . b) Với 0 < x < 1 thì A < 0. c) x = { } 9;4 thì A Z. Bài 37 : Cho biểu thức: A = x 2 x 1 x 1 : 2 x x 1 x x 1 1 x + + + ữ ữ + + a) Rút gọn biểu thức A. b) Chứng minh rằng: 0 < A < 2. H ớng dẫn : a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A = 1 2 ++ xx b) Ta xét hai trờng hợp : +) A > 0 1 2 ++ xx > 0 luôn đúng với x > 0 ; x 1 (1) +) A < 2 1 2 ++ xx < 2 2( 1++ xx ) > 2 xx + > 0 đúng vì theo gt thì x > 0. (2) Từ (1) và (2) suy ra 0 < A < 2(đpcm). Bài 10 : Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. H ớng dẫn : a) ĐKXĐ : a 0, a 4. Biểu thức rút gọn : P = 2 4 a b) Ta thấy a = 9 ĐKXĐ . Suy ra P = 4 Bài 11 : Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. H ớng dẫn : a) ĐKXĐ : a 0, a 1. Biểu thức rút gọn : N = 1 a . b) Ta thấy a = - 2004 ĐKXĐ . Suy ra N = 2005. Bài 12 : Cho biểu thức 3x 3x 1x x2 3x2x 19x26xx P + + + + = a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất 3 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An đó. H ớng dẫn : a ) ĐKXĐ : x 0, x 1. Biểu thức rút gọn : 3x 16x P + + = b) Ta thấy 347x = ĐKXĐ . Suy ra 22 33103 P + = c) P min =4 khi x=4. Bài 13 : Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn : a. ) ĐKXĐ : x 0, x 9. Biểu thức rút gọn : 3x 3 P + = b. Với 9x0 < thì 2 1 P < c. P min = -1 khi x = 0 Bài 14: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bài 15: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x + ữ ữ ữ ữ + + với x 0 , x 9, x 4 . a. Rút gọn A. b. x= ? Thì A < 1. c. Tìm x Z để A Z (KQ : A= 3 2x ) Bài 16: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x + + + + với x 0 , x 1. a. Rút gọn A. b. Tìm GTLN của A. c. Tìm x để A = 1 2 d. CMR : A 2 3 . (KQ: A = 2 5 3 x x + ) 4 GV: M¹c TuÊn Tó Trêng THCS §øc Thµnh-Yªn Thµnh-NghÖ An Bµi 17: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x+ + ) Bµi 18: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A≤ ≤ ( KQ : A = 1 x x x− + ) Bµi 19: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x − − + − − − + ÷ ÷ ÷ ÷ − + − + − a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ ( KQ : A = 5 3x + ) Bµi 20: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. b. T×m a ®Ó A < 1 c. T×m a Z∈ ®Ó A Z∈ ( KQ : A = 1 3 a a + − ) Bµi 21: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x − + + − + − − ÷ ÷ ÷ ÷ − − − − + víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi22: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y − + − − ÷ + ÷ − − + víi x ≥ 0 , y ≥ 0, x y≠ a. Rót gän A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y− + ) 5 GV: M¹c TuÊn Tó Trêng THCS §øc Thµnh-Yªn Thµnh-NghÖ An Bµi 23 : Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x − + + − − + − + ÷ ÷ ÷ − + − + Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 24 : Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x − + ÷ + − ÷ ÷ ÷ − − − víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 1 x− ) Bµi 25 : Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x + − + ÷ ÷ − + − + víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 3 2 x ) Bµi 26 : Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x + + − − ÷ ÷ ÷ − + + − víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ (KQ: A = 3 x x − ) Bµi 27: Cho A= 1 2 2 1 2 : 1 1 1 1 x x x x x x x x − − − ÷ ÷ ÷ − + − + − − víi x ≥ 0 , x ≠ 1. a. Rót gän A. b. T×m x Z ∈ ®Ó A Z∈ c. T×m x ®Ó A ®¹t GTNN . (KQ: A = 1 1 x x − + ) Bµi 28 : Cho A = 2 3 3 2 2 : 1 9 3 3 3 x x x x x x x x + − + − − ÷ ÷ ÷ ÷ − + − − víi x ≥ 0 , x ≠ 9 . a. Rót gän A. b. T×m x ®Ó A < - 1 2 ( KQ : A = 3 3a − + ) Bµi 29 : Cho A = 1 1 8 3 1 : 1 1 1 1 1 x x x x x x x x x x + − − − − − − ÷ ÷ ÷ ÷ − − − + − víi x ≥ 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5− (KQ: A = 4 4 x x + ) 6 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An c . CMR : A 1 Bài 30 : Cho A = 1 1 1 : 1 2 1 x x x x x x + + ữ + với x > 0 , x 1. a. Rút gọn A (KQ: A = 1x x ) b.So sánh A với 1 Bài 31 : Cho A = 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x x x x x + ữ ữ ữ ữ + + Với 1 0, 9 x x a. Rút gọn A. b. Tìm x để A = 6 5 c. Tìm x để A < 1. ( KQ : A = 3 1 x x x + ) Bài 32: Cho A = 2 2 2 2 1 . 1 2 2 1 x x x x x x x + + ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. CMR nếu 0 < x < 1 thì A > 0 c. Tính A khi x =3+2 2 d. Tìm GTLN của A (KQ: A = (1 )x x ) Bài 33 : Cho A = 2 1 1 : 2 1 1 1 x x x x x x x x + + + ữ ữ + + với x 0 , x 1. a. Rút gọn A. b. CMR nếu x 0 , x 1 thì A > 0 , (KQ: A = 2 1x x+ + ) Ph ơng trình bậc hai định lý viet và ứng dụng A.Ki n th c c n ghi nh 1. bin lun s cú nghim ca phng trỡnh : ax 2 + bx + c = 0 (1) trong ú a,b ,c ph thuc tham s m,ta xột 2 trng hp a)Nu a= 0 khi ú ta tỡm c mt v i giỏ tr n o ú ca m ,thay giỏ tr ú v o (1).Phng trỡnh (1) tr th nh ph ng trỡnh bc nht nờn cú th : - Cú mt nghim duy nht - hoc vụ nghim - hoc vụ s nghim 7 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An b)Nu a 0 Lp bit s = b 2 4ac hoc / = b /2 ac * < 0 ( / < 0 ) thỡ phng trỡnh (1) vụ nghim * = 0 ( / = 0 ) : phng trỡnh (1) cú nghim kộp x 1,2 = - a b 2 (hoc x 1,2 = - a b / ) * > 0 ( / > 0 ) : phng trỡnh (1) cú 2 nghim phõn bit: x 1 = a b 2 ; x 2 = a b 2 + (hoc x 1 = a b // ; x 2 = a b // + ) 2. nh lý Viột. Nu x 1 , x 2 l nghi m ca phng trỡnh ax 2 + bx + c = 0 (a 0) thỡ S = x 1 + x 2 = - a b p = x 1 x 2 = a c o lại: Nu cú hai s x 1 ,x 2 m x 1 + x 2 = S v x 1 x 2 = p thỡ hai s ú l nghi m (nu có ) của phơng trình bậc 2: x 2 S x + p = 0 3.Dấu của nghiệm số của phơng trình bậc hai. Cho phơng trình bậc hai ax 2 + bx + c = 0 (a 0) . Gọi x 1 ,x 2 là các nghiệm của phơng trình .Ta có các kết quả sau: x 1 và x 2 trái dấu( x 1 < 0 < x 2 ) p < 0 Hai nghiệm cùng dơng( x 1 > 0 và x 2 > 0 ) > > 0 0 0 S p Hai nghiệm cùng âm (x 1 < 0 và x 2 < 0) < > 0 0 0 S p Một nghiệm bằng 0 và 1 nghiệm dơng( x 2 > x 1 = 0) > = > 0 0 0 S p Một nghiệm bằng 0 và 1 nghiệm âm (x 1 < x 2 = 0) < = > 0 0 0 S p 4.Vài bài toán ứng dụng định lý Viét a)Tính nhẩm nghiệm. 8 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An Xét phơng trình bậc hai: ax 2 + bx + c = 0 (a 0) Nếu a + b + c = 0 thì phơng trình có hai nghiệm x 1 = 1 , x 2 = a c Nếu a b + c = 0 thì phơng trình có hai nghiệm x 1 = -1 , x 2 = - a c Nếu x 1 + x 2 = m +n , x 1 x 2 = mn và 0 thì phơng trình có nghiệm x 1 = m , x 2 = n hoặc x 1 = n , x 2 = m b) Lập phơng trình bậc hai khi biết hai nghiệm x 1 ,x 2 của nó Cách làm : - Lập tổng S = x 1 + x 2 - Lập tích p = x 1 x 2 - Phơng trình cần tìm là : x 2 S x + p = 0 c)Tìm điều kiện của tham số để phơng trình bậc 2 có nghệm x 1 , x 2 thoả mãn điều kiện cho trớc.(Các điều kiện cho trớc thờng gặp và cách biến đổi): *) x 1 2 + x 2 2 = (x 1 + x 2 ) 2 2x 1 x 2 = S 2 2p *) (x 1 x 2 ) 2 = (x 1 + x 2 ) 2 4x 1 x 2 = S 2 4p *) x 1 3 + x 2 3 = (x 1 + x 2 ) 3 3x 1 x 2 (x 1 + x 2 ) = S 3 3Sp *) x 1 4 + x 2 4 = (x 1 2 + x 2 2 ) 2 2x 1 2 x 2 2 *) 21 21 21 11 xx xx xx + =+ = p S *) 21 2 2 2 1 1 2 2 1 xx xx x x x x + =+ = p pS 2 2 *) (x 1 a)( x 2 a) = x 1 x 2 a(x 1 + x 2 ) + a 2 = p aS + a 2 *) 2 21 21 21 2 ))(( 2 11 aaSp aS axax axx axax + = + = + (Chú ý : các giá trị của tham số rút ra từ điều kiện cho trớc phải thoả mãn điều kiện 0 ) d)Tìm điều kiện của tham số để phơng trình bậc hai có một nghiệm x = x 1 cho trớc .Tìm nghiệm thứ 2 Cách giải: Tìm điều kiện để phơng trình có nghiệm x= x 1 cho trớc có hai cách làm +) Cách 1:- Lập điều kiện để phơng trình bậc 2 đã cho có 2 nghiệm: 0 (hoặc 0 / ) (*) - Thay x = x 1 vào phơng trình đã cho ,tìm đợc giá trị của tham số - Đối chiếu giá trị vừa tìm đợc của tham số với điều kiện(*) để kết luận +) Cách 2: - Không cần lập điều kiện 0 (hoặc 0 / ) mà ta thay luôn x = x 1 vào phơng trình đã cho, tìm đợc giá trị của tham số - Sau đó thay giá trị tìm đợc của tham số vào phơng trình và giải phơng trình Chú ý : Nếu sau khi thay giá trị của tham số vào phơng trình đã cho mà phơng trình bậc hai này có < 0 thì kết luận không có giá trị nào của tham số để phơng trình có nghiệm x 1 cho trớc. Đê tìm nghiệm thứ 2 ta có 3 cách làm +) Cách 1: Thay giá trị của tham số tìm đợc vào phơng trình rồi giải phơng trình (nh cách 2 trình bầy ở trên) 9 GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An +) Cách 2 :Thay giá trị của tham số tìm đợc vào công thức tổng 2 nghiệm sẽ tìm đợc nghiệm thứ 2 +) Cách 3: thay giá trị của tham số tìm đợc vào công thức tích hai nghiệm ,từ đó tìm đợc nghiệm thứ 2 B . Bài tập áp dụng Bài 1: Giải và biện luận phơng trình : x 2 2(m + 1) +2m+10 = 0 Giải. Ta có / = (m + 1) 2 2m + 10 = m 2 9 + Nếu / > 0 m 2 9 > 0 m < - 3 hoặc m > 3 .Phơng trình đã cho có 2 nghiệm phân biệt: x 1 = m + 1 - 9 2 m x 2 = m + 1 + 9 2 m + Nếu / = 0 m = 3 - Với m =3 thì phơng trình có nghiệm là x 1.2 = 4 - Với m = -3 thì phơng trình có nghiệm là x 1.2 = -2 + Nếu / < 0 -3 < m < 3 thì phơng trình vô nghiệm Kết kuận: Với m = 3 thì phơng trình có nghiệm x = 4 Với m = - 3 thì phơng trình có nghiệm x = -2 Với m < - 3 hoặc m > 3 thì phơng trình có 2 nghiệm phân biệt x 1 = m + 1 - 9 2 m x 2 = m + 1 + 9 2 m Với -3< m < 3 thì phơng trình vô nghiệm Bài 2: Giải và biện luận phơng trình: (m- 3) x 2 2mx + m 6 = 0 Hớng dẫn Nếu m 3 = 0 m = 3 thì phơng trình đã cho có dạng - 6x 3 = 0 x = - 2 1 * Nếu m 3 0 m 3 .Phơng trình đã cho là phơng trình bậc hai có biệt số / = m 2 (m 3)(m 6) = 9m 18 - Nếu / = 0 9m 18 = 0 m = 2 .phơng trình có nghiệm kép x 1 = x 2 = - 32 2 / = a b = - 2 - Nếu / > 0 m >2 .Phơng trình có hai nghiệm phân biệt x 1,2 = 3 23 m mm - Nếu / < 0 m < 2 .Phơng trình vô nghiệm Kết luận: Với m = 3 phơng trình có nghiệm x = - 2 1 Với m = 2 phơng trình có nghiệm x 1 = x 2 = -2 Với m > 2 và m 3 phơng trình có nghiệm x 1,2 = 3 23 m mm 10 [...]... hình bình hành ( vì có hai cạnh đối song song và bằng nhau) 4 Tứ giác OBNP là hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta cũng có PM OJ ( PM là tiếp tuyến ), mà ON và PM cắt nhau tại I nên I là trực tâm tam giác POJ (6) Dễ thấy tứ giác AONP là hình chữ nhật vì có PAO = AON = ONP = 900 => K là trung điểm của PO ( t/c đờng chéo hình chữ nhật) (6) AONP là hình chữ nhật => APO = NOP... trên đoạn thẳng cố định nào Lời giải: 1 Ta có OMP = 900 ( vì PM AB ); ONP = 900 (vì NP là tiếp tuyến ) Nh vậy M và N cùng nhìn OP dới một góc bằng 900 => M và N cùng nằm trên đờng tròn đờng kính OP => Tứ giác OMNP nội tiếp 2 Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn cung OM) Tam giác ONC cân tại O vì có ON = OC = R => ONC = OCN => OPM = OCM Xét hai tam giác OMC và MOP ta có MOC = OMP = 900;... (gt) => EC2 = AC BC EC2 = 10. 40 = 400 => EC = 20 cm Theo trên EC = MN => MN = 20 cm 4 Theo giả thi t AC = 10 Cm, CB = 40 Cm => AB = 50cm => OA = 25 cm Ta có S(o) = OA2 = 252 = 625 ; S(I) = IA2 = 52 = 25 ; S(k) = KB2 = 202 = 400 1 Ta có diện tích phần hình đợc giới hạn bởi ba nửa đờng tròn là S = ( S(o) - S(I) - S(k)) 2 1 1 S = ( 625 - 25 - 400 ) = 200 = 100 314 (cm2) 2 2 Bài 15 Cho... x+1=0=> x=1 Xét 2m -10= > m 1/2 khi đó ta có , = m2-2m+1= (m-1)20 mọi m=> pt có nghiệm với mọi m ta thấy nghiệm x=1 không thuộc (-1,0) m m +1 1 = 2m 1 2m 1 1 pt có nghiệm trong khoảng (-1,0)=> -1< 0 >0 => 2m 1 =>m BE AC => BEA = 900 AD là đờng cao => AD BC => BDA = 900 O Nh vậy E và D cùng nhìn AB dới một góc 900 => E và D cùng nằm trên 1 đờng tròn đờng kính AB 2 Vậy bốn điểm A, E, D, B cùng nằm trên một đờng tròn E 3 H 3 Theo giả thi t tam giác ABC cân tại A có AD là đờng cao nên cũng là đờng trung tuyến =>... tích hai nghiệm 4 9 3 m3 21 21 21 7 = 4 = x1 x2 = => x2 = : x1 = :3= 9 m 9 9 9 9 4 Cách 3: Thay m = - Bài 10: Cho phơng trình : x2 + 2kx + 2 5k = 0 (1) với k là tham số 1.Tìm k để phơng trình (1) có nghiệm kép 2 Tim k để phơng trình (1) có 2 nghiệm x1 , x2 thoả mãn điều kiện : x12 + x22 = 10 Giải 1.Phơng trình (1) có nghiệm kép / = 0 k2 (2 5k) = 0 k2 + 5k 2 = 0 ( có = 25 + 8 = 33 > 0 ) 5... điều kiện để phơng trình (1) có nghiệm: 2 / 0 k + 5k 2 0 (*) 2 + x 2 = (x + x )2 2x x Ta có x1 2 1 2 1 2 Theo bài ra ta có (x1 + x2)2 2x1x2 = 10 Với điều kiện(*) , áp dụng hệ trức vi ét: x1 + x2 = - b = - 2k và x1x2 = 2 5k a Vậy (-2k)2 2(2 5k) = 10 2k2 + 5k 7 = 0 (Có a + b + c = 2+ 5 7 = 0 ) => k1 = 1 , k2 = - 7 2 Để đối chiếu với điều kiện (*) ta thay lần lợt k1 , k2 vào / = k2 + 5k 2... thuộc vào vị trí của điểm M 4 ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy trên đờng thẳng cố định vuông góc với CD tại D Vì M chỉ chạy trên đoạn thẳng AB nên P chỉ chạy trên doạn thẳng A B song song và bằng AB => Bài 13 Cho tam giác ABC vuông ở A (AB > AC), đờng cao AH Trên nửa mặt phẳng bờ BC chứa điển A , Vẽ nửa đờng tròn đờng kính BH cắt AB tại E, Nửa đờng tròn đờng kính HC cắt AC tại F... (x1 x2)2 = S2 4p => B = x1 x2 = S 2 4 p = 37 +C= 1 1 (x + x ) 2 S 2 1 + = = = 1 2 x1 1 x 2 1 ( x1 1)( x 2 1) p S + 1 9 + D = (3x1 + x2)(3x2 + x1) = 9x1x2 + 3(x12 + x22) + x1x2 = 10x1x2 + 3 (x12 + x22) = 10p + 3(S2 2p) = 3S2 + 4p = - 1 b)Ta có : 1 1 1 + = (theo câu a) x1 1 x 2 1 9 1 1 1 = = p= ( x1 1)( x 2 1) p S + 1 9 1 1 Vậy và là nghiệm của hơng trình : x1 1 x2 1 1 1 X2 SX + p... giác MBID nên MBID là tứ giác nội tiếp 2 Theo giả thi t M là trung điểm của AB; DE AB tại M nên M cũng là trung điểm của DE (quan hệ đờng kính và dây cung) => Tứ giác ADBE là hình thoi vì có hai đờng chéo vuông góc với nhau tại trung điểm của mỗi đờng 3 ADC = 900 ( nội tiếp chắn nửa đờng tròn ) => AD DC; theo trên BI DC => BI // AD (1) 4 Theo giả thi t ADBE là hình thoi => EB // AD (2) Từ (1) và . GV: Mạc Tuấn Tú Trờng THCS Đức Thành-Yên Thành-Nghệ An ôn tập vào lớp 10 năm học 2011 -2012 (su tầm) Bài 1: Cho biểu thức : + + + + = 6 5 3 2 aaa a P a2 1 a) Rút gọn P b) Tìm. Bài tập áp dụng Bài 1: Giải và biện luận phơng trình : x 2 2(m + 1) +2m +10 = 0 Giải. Ta có / = (m + 1) 2 2m + 10 = m 2 9 + Nếu / > 0 m 2 9 > 0 m < - 3 hoặc m >. (3x 1 + x 2 )(3x 2 + x 1 ) = 9x 1 x 2 + 3(x 1 2 + x 2 2 ) + x 1 x 2 = 10x 1 x 2 + 3 (x 1 2 + x 2 2 ) = 10p + 3(S 2 2p) = 3S 2 + 4p = - 1 b)Ta có : S = 9 1 1 1 1 1 21 = + xx