1. Trang chủ
  2. » Giáo án - Bài giảng

NUMERICAL ANALYSIS PROBLEM DIFERENTIAL EQUATIONS II

14 143 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 154,83 KB

Nội dung

WEBSITE : http://maths-minhthe.violet.vn NUMERICAL ANALYSIS PROBLEM DIFFERENTIAL EQUATION II 6200 1. Answer : From the figure above, we have : T T T T T T T min T min min T h T 1 1 c s (c s) cot cot ,c h , : the radius of the inscribed circle 2 2 2 2 Let the three int erior angles of T be a b c h 1 1 cot cot 2 2 2 2 We have : by a cons tant for all h h T then for som α β = + − = ρ + ρ = ρ θ = α ≤ β ≤ γ ⇒ ≤ ≤ α β ⇒ = + ρ θ ≤ θ ⇔ θ ≤ α ≤ β ≤ γ θ ∀ ∈ Τ ≤ σ ρ T T min T T min min e h 1 1 We have : cot cot 2 2 2 2 Because and cot is a decrea sing function so h 1 1 cot cot 2 2 2 2 cot cot where cot 2 2 2 σ α β = + ρ θ ≤ α ≤ β α α ≤ + ρ α θ θ ≤ ≤ σ = 2. Answer : a) Difference between regular and uniform grid T T T h T T T h Regular : , such that h h h,where h maxh ,T h Uniform grid : , h max h , K 0 K The regular grid is stronger than the uniform grid b)The mesh in the figure includes both uniform and regular grid ≤ σ ∃α α ≤ ≤ = ∈ Τ ρ ≤ σ = > 3. Answer : j j j 1 j 1 j 1 1 j z j 1 z z j h a)Show that tan x 2 h tan x 2 h h tan dx tan .x 2 2 We know that : 1 h h tan .x 1 x tan 2 2 h This is true when we have known that z tan , 0 2 − − − − − ∂   φ = θ   ∂   ∂   φ = θ   ∂       ⇒ φ = θ = θ         φ =   ⇔ θ = ⇒ = θ       = θ     ∫ ( ) 2 2 j I b)Consider the function u(x,y) y . Its linear int erpo tant vanishes at z and equals h / 4 at the two other vertices Show that h u u x 2tan = ∂ − = ∂ θ ( ) ( ) j j j j j I 2 2 z I z 2 z 2 z z j Answer : h u u x 2tan h With u(x,y) y (u) 4 h h u u dx .x 2tan 2tan We know that : h (u) 4 h h h .x x tan 2tan 4 2 h This is true when we have known that z tan , 0 2 From the parts above, we can see that Genera ∂ − = ∂ θ = ⇒ φ = ⇒ − = = θ θ φ = ⇔ = ⇒ = θ θ   = θ     ∫ lly, then the are of traingle T,which have creat ed by (0,h / 2);(0, h / 2) and (h / 2tan ,0) is− θ j j 2 z 2 0 z 1 h h 1 h h h (u) . . tan . . tan tan 2 2 2 2 2 2 4 h Hence, if (u) then tan 1 45 4 But, we have the shape regularity condition : φ = θ + θ = θ φ = θ = ⇒ θ = T min T min h cot cot 2 2 1 tan 2 θ θ = ≤ ρ ≤ θ min T T 0 min min tan tan 2 h 2 45 tan 1 Thus,the tan may be cause large error θ ρ θ ⇔ ≤ = θ ≤ θ = θ ≤ θ 4. " Consider the BVP problem : find a periodic funct ion u such that u (x) f(x) on ( 1,1 )− = Ω = − a) State the weak formulation a(u,v) (v) =  Answer : First. We multiply the equation by test function v(x) [ ] " 1 1 1 " 1 1 ' " ' 1 1 " ' ' ' 1 1 1 ' ' ' ' 1 u v fv on ( 1,1 ), v H ( 1,1 ) We compute the weak form by int egrating over 1,1 u v dx fv dx Set p v dp v dx dq u dx q u 1 So : u v dx u .v u v dx 1 u (1).v(1) u ( 1).v( 1) u v dx Where we have used t − − − − − − = Ω = − ∈ − − − = = ⇒ = = ⇒ = − = − + = − = − + − − + ∫ ∫ ∫ ∫ ∫ ' ' 1 1 ' ' 1 1 1 2 1 hat u( 1) u(1) 0 u ( 1) u (1) 0 Hence, a(u,v) u v dx , (v) fv dx u( 1) u(1) 0 f L and f dx 0 so u c is a solution − − − − = = ⇒ − = = = = − = = ∈ = + ∫ ∫ ∫  b) Use the Lax-Milgram theorem to prove the existence and stability of the solution Recall : The Lax–Milgram theorem This is a formulation of the Lax–Milgram theorem which relies on properties of the symmetric part of the bilinear form. It is not the most general form. Let V be a Hilbert space and a bilinear form on V , which is 1. bounded: and 2. coercive: there is a unique solution to the equation a ( u , v ) = l ( v ) Answer : + We will prove the property 1 : bounded: We have ( ) 1 1 ' ' 1 1 1 a(u,v) u v dx , (v) fv dx ,H H − − = = = Ω ∫ ∫  1 1 ' ' ' ' 1 1 1/2 1/2 1 1 2 2 ' ' 1 1 H H a(u,v) u v dx u v dx u dx v dx (applying to Cauchy Schazt inequality) C. u . v ,C 1 − − − − = ≤     ≤ −         ≤ = ∫ ∫ ∫ ∫ 1/2 1/2 1 1 1 2 2 1 1 1 (u) fv dx f dx v dx − − −     = ≤         ∫ ∫ ∫  2 2 L . H L . H f v ,C f C. v ≤ = ≤ + We continue to prove the property 2 : coercive: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 L L 2 x x 2 2 ' 2 ' 1 1 2 2 2 2 2 2 ' L L We will prove the Poincare inequality : u C. u , u H We see that u (x) u( 1) u (t)dt 2 u ( 1) u (t) dt for 1 x 1 ( We have used Cauchy 's inequality : a b 2 a b ) We have : u 2. u ( 1) u For Ω Ω − − Ω Ω ≤ ∇ ∀ ∈ Ω     = − + ≤ − +         − < < + ≤ + ≤ − + ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 2 2 2 2 2 L L L L L 2 L 1 1 L 2 2 ' L L 2 2 2 2 2 2 ' ' ' ' H 2 ' ' ' 2 H 1 1 u H with u( 1) u(1) 0 u 0 , is boundary u 2 u Poincare inequality means : u u u u 2 u 3 u 3a u,u Where a(u,u) uu dx u 1 Thus, a u,u u 3 ! u H such that a u,u (u), v H Ω Ω Ω Ω Ω Ω Γ Ω Ω Ω Ω Ω ∈ Ω − = = ⇒ = Γ ⇒ ≤ ≤ + ≤ + = = = = ≥ ⇒ ∃ ∈ Ω = ∀ ∈ ∫  ( ) Ω c) 0o 1 2 n n h n n n n n ij ji j i i j n n h i i i i n n i i i 1 i 1 i n n n 1 n i i i 1 i n h 1 n 2 Partition as 1 x x x . . . x 1 u H H a(u ,v ) (v ) , v H The stiffness matrix is symmetric if A A a( , ) a( , ) We have u u u u u u ( ) u So H span , , . = ≠ ≠ ≠ ≠ Ω − = < < < < = ∈ ⊂ = ∀ ∈ = ⇔ φ φ = φ φ = ϕ = ϕ + ϕ + ϕ = ϕ + ϕ + ϕ = ϕ + ϕ ϕ ∑ ∑ ∑  { } n 1 . . , − ϕ ij ij ij i 1,j ij i 1,j i,j 1 ij i,j 1 u u f u 4u u u 4u u 6 6 + + − + + = + + + + ⇔ + Thus, 2 ij 1 4 1 h A 4 16 4 36 1 4 1     =       . This stiffness matrix is symmetric d) Set up a set equations based on finite differenc es 1 0 1 1 2 3 4 j j i i ij From the figure above ,we have the equations : (1 y)(1 x) ; x(1 y) ; xy ; (1 x)y Using the Intergrating to compute K h ( )dx dy ; [0,h] [0,h] x x y y ϕ = − − ϕ = − ϕ = ϕ = − ∂ϕ ∂ϕ ∂ϕ ∂ϕ = + × ∂ ∂ ∂ ∂ ∫  1 0 1 1 1 1 1 11 3 3 1 1 2 2 0 0 K ( )dxdy ; [0,1] [0,1] x x y y 1 1 (1 y) (1 x) 2 h (1 y) (1 x) dxdy h h 3 0 3 0 3 ∂ϕ ∂ϕ ∂ϕ ∂ϕ = + = × ∂ ∂ ∂ ∂   − −   = − + − = + =       ∫ ∫ ∫   1 0 1 2 2 2 2 22 3 3 1 1 2 2 0 0 K h ( )dxdy x x y y 1 1 (1 y) x 2 h (1 y) x dxdy h h 3 0 3 0 3 ∂ϕ ∂ϕ ∂ϕ ∂ϕ = + ∂ ∂ ∂ ∂   −   = − + = + + =       ∫ ∫ ∫  1 0 1 3 3 3 3 33 3 3 1 1 2 2 0 0 K h ( )dxdy x x y y 1 1 (1 y) x 2 h (1 y) x dx dy h h 3 0 3 0 3 ∧ ∧ ∂ϕ ∂ϕ ∂ϕ ∂ϕ = + ∂ ∂ ∂ ∂   −   = − + = + + =       ∫ ∫ ∫  1 0 1 1 2 1 2 12 21 3 2 3 1 1 2 0 0 K K ( )dxdy ; [0,1] [0,1] x x y y 1 1 (1 y) x x 1 h (1 y) (1 x)x dxdy h h 3 0 2 3 0 2 ∂ϕ ∂ϕ ∂ϕ ∂ϕ = = + = × ∂ ∂ ∂ ∂     −   = − − + − = − + − =           ∫ ∫ ∫   [ ] 1 0 1 3 3 1 1 13 31 2 3 2 3 1 1 0 0 K K h ( )dxdy x x y y 1 1 1 1 y y x x 1 h (1 y)y (1 x)x dx dy h h 2 0 3 0 2 0 3 0 3 ∂ϕ ∂ϕ ∂ϕ ∂ϕ = = + ∂ ∂ ∂ ∂   = − − − − = − + − + = −     ∫ ∫ ∫  1 0 1 3 3 2 2 23 32 2 3 3 1 1 2 0 0 K K h ( )dxdy x x y y 1 1 y y x 1 h (1 y)y x dxdy h h 2 3 0 3 0 2 ∂ϕ ∂ϕ ∂ϕ ∂ϕ = = + ∂ ∂ ∂ ∂       = − − = − + + =           ∫ ∫ ∫  The element stiffness matrix 2 1 1 3 2 3 1 2 1 K h 2 3 2 1 1 2 3 2 3   −       ⇒ =       −     We have the matrix four the aparts so : ( ) ( ) ( ) ( ) ( ) ( ) ij i j 1 1 1 2 1 1 2 3 1 3 3 1 A a , 2 8 a , 4 3 3 1 a , . d x d y 2 1 a , 2 1 a , a , 3 1 3 1 1 A 3 8 3 3 1 3 1 = ϕ ϕ ⇒ ϕ ϕ = × = ⇒ ϕ ϕ = ∇ ϕ ∇ ϕ = × = = ϕ ϕ ϕ ϕ = ϕ ϕ = − − −     ⇒ =     − −   ∫ e) We have 1 ' ' 1 1 1 a(u,v) u (x)v (x)dx (v) f(x)v(x)dx a(.,.) is binear form − − = = ∫ ∫  0 1 n 1 n 1 x x . . . x x 1 − − = < < < < < [...]... u" L2 ( −1,1) Thus,Ce'a ' s lemma can be applied along the same lines to devive error estimates for finite element and u sin g higher order polynomials of the subspace Vh Bonus Problem 2 : From the figure above , we have the equations : N1(x,y) = (1 − y)(1 − x) ; N2 (x, y) = x(1 − y) ; N3 (x,y) = xy ;N4 (x, y) = (1 − x)y The stiffness matrix form :  ∂N ∂Nj ∂Ni ∂Nj  + K ij = ∫  i  dxdy i, j = 1 ,2... the local stencil 2 8 ×4 = 3 3 −1 −1 At B ,C,D,E : ×2 = 6 3 Thus, the local stencil for ∆ u u sin g the bilinears is : At A :  −1 1 K =  −1 3  −1  −1 8 −1 − 1 − 1  − 1  And computing as the problem 4c) we have the local stencil for the mass matrix is  1 4 1 h2   Thus, M = 36  4 16 4   1 4 1   . WEBSITE : http://maths-minhthe.violet.vn NUMERICAL ANALYSIS PROBLEM DIFFERENTIAL EQUATION II 6200 1. Answer : From the figure above, we have. matrix is symmetric d) Set up a set equations based on finite differenc es 1 0 1 1 2 3 4 j j i i ij From the figure above ,we have the equations : (1 y)(1 x) ; x(1 y) ; xy. polynomials of the subspace V + − ⇒ − ≤ Bonus Problem 2 : ( ) 1 2 3 4 1 j j i i ij 0 1 2 2 11 0 13 From the figure above ,we have the equations : N (x,y) (1 y)(1 x) ; N (x,y) x(1 y)

Ngày đăng: 02/11/2014, 13:00

w