Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 47 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
47
Dung lượng
1,87 MB
Nội dung
Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -1- PHßNG gi¸o dôc & dµo t¹o hËu léc §Ò thi chÝnh thøc KÌ THI GIẢI to¸n TRÊN MÁY TÍN NĂM 2007 Lớp 9 THCS Thời gian: 150 phút (Không kể thời gian giao đề) Ngày thi: 13/03/2007. Bài 1. (5 điểm) a) Tính giá trị của biểu thức lấy kết quả với 2 chữ số ở phần thập phân : N= 321930+ 291945+ 2171954+ 3041975 b) Tính kết quả đúng (không sai số) của các tích sau : P = 13032006 x 13032007 Q = 3333355555 x 3333377777 c) Tính giá trị của biểu thức M với α = 25 0 30', β = 57 o 30’ ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 M= 1+tgα 1+cotg β + 1-sin α 1-cos β . 1-sin 1-cos β α (Kết quả lấy với 4 chữ số thập phân) Bài 2. (5 điểm)Một người gửi tiết kiệm 100 000 000 đồng (tiền Việt Nam) vào một ngân hàng theo mức kỳ hạn 6 tháng với lãi suất 0,65% một tháng. a) Hỏi sau 10 năm, người đó nhận được bao nhiêu tiền (cả vốn và lãi) ở ngân hàng. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó. b) Nếu với số tiền trên, người đó gửi tiết kiệm theo mức kỳ hạn 3 tháng với lãi suất 0,63% một tháng thì sau 10 năm sẽ nhận được bao nhiêu tiền (cả vốn và lãi) ở ngân hàng. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó. (Kết quả lấy theo các chữ số trên máy khi tính toán) Bài 3. (4 điểm) Giải phương trình (lấy kết quả với các chữ số tính được trên máy) 130307+140307 1+x =1+ 130307-140307 1+x Bài 4. (6 điểm) Giải phương trình (lấy kết quả với các chữ số tính được trên máy) : x+178408256-26614 x+1332007 + x+178381643-26612 x+1332007 1= Bài 5. (4 điểm)Xác định các hệ số a, b, c của đa thức P(x) = ax 3 + bx 2 + cx – 2007 để sao cho P(x) chia hết cho (x – 13) có số dư là 2 và chia cho (x – 14) có số dư là 3. (Kết quả lấy với 2 chữ số ở phần thập phân) Bài 6. (6 điểm) Xác định các hệ số a, b, c, d và tính giá trị của đa thức. Q(x) = x 5 + ax 4 – bx 3 + cx 2 + dx – 2007 Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45. Biết rằng khi x nhận các giá trị lần lượt 1, 2, 3, 4 thì Q(x) có các giá trị tương ứng là 9, 21, 33, 45 (Kết quả lấy với 2 chữ số ở phần thập phân) Bài 7. (4 điểm)Tam giác ABC vuông tại A có cạnh AB = a = 2,75 cm, góc C = α = 37 o 25’. Từ A vẽ các đường cao AH, đường phân giác AD và đường trung tuyến AM. a) Tính độ dài của AH, AD, AM. b) Tính diện tích tam giác ADM. (Kết quả lấy với 2 chữ số ở phần thập phân) Bài 8. (6 điểm) D M A B C H Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -2- 1. Cho tam giác ABC có ba góc nhọn. Chúng minh rằng tổng của bình phương cạnh thứ nhất và bình phương cạnh thứ hai bằng hai lần bình phương trung tuyến thuộc cạnh thứ ba cộng với nửa bình phương cạnh thứ ba. 2. Bài toán áp dụng : Tam giác ABC có cạnh AC = b = 3,85 cm ; AB = c = 3,25 cm và đường cao AH = h = 2,75cm. a) Tính các góc A, B, C và cạnh BC của tam giác. b) Tính độ dài của trung tuyến AM (M thuộc BC) c) Tính diện tích tam giác AHM. (góc tính đến phút ; độ dài và diện tích lấy kết quả với 2 chữ số phần thập phân. Bài 9. (5 điểm)Cho dãy số với số hạng tổng quát được cho bởi công thức : ( ) ( ) n n n 13+ 3 - 13- 3 U = 2 3 với n = 1, 2, 3, ……, k, … a) Tính U 1 , U 2 ,U 3 ,U 4 ,U 5 ,U 6 ,U 7 ,U 8 b) Lập công thức truy hồi tính U n+1 theo U n và U n-1 c) Lập quy trình ấn phím liên tục tính U n+1 theo U n và U n-1 Bài 10. (5 điểm)Cho hai hàm số 3 2 y= x+2 5 5 (1) và 5 y = - x+5 3 (2) a) Vẽ đồ thị của hai hàm số trên mặt phẳng tọa độ của Oxy b) Tìm tọa độ giao điểm A(x A , y A ) của hai độ thị (kết quả dưới dạng phân số hoặc hỗn số) c) Tính các góc của tam giác ABC, trong đó B, C thứ tự là giao điểm của đồ thị hàm số (1) và độ thị của hàm số (2) với trục hoành (lấy nguyên kết quả trên máy) d) Viết phương trình đường thẳng là phân giác của góc BAC (hệ số góc lấy kết quả với hai chữ số ở phần thập phân) ĐÁP ÁN BIỂU ĐIỂM VÀ HƯỚNG DẪN CHẤM THI TOÁN 9 THCS Bài 1. (5 điểm) a) N = 567,87 1 điểm b) P = 169833193416042 1 điểm Q = 11111333329876501235 1 điểm c) M = 1,7548 2 điểm Bài 2.(5 điểm) a) Theo kỳ hạn 6 tháng, số tiền nhận được là : T a = 214936885,3 đồng 3 điểm b) Theo kỳ hạn 3 tháng, số tiền nhận được là : T b = 211476682,9 đồng 2 điểm Bài 3. (4 điểm) x = -0,99999338 4 điểm Bài 4. (6 điểm) X 1 = 175744242 2 điểm X 2 = 175717629 2 điểm 175717629 < x <175744242 2 điểm Bài 5. (4 điểm) X A = Y A = B = C = A = Phương trình đường phân giác góc ABC : y = A B C H M x y O Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -3- a = 3,69 b = -110,62 4 điểm c = 968,28 Bài 6. (6 điểm) 1) Xác định đúng các hệ số a, b, c, d a = -93,5 ; b = -870 ; c = -2962,5 ; d = 4211 4 điểm 2) P(1,15) = 66,16 0,5 điểm P(1,25) = 86,22 0,5 điểm P(1,35 = 94,92 0,5 điểm P(1,45) = 94,66 0,5 điểm Bài 7 (4 điểm) 1) AH = 2,18 cm 1 điểm AD = 2,20 cm 0,5 điểm AM = 2,26 cm 0,5 điểm 2) S ADM = 0,33 cm 2 2 điểm Bài 8 (6 điểm) 1. Chứng minh (2 điểm) : 2 2 2 a b = +HM +AH 2 ÷ 0,5 điểm 2 2 2 a c = -HM +AH 2 ÷ 0,5 điểm ( ) 2 2 2 2 2 a b +c = +2 HM +AH 2 0,5 điểm 2 2 2 2 a a b +c =2m 2 + 0,5 điểm 2. Tính toán (4 điểm) B = 57 o 48’ 0,5 điểm C = 45 o 35’ 0,5 điểm A = 76 o 37’ 0,5 điểm BC = 4,43 cm 0,5 điểm AM = 2,79 cm 1 điểm S AHM = 0,66 cm 2 1 điểm Bài 9 (5 điểm) a) U 1 = 1 ; U 2 = 26 ; U 3 = 510 ; U 4 = 8944 ; U 5 = 147884 U 6 = 2360280 ; U 7 = 36818536 ; U 8 = 565475456 1 điểm b) Xác lập công thức : U n+1 = 26U n – 166U n-1 2 điểm c) Lập quy trình ấn phím đúng 26 Shift STO A x 26 - 166 x 1 Shift STO B Lặp lại dãy phím x 26 - 166 x Alpha A Shift STO A x 26 - 166 x Alpha B Shift STO B 2 điểm Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -4- Bài 10 (5 điểm) a) Vẽ đồ thị chính xác 1 điểm b) A 39 5 x = =1 34 34 0,5 điểm A 105 3 y = =3 34 34 0,5 điểm c) B = α = 30 o 57’49,52" 0,25 điểm C = β = 59 o 2’10,48" 0,5 điểm A = 90 o d) Viết phương trình đường phân giác góc BAC : 35 y = 4x - 17 ( 2 điểm ) Hướng dẫn chấm thi : 1. Bảo đảm chấm khách quan công bằng và bám sát biểu điểm từng bài 2. Những câu có cách tính độc lập và đã có riêng từng phần điểm thì khi tính sai sẽ không cho điểm 3. Riêng bài 3 và bài 5, kết quả toàn bài chỉ có một đáp số. Do đó khi có sai số so với đáp án mà chỗ sai đó do sơ suất khi ghi số trên máy vào tờ giấy thi, thì cần xem xét cụ thể và thống nhất trong Hội đồng chấm thi để cho điểm. Tuy nhiên điểm số cho không quá 50% điểm số của bài đó. 4. Khi tính tổng số điểm của toàn bài thi, phải cộng chính xác các điểm thành phần của từng bài, sau đó mới cộng số điểm của 10 bài (để tránh thừa điểm hoặc thiếu điểm của bài thi) 5. Điểm số bài thi không được làm tròn số để khi xét giải thuận tiện hơn. Lời giải chi tiết Bài 1 (5 điểm) a) Tính trên máy được :N = 567,8659014 ≈ 567,87 b) Đặt x = 1303 ; y = 2006 ta có P = (x .10 4 + y)(x .10 4 + y + 1) Vậy P = x 2 .10 8 + 2xy .10 4 + x .10 4 + y 2 + y Tính trên máy rồi làm tính, ta có : x.10 8 = 169780900000000 2xy.10 4 = 52276360000 x.10 4 = 13030000 y 2 = 4024036 y = 2006 P = 169833193416042 Đặt A = 33333, B = 55555, C = 77777 ta có : Q = (A.10 5 + B)(A.10 5 + C) = A 2 .10 10 + AB.10 5 + AC.10 5 + BC Tính trên máy rồi làm tính, ta có : A 2 .10 10 = 11110888890000000000 AB.10 5 = 185181481500000 AC.10 5 = 259254074100000 B.C = 4320901235 Q = 11111333329876501235 c) Có thể rút gọn biểu thức 4 4 1+cosαsin β M= cosαsinβ hoặc tính trực tiếp M = 1,754774243 ≈ 1,7548 Bài 2 (5 điểm) Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -5- a) - Lãi suất theo định kỳ 6 tháng là : 6 x 0,65% = 3,90% - 10 năm bằng 10 x 12 =20 6 kỳ hạn Áp dụng công thức tính lãi suất kép, với kỳ hạn 6 tháng và lãi suất 0,65% tháng, sau 10 năm, số tiền cả vốn lẫn lãi là : 20 a 3,9 T =10000000 1+ = 214936885,3 100 ÷ đồng b) Lãi suất theo định kỳ 3 tháng là : 3 x 063% = 1,89% 10 năm bằng 10 x 12 =40 6 kỳ hạn Với kỳ hạn 3 tháng và lãi suất 0,63% tháng, sau 10 năm số tiền cả vốn lẫn lãi là : 40 a 1,89 T =10000000 1+ = 21147668,2 100 ÷ đồng Bài 3 (4 điểm)Đặt a = 130307, b = 140307, y = 1 + x (với y ≥0), ta có : 1 1a b y a b y a b y a b y+ = + − ⇔ + − − = Bình phương 2 vế được : ( ) ( ) 2 2 2 1a b y a b y a b y+ + − − − = ( ) 2 2 2 2 2 2 1 2 1 2 4 a a a b y a b y − ⇔ − = − ⇔ − = Tính được ( ) 2 2 2 2 2 1 4 1 : 4 4 a a y a b b − − = − = 2 2 2 4 1 4 4 1 1 1 4 4 a a b x y b b − − − = − = − = Tính trên máy : 2 2 4 130307 - 4 140307 - 1 0,99999338 4 140307 x × × = = − × Bài 4 (6 điểm)Xét từng số hạng ở vế trái ta có : ( ) 2 x + 178408256 - 26614 x+1332007 1332007 13307x= + − Do đó : 178408256 26614 1332007 1332007 13307x x x + − + = + − Xét tương tự ta có : 178381643 26612 1332007 1332007 13306x x x + − + = + − Vậy phương trình đã cho tương đương với phương trình sau : 1332007 13307 1332007 13306 1x x+ − + + − = Đặt 1332007y x= + , ta được phương trình : |y – 13307| + |y – 13306| = 1 (*) + Trường hợp 1 : y ≥ 13307 thì (*) trở thành (y – 13307) + (y – 13306) = 1 Tính được y = 13307 và x = 175744242 + Trường hợp 2 : y ≤ 13306 thì (*) trở thành –(y – 13307) – (y – 13306) = 1 Tính được y = 13306 và do đó x = 175717629 Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -6- + Trường hợp 3 : 13306 < y < 13307, ta có 13306 < 1332007 < 13307x + ⇒ 175717629 < x < 175744242 Đáp số : x 1 = 175744242 x 2 = 175717629 Với mọi giá trị thỏa mãn điều kiện : 175717629 < x < 175744242 (Có thể ghi tổng hợp như sau : 175717629 ≤ x ≤ 175744242) Bài 5 (4 điểm)Ta có : P(x) = Q(x)(x – a) + r ⇒ P(a) = r Vậy P(13) = a.13 3 + b.13 2 + c.13 – 2007 = 1 P(3) = a.3 3 + b.3 2 + c.3 – 2007 = 2 P(14) = a.14 3 + b.14 2 + c.14 – 2007 = 3 Tính trên máy và rút gọn ta được hệ ba phương trình : 2197. 169 13. 2008 27 9 3 2009 2744 196 14 2010 a b c a b c b c + + = + + = + + = Tính trên máy được :a = 3,693672994 ≈ 3,69;b = –110,6192807 ≈ –110,62;c = 968,2814519 ≈ 968,28 Bài 6 (6 điểm)Tính giá trị của P(x) tại x = 1, 2, 3, 4 ta được kết quả là : 1+a-b+c+d-2007=9 a-b+c+d=2015 (1) 32+16a-8b+4c+2d-2007=21 16a-8b+4c+2d=1996 (2) 243+81a-27b+9c+3d-2007=33 81a-27b+9c+3d=1797 (3) 1024+256a-64b+16c+4d-2007=45 256a-64b+16c ⇔ +4d=1028 (4) Lấy hai vế của phương trình (1) lần lượt nhân với 2, 3, 4 rồi trừ lần lượt vế đối vế với phương trình (2), phương trình (3), phương trình (4), ta được hệ phương trình bậc nhất 3 ẩn : -14a+6b-2c=2034 -78a+24b+6c=4248 -252a+60b-12c=7032 Tính trên máy được a = -93,5 ; b = -870 ; c = -2972,5 và d = 4211 Ta có P(x)=x 5 – 93,5x 4 + 870x 3 -2972,5x 2 + 4211x – 2007 Q(1,15) = 66,15927281 ≈ 66,16 Q(1,25) = 86,21777344 ≈ 86,22 Q(1,35) = 94,91819906 ≈ 94,92 Q(1,45) = 94,66489969 ≈ 94,66 Bài 7 (4 điểm) a) Dễ thấy · BAH = α ; · AMB = 2α ; · ADB = 45 o + α Ta có : AH = ABcosα = acosα = 2,75cos37 o 25’ = 2,184154248 ≈ 2,18 (cm) o o os 2,75 os37 25' 2,203425437 2,20( ) sin(45 ) sin(45 ) sin82 25' o o AH ac c AD cm α α α = = = = ≈ + + o o os 2,75 os37 25' 2,26976277 2,26( ) sin 2 ) sin 2 sin 74 50' AH ac c AM cm α α α = = = = ≈ b) ( ) 1 . 2 ADM S HM HD AH= − HM=AH.cotg2α ; HD = AH.cotg(45 o + α) A B C H D M Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -7- Vậy : ( ) 2 2 o 1 os cotg2 cotg(45 + ) 2 ADM S a c α α α = − ( ) 2 2 o o 1 2,75 os 37 25' cotg74 50' cotg82 25' 2 o ADM S c= − = 0,32901612 ≈ 0,33cm 2 Bài 8 (6 điểm) 1. Giả sử BC = a, AC = b, AB = c, AM = m a .Ta phải chứng minh:b 2 + c 2 = 2 a m + 2 2 a Kẻ thêm đường cao AH (H thuộc BC), ta có: AC 2 = HC 2 + AH 2 ⇒ b 2 = 2 2 a HM + ÷ + AH 2 AB 2 = BH 2 + AH 2 ⇒ c 2 = 2 2 a HM − ÷ + AH 2 Vậy b 2 + c 2 = 2 2 a + 2(HM 2 + AH 2 ). Nhưng HM 2 + AH 2 = AM 2 = 2 a m Do đó b 2 + c 2 = 2 2 a m + 2 2 a (đpcm) 2. a) sin B = h c = 2,75 3,25 ⇒ B = 57 o 47’44,78” b) sin C = h b = 2,75 3,85 ⇒ C = 45 o 35’4,89”; A = 180 o – (B+C) ⇒ A= 76 o 37’10,33” BH = c cos B; CH = b cos C ⇒ BC = BH + CH = c cos B + b cos C ⇒ BC = 3,25 cos 57 o 48’ + 3,85 cos 45 o 35’ = 4,426351796 ≈ 4,43cm b) AM 2 = 2 2 2 2( ) 4 b c BC+ − ⇒ AM 2 = 2 2 2 1 2( ) 2 a b BC+ − = 2,791836751 ≈ 2,79cm c) S AHM = 1 2 AH(BM – BH) = 1 2 .2,75 1 4,43 3.25 cos 57 48' 2 o − ÷ = 0,664334141 ≈ 0,66cm 2 Bài 9 (5 điểm) a) U 1 = 1 U 5 = 147884 U 2 = 26 U 6 = 2360280 U 3 = 510 U 7 = 36818536 U 4 = 8944 U 8 = 565475456 b) Đặt U n+1 = a.U n + b.U n-1 Theo kết quả tính được ở trên, ta có: 510 .26 .1 26a 510 8944 .510 .26 510a 26 8944 a b b a b b = + + = ⇔ = + + = Giải hệ phương trình trên ta được: a = 26,b = -166 Vậy ta có công thức: U n+1 = 26U n – 166U n-1 c) Lập quy trình bấm phím trên máy CASIO 500MS: Ấn phím: 26 Shift STO A x 26 - 166 x 1 Shift STO B Lặp lại dãy phím x 26 - 166 x Alpha A Shift STO A x 26 - 166 x Alpha B Shift STO B Bài 10 (5 điểm) c b m a A B C H M B thi mỏy tớnh Casio Biờn son: Phm Thanh Duy Trng THCS T An Khng Nam -8- a) Xem kt qu hỡnh bờn b) 3 12 5 5 5 5 3 39 5 1 34 34 5 3 5 3 3 34 3 ) tg 30 57'49,52" 5 5 tg 59 2'10,48" 3 90 90 A A o o o o x x x y c A + = + = = = + = = = = = + = = c) Phng trỡnh ng phõn giỏc gúc BAC cú dng y = ax + b Gúc hp bi ng phõn giỏc vi trc honh l , ta cú: ( ) 0 180 45 75 57'49,52" o o = + = H s gúc ca ng phõn giỏc gúc BAC l 3,99999971 4,00tg = Phng trỡnh ng phõn giỏc l y = 4x + b (3) vỡ 5 3 1 ;3 34 34 A ữ thuc ng thng (3) nờn ta cú: 3 39 35 3 4 34 34 17 b= ì + Vy ng phõn giỏc gúc BAC cú phng trỡnh l 35 4 17 y x= Phòng GD&ĐT Hậu lộc kỳ thi giải toán trên máy tính casio năm học 2008-2009 lớp 9 THCS Thời gian làm bài 150 phút Đề bài (thí sinh làm trên giấy thi) Bài 1 (6 điểm)Giải phơng trình: = 006,2145,3 7,14:51,4825,0.2,15 x )25,35,5(8,02,3 5 1 1. 2 1 2: 66 5 11 2 44 13 + Trả lời: x = 8,586963434 Bài 2 (6 điểm)Theo Báo cáo của Chính phủ dân số Việt Nam tính đến tháng 12 năm 2005 là 83,12 triệu ngời, nếu tỉ lệ tăng trung bình hàng năm là 1,33%. Hỏi dân số Việt nam vào tháng 12 năm 2010 sẽ là bao nhiêu? Trả lời: Dân số Việt Nam đến tháng 12-2010: 88796480 ngời Bài 3 (11 điểm) Cho tam giác ABC, AB = 7,071cm, AC = 8,246 cm, góc A = 59 0 02 ' 10" 1) Tính diện tích của tam giác ABC. 2) Tính bán kính đờng tròn nội tiếp tam giác ABC. 3) Tính chu vi nhỏ nhất của tam giác có ba đỉnh nằm trên ba cạnh của tam giác ABC. Trả lời: 1) Diện tích tam giác ABC: 24,99908516 (4 điểm) 2) Bán kính đờng tròn nội tiếp tam giác ABC: 2,180222023 (3 điểm) 3) Chu vi nhỏ nhất của tam giác 11,25925473 (4 điểm) Bài 4 (6 điểm)Tìm số tự nhiên n thoả mãn đẳng thức ][ ]3[]2[]1[ n++++ = 805 ([x] là số nguyên lớn nhất không vợt quá x) Trả lời: n = 118 Bài 5 (6 điểm)Cho dãy số ( n u ) đợc xác định nh sau: 2 1 1 1 =u ; 3 1 2 2 =u ; nnn uuu 23 12 = ++ với mọi * Nn . Tính 25 u ? Trả lời: 25 u = 13981014 y= 3 5 x + 12 5 y= - 5 3 x +5 y= 4x - 35 17 B 39 34 3 3 34 A -4 -2 3 5 B thi mỏy tớnh Casio Biờn son: Phm Thanh Duy Trng THCS T An Khng Nam -9- Bài 6 (7, 0 điểm)Cho 5312,1= tg . Tính sin2sin3sincoscos cos2cossincos3sin 323 233 ++ + =A Trả lời: A = -1,873918408 Bài 7 (8, 0 điểm) Cho hai biểu thức P = 1003020065 142431199079 23 2 + ++ xxx xx ; Q = 5 2006 2 + + + x c x bax 1) Xác định a, b, c để P = Q với mọi x 5. 2) Tính giá trị của P khi 2006 2005 =x . Trả lời: 1) a = 3 ; b = 2005 ; c = 76 (4 điểm) 2) P = - 17,99713 ; khi 2006 2005 =x (4 điểm) sở GD&ĐT Hải dơng Đề chính thức ***@*** Kỳ thi chọn học sinh giỏi giải toán trên máy tính casio lớp 9 - Năm học 2004-2005 Thời gian làm bài 150 phút ============= Bài 1(2, 0 điểm) Giải hệ phơng trình: =+ >>= 72,19 0;0;3681,0 22 yx yxyx Bài 2(2, 0 điểm) Khi ta chia 1 cho 49. Chữ số thập phân thứ 2005 sau dấu phẩy là chữ số nào? Bài 3(2, 0 điểm)Một ngời gửi 10 triệu đồng vào ngân hàng trong thời gian 10 năm với lãi suất 5% một năm. Hỏi rằng ngời đó nhận đợc số tiền nhiều hơn hay ít hơn bao nhiêu nếu ngân hàng trả lãi suất 12 5 % một tháng. Bài 4(3, 0 điểm) Dãy số u n đợc xác định nh sau: u 0 = 1; u 1 = 1; u n+1 = 2u n - u n-1 + 2, với n = 1, 2, 1) Lập một qui trình bấm phím để tính u n ; 2) Tính các giá trị của u n , khi n = 1, 2, ,20. Bài 5(2, 0 điểm)Tìm giá trị chính xác của 1038471 3 . Bài 6(2, 0 điểm) Cho đa thức P(x) = x 4 +5x 3 - 3x 2 + x - 1. Tính giá trị của P(1,35627). Bài 7(2, 0 điểm)Cho hình thang cân ABCD (AB là cạnh đáy nhỏ) và hai đờng chéo AC, BD vuông góc với nhau, AB =15,34 cm, AD =BC =20,35cm. Tính diện tích hình thang cân ABCD và cạnh đáy CD. Bài 8(3, 0 điểm) Cho tam giác ABC (A = 90 0 ), AB = 3,74 , AC = 4,51; 1) Tính đờng cao AH, và tính góc B theo độ phút giây; 2) Đờng phân giác kẻ từ A cắt BC tạ D. Tính AD và BD. Bài 9(2, 0 điểm) Cho P(x) = x 3 + ax 2 + bx - 1 1) Xác định số hữu tỉ a và b để x = 57 57 + là nghiệm của P(x); 2) Với giá trị a, b tìm đợc hãy tìm các nghiệm còn lại của P(x). _________________ Hớng dẫn và đáp án đề thi giải toán trên máy casio lớp 9 Bài 1: x 1, 518365287 ; y = 4, 124871738 Bài 2: 1 chia cho 49 ta đợc số thập phân vô hạn tuần hoàn chu kỳ gồm 42 chữ số 0, (020408163265306122448979591836734693877551) vậy chữ số 2005 ứng với chữ số d khi chia 2005 cho 42; 2005=47.42+31 do đó chữ số 2005 ứng với chữ số thứ 31 là số 7. Bài 3: Gọi số a là tiền gửi tiết kiệm ban đầu, r là lãi suất, sau 1 tháng: sẽ là a(1+r) sau n tháng số tiền cả gốc lãi A = a(1 + r) n số tiền sau 10 năm: 10000000(1+ 12 5 ) 10 = 162889462, 7 đồng Số tiền nhận sau 10 năm (120 tháng) với lãi suất 5/12% một tháng: 10000000(1 + 100.12 5 ) 120 = 164700949, 8 đồng số tiền gửi theo lãi suất 5/12% một tháng nhiều hơn: 1811486,1 đồng Bài 4f x 500MS : (SHIFT)(STO)(A)( ì)2(-)1(SHIFT)(STO)(B) lặp lại (ì)2(-)(ALPHA)(A)(+)(SHIFT)(STO)(A)(ì)2(-)(ALPHA)(B)(+)2(SHIFT)(STO)(B) 2) u 1 = 1, u 2 =3, u 3 =7, u 4 =13, u 5 =21, u 6 =31, u 7 =43, u 8 =57, u 9 =73, u 10 =91, u 11 =111, u 12 =133, u 13 =157, u 14 =183, u 15 =211, u 16 = 241, u 17 =273 , u 18 = 307, u 19 =343, u 20 =381. Bài 5: 1038471 3 = (138.10 3 +471) 3 tính trên giấy cộng lại: 1038471 3 =1119909991289361111 Bài 6: f(1,35627) = 10,69558718 Bài 7: Cạnh đáy lớn 24, 35 cm; S = 393, 82cm 2 B thi mỏy tớnh Casio Biờn son: Phm Thanh Duy Trng THCS T An Khng Nam -10- Bài 8: Sử dụng 222 111 ACABAH += và đờng phân giác CD BD AC AB = ;AH 2, 879 ; B 50 0 19 , 55 , ;. Chứng minh ADACAB 211 =+ , (sử dụng phơng pháp diện tích);AD 2,8914 ; BD 2, 656 Bài 9: x = 6- 35 b = axx x 2 1 =6+ 35 -(6- 35 ) 2 - a(6- 35 ) (a+13) = b+6a+65 = 0 a = -13 ; b =13 P(x) =x 3 -13x 2 +13x-1 (x-1)(x 2 -12x+1) = 0 x = 1 ; x 0,08392 và x 11,916 UBND huyện cẩm giàng Phòng gd&đt *** đề thi giải toán trên máy tính casio năm học 2006-2007 Thời gian : 150 phút (không kể giao đề) Câu 1(1đ) Tìm x biết: ( ) 1 1 2 2 2 11 5 1 15,25 0,125.2 3,567. 1 1 .1 5 4 5 11 3 7 11 46 0,(2)x 2,007 9,2 0,7 5,65 3,25 + ữ ữ ữ = + Câu 2(1,5đ) a)Cho phơng trình x 3 +x 2 -1=0 có một nghiệm thực là x 1 . Tính giá trị của biểu thức 8 3 1 1 1 P x 10x 13 x 2006= + + + + b)Giải phơng trình : (x-90)(x-35)(x+18)(x+7)=-1008x 2 (lấy 6 chữ số thập phân) Câu 3(2đ) a)Cho f(x) = 2x 6 -4x 5 +7x 4 -11x 3 -8x 2 +5x-2007. Gọi r 1 và r 2 lần lợt là số d của phép chia f(x) cho x-1,12357 và x+0,94578. Tính B=0,(2006)r 1 -3,(2007)r 2 . b)Cho f(x) = x 5 +x 2 +1 có 5 nghiệm là x 1 , x 2 , x 3 , x 4 , x 5 và P(x) = x 2 -7. Tính P(x 1 )P(x 2 )P(x 3 )P(x 4 )P(x 5 ). Câu 4(1,5đ) Ngời ta bán 2 con trâu, 5 con cừu để mua 13 con lợn thì còn thừa 1000 đồng. Đem bán 3 con trâu , 3 con lợn rồi mua chín con cừu thì vừa đủ. Còn nếu bán 6 con cừu, 8 con lợn để mua 5 con trâu thì còn thiếu 500 đồng. Hỏi mỗi con cừu, con trâu, con lợn giá bao nhiêu? Câu 5(1đ) a) Cho góc nhọn a sao cho cos 2 a =0,5678. Tính : ( ) ( ) ( ) ( ) 2 3 2 3 3 3 4 sin a 1 cos a cos a 1 sin a A 1 tan a 1 cot a 1 cos a + + + = + + + b) Tính chính xác giá trị của 123456789 2 Câu 6(2đ) Cho nhình vuông ABCD có độ dài cạnh là a= 3 3 11 7+ . Gọi I là trung điểm của AB. Điểm H thuộc DI sao cho góc AHI = 90 o . a)Tính diện tích tam giác CHD. Từ đó suy ra diện tích tứ giác BCHI. b)Cho I tùy ý thuộc AB, M tùy ý thuộc BC sao cho góc MDI = 45 o . Tính giá trị lớn nhất của diện tích tam giác DMI. Câu 7(1đ) Cho f(x) =(1+x+x 4 ) 25 =a 0 +a 1 x+a 2 x 2 ++a 100 x 100 . Tính chính xác giá trị của biểu thức A=a 1 +a 3 +a 5 ++a 99 -390,2316312 a)2009,498575 b)63;-10; -10,88386249; 57,88376249. 5994,83710745 1200;500;300 0,296162102 15241578749590521 423644304721 [...]... HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 8 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 15 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 16 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : 22 4 4 10,38 ×7,12 + 10,382 1 ,25 × − × 1 ,25 ÷+ 32, 025 35 7 a) Tính A = 9 + 13 ( 11,81 + 8,19 ) ×0,02 : 11 ,25. .. NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 6 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 11 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 12 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : a) Tìm số dư r của phép chia 2345678901234 cho 4567 b) Tìm a và b thuộc số tự nhiên thoả Bộ đề thi máy tính Casio. .. PHÒNG GIÁO DỤC – ĐT NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 5 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 9 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 10 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : a) Tính kết quả đúng của tích A = 201220072 Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh... 2 -22- PHÒNG GIÁO DỤC – ĐT NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 3 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 5 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 6 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : 2z a) Tính giá trò của biểu thức M = x − 1,25y + chính xác đến 0,0001 với: 11 1 x=... P(8) , P(9) , P(10) và P(11) ? P(6) = P(7) = P(8) = P(9) = P(10) = PHÒNG GIÁO DỤC – ĐT NINH HOÀ ĐỀ CHÍNH THỨC P(11) = THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 2 Thời gian : 120 phút Quy đònh : 3 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 4 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : ( 5 điểm ) d) Tính... theo un +1 và un c) Tính từ u11 đến u13 ? u1 = u2 = u3 = u14 = u4 = u15 = PHÒNG GIÁO DỤC – ĐT NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 10 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 19 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 20 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : a) Tính 3 A = 2 +... Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam -24- PHÒNG GIÁO DỤC – ĐT NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 4 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 7 Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio fx – 570MS 8 Nếu không nói gì thêm , hãy tính chính xác đến 10 chữ số Bài 1 : a) Tính kết quả đúng của tích A =... = Un + Un-1 , U1 = U2 = 1 TÝnh U25 ( Nªu râ sè lÇn thùc hiƯn phÐp lỈp)? Phßng GD & §T Bè tr¹ch K× thi chän häc sinh giái líp 9 Kho¸ ngµy: 4 /7/2008 M· ®Ị: 01 M«n thi: Gi¶i to¸n trªn m¸y tÝnh cÇm tay Thêi gian 150 phót (kh«ng kĨ thêi gian giao ®Ị) C¸c quy ®Þnh vµ lu ý: - §Ị thi gåm 10 bµi, ThÝ sinh lµm bµi vµo tê giÊy thi - ThÝ sinh ®ỵc sư dơng c¸c lo¹i m¸y tÝnh sau: Casio fx220; fx500A; fx500MS; fx570MS;... 19026 + 25n là số tự nhiên ( Bài 11: Cho un = 3 + 7 ) + ( 3− 7) n n với n = 0; 1; 2; a) Lập công thức truy hồi để tính un + 2 theo un +1 và un b) Lập quy trình ấn phím liên tục tính un ( n = 5; 6; ) c) Tính u5 , u6 , u7 , u8 , u9 ? PHÒNG GIÁO DỤC – ĐT NINH HOÀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 7 ĐỀ CHÍNH THỨC Thời gian : 120 phút Quy đònh : 13 Thí sinh chỉ sử dụng 4 loại máy tính Casio. .. số dương thoả mãn điều kiện : Bộ đề thi máy tính Casio – Biên soạn: Phạm Thanh Duy – Trường THCS Tạ An Khương Nam x y = 1, 025 x 2 − y 2 = 2,135 a) Trình bày lời giải tìm giá trò của x và y b) Tính giá trò của x và y và điền kết quả vào ô vuông: -19- Bài 4: Dân số Huyện Ninh Hoà hiện nay có 250 000 người Người ta dự đoán sau 2 năm nữa dân số Huyện Ninh Hoà là 256 036 người a) Hỏi trung bình . ĐỀ CHÍNH THỨC THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 1 Thời gian : 120 phút Quy đònh : 1. Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio. ĐỀ CHÍNH THỨC THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO LỚP 9 – Đề 2 Thời gian : 120 phút Quy đònh : 3. Thí sinh chỉ sử dụng 4 loại máy tính Casio fx – 200, Casio fx – 500A , Casio fx – 500MS và Casio. giàng Phòng gd&đt *** đề thi giải toán trên máy tính casio năm học 2006-2007 Thời gian : 150 phút (không kể giao đề) Câu 1(1đ) Tìm x biết: ( ) 1 1 2 2 2 11 5 1 15 ,25 0, 125. 2 3,567. 1 1 .1 5 4