1. Trang chủ
  2. » Giáo án - Bài giảng

giao an toán 11cb

51 252 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 2,95 MB

Nội dung

Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung CHƯƠNG I: VECTƠ Tiết :1-3 Bài dạy: §1 CÁC ĐỊNH NGHĨA . I.Mục tiêu: *Kiến thức -Hiểu khái niệm vectơ, vectơ -không,độ dài vectơ, hai vectơ cùng phương ,cùng hướng, bằng nhau. -Biết được vectơ- không cùng phương và cùng hướng với mọi vectơ *Kó năng -Chứng minh được hai vectơ bằng nhau -Khi cho trước điểm A và vectơ a r dựng được điểm B sao cho AB a= uuur r *Tư duy,thái độ:Phát triển tư duy toán học,tư duy trừu tượng. Rèn luyện thái độ tích cực chủ động trong học tập. II.Chuẩn bò của giáo viên và học sinh *Giáo viên: giáo án ;sgk ; tài liệu tham khảo *Học sinh:Tham khảo bài trước ,dụng cụ học tập III. Tiến trình lên lớp: 1.Ổn đònh lớp :Kiểm tra vệ sinh,só số lớp. 2.Kiểm tra bài cũ: 3.Bài mới: Giới thiệu chương mới và môn học mới Hoạt động của giáo viên Hoạt động của học sinh Nội dung Hoạt động1: Hình thành kn vectơ *Có một xe ôtô chạy ngang qua cổng trường ta với vận tốc 30km/h. Hỏi sau 2 giờ ôtô đó ở đâu? *So sánh sự khác nhau giữa đường hai chiều và đường một chiều *Đoạn thẳng AB: Vectơ AB uuur Vectơ là gì? GV hỏi:Vectơ khác với đoạn thẳng như thế nào? Hoạt động1: Phát hiện kn vectơ Không xác đònh được vì chưa biết hướng đi của ôtô So sánh Nêu kn vectơ Phát biểu I.Khái niệm vectơ 1.Đònh nghóa:Véctơ là một đoạn thẳng có hướng 2. Kí hiệu: Hoạt động 2:Hình thành khái niệm hai vectơ cùng phương,cùng hướng *Với mỗi vectơ AB uuur , đường thẳng AB gọi là giá của vectơ AB uuur . Hãy nêu nhận xét hình 1a;1b Cho ví dụ( bài 2 sgk tr 7) .Yêu cầu hs trả lời? -Bảng phụ hình 1.4 -HD:Xét các véc tơ cùng hướng ,ngược -Nhận xét:Về giá và chiều mũi tên,kết luận Hình1a -Các vectơ cùng phương: Cùng hướng Ngược hướng    Hình b Các vectơ không cùng phương Chọn khẳng đònh và giải thích. -HS trả lời. -Trong các véc tơ cùng phương. II.Vectơ cùng phương,vectơ cùng hướng *ĐN:Hai vectơ gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau. * Hai vectơ gọi là cùng phương thì chúng hoặc cùng hướng hoặc ngược hướng VD:(Hình 1.4/SGK tr7) -Các véctơ cùng phương: , ; , , , ; , .a b x y z w u v r r r ur r ur r ur -Các véctơ cùng hướng: , ; , , .a b x y z r r r ur r - Các véctơ ngược hướng: 1 Kh: A B A B Kh: A B x r Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung hướng trong các véctơ thế nào? , ; , ; , ; , .x w y w z w u v r ur uurur r ur r ur -Cá véc tơ bằng nhau: x y= r ur Hoạt động3: Hình thành khái niệm hai vectơ bằng nhau -Nhận xét về hướng và độ dài của AB và DC uuur uuur -Khi nào hai vectơ bằng nhau? -Dựa vào ĐN 2 véc tơ bằng nhau,cho trước a r và điểm O.Xác đònh điểm A sao cho OA a= uuur r .Có mấy điểm A? -Cho ví dụ ( bài 3/tr 7) ABCD là hbh AB DC⇔ = uuur uuur -GV hd hs chứng minh 2 chiều.Nêu lại kiến thức hbh? Hoạt động3: Nắm được thành khái niệm hai vectơ bằng nhau Nhận xét: AB và DC uuur uuur cùng hướng và có độ dài bằng nhau Nêu đònh nghóa hai vectơ bằng nhau -HS lên bảng xđ theo gợi ý của GV.A duy nhất. -có 2 cặp cạnh ss và bằng III.Hai vectơ bằng nhau: *Độ dài của vectơ: AB AB= uuur là khoảng cách giữiểm đầu và điểm cuối của vectơ *ĐN:Hai vectơ bằng nhau nếu chúng cùng hướng và cùng độ dài . Taviết a b= r ur Chú ý :Cho trước một điểm O và một vectơ a r thì ta luôn tìm được một điểm A sao cho OA a= uuur r . VD: ( )⇒ :Vì ABCD là hbh nên ta có: AB DC AB DC   =  P ⇒ ABcpDC AB DC    =   uuur uuur uuur uuur AB DC⇒ = uuur uuur (cmx) ( )⇐ .HS tự cm. Hoạt động 4:Hình thành khái niệm vectơ 0 r -Nhận xét về phương ,hướng, độ dài của vectơ 0 r Hoạt động 4:Nêu khái niệm vectơ 0 r -Nhận xét :Không xđ được phương ,hướng ,độ dài bằng 0 IV.Vectơ - không : Là vectơ có điểm đầu và điểm cuối trùng nhau Ví dụ: AA MM PP= = uuur uuuur uur KH: 0 r +Véctơ 0 r cùng phương cùng hướng với mọi véctơ. +Độ dài 0 r bằng 0. Hoạt động 4: Củng cố kiến thức * Đònh nghóa véctơ * Đònh nghóa hai vectơ cùng phương,cùng hướng * Điều kiện hai vectơ bằng nhau Vận dụng vào bài tập 1 sgk tr7 Hoạt động 4: Củng cố các kiến thức đã học Phát biểu Giải quyết bài tập Củng cố lại các kiến thức đã học. Có thể dùng bảng phụ để tổng kết kiến thức 4.Củng cố:Nhắc lại kiến thức cơ bản vừa học? 5. Dặn dò-bài tập về nhà:Học bài và xem các bt đã giải,bổ sung thêm 2 AB DC AD BC = = uuur uuur uuur uuur D C A B AB DC AD BC = = uuur uuur uuur uuur D C A B Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung Cho hbh ABCD và ABEF. Dựng các véctơ FG, EH bằng véctơ AD . Cm: CDGH là hbh 6.Rút kinh nghiệm: Duyệt của tổ chuyên môn Duyệt của BGH Tiết :4-6 Bài dạy: § 2 TỔNG VÀ HIỆU CỦA HAI VECTƠ I.Mục tiêu: *Kiến thức -Hiểu cách xác đònh tổng của hai vectơ,quy tắc ba điểm, quy tắc hbh và các tính chất của phép cộng vectơ: Giao hoán,kết hợp,tính chất vectơ –không -biết được a b a b + ≤ + r r r r *Kó năng -Vận dụng : quy tắc ba điểm, quy tắc hbh khi lấy tổng của hai vectơ cho trước -Vận dụng được vào việc cm các đẳng thức vectơ *Tư duy,thái độ: Phát triển tư duy toán học,tư duy trừu tượng. Rèn luyện thái độ tích cực chủ động trong học tập. II.Chuẩn bò của giáo viên và học sinh *Giáo viên: giáo án ;sgk ; tài liệu tham khảo,bảng phụ,phiếu học tập *Học sinh:Tham khảo bài trước ,dụng cụ học tập III. Tiến trình lên lớp: 1.Ổn đònh lớp :Kiểm tra vệ sinh,só số lớp. 2.Kiểm tra bài cũ: Cho hai vectơ (Hình vẽ) Hãy dựng các vectơ ;AB và AC sao cho AB a AC b = = uuur uuur uuur r uuur r 3.Bài mới: Giáo viên nói: Vectơ AC uuur gọi là tổng của hai vectơ a và b r r Hoạt động của giáo viên Hoạt động của học sinh Nội dung 3 a r b r Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung Hoạt động1: Hình thành đn tổng của hai vectơ Hãy trình bày phép lấy tổng hai vectơ Cho bài tập Hoạt động1: Xây dựng phép lấy tổng hai vectơ Phát biểu đònh nghóa Vận dụng giải bài tập I.Tổng của hai vectơ:  Đn: Cho hai vectơ avà b r r .Lấy một điểm A nào đó rồi xác đònh các điểm B và C sao cho AB a;BC b= = uuur r uuur r khi đó AC uuur goiï là tổng của hai vectơ avà b r ur . Kí hiệu AC a b = + uuur r r *Phép toán tìm tổng của hai vectơ gọi là phép cộng vectơ Chú ý : Với ba điểm A,B,C bất kì ta có : AB BC AC + = uuur uuur uuur (Gọi là quy tắc ba điểm) Ví dụ ( bài 4 sgk tr 12) Hoạt động2: Xây dựng quy tắc hình bình hành Cho ABCD là hình bình hành .Tìm AB AD + uuur uuur =… -Gợi ý: ?AD = uuur Hoạt động2: Phát hiện được quy tắc hình bình hành Thảo luận theo nhóm và lên bảng trình bày  Quy tắc hình bình hành Nếu ABCD là hbh : AB AD AC + = uuur uuur uuur F ur là vectơ lực tổng hợp của hai vectơ lực 1 2 ,F F uur uur . Hoạt động 3:Hình thành các tính chất của phép cộng Sử dụng bảng phụ vẽ hình 1.8 sgk tr 9 Hoạt động 3: Khẳng đònh các tính chất của phép cộng Suy nghó và phát biểu Quan sát và nhận xét các tính chất .Các tính chất của phép cộng: Ta có các tính chất: 1) Giao hoán: a b b a + = + r r r r 2) Kết hợp: ( ) ( ) a b c a b c+ + = + + r r r r r r = a b c + + r r r ( tổng của ba vectơ) 3) Tính chất vectơ –không: a 0 0 a a + = + = r r r r r (Hình 1.8) Hoạt động 4: Hình thành khái niệm vectơ đối của một vectơ;Đònh nghó a hiệu của hai vectơ Cho hbh ABCD ,hãy nhận xét về hướng và độ dài của hai vectơ AB và CD uuur uuur Cho học sinh hoạt động nhóm Sử dụng bảng phụ * Trả lới các câu hỏi sau: a.vectơ đối của vectơ - a r là vectơ nào? Hoạt động 4:Thực hành các hoạt động để xây dựng khái niệm vectơ đối của một vectơ;Đn hiệu của hai vectơ. Nhận xét và trả lời.Nêu kn vectơ đối của một vectơ Nhận xét chung : Vectơ đối của a r là vectơ ngược hướng với vectơ a r và có cùng độ dài với vectơ a r Đặc biệt vectơ đối của vectơ 0 là 0 r r Thảo luận và lên bảng trình bày - là a r II.Hiệu của hai vectơ .Vectơ đối : Cho vectơ a r .Vectơ có cùng độ dài và ngược hướng với vectơ a r gọi là vectơ đối của vectơ a r kí hiệu là -a r Ví dụ:G ọi O là tâm hbh ABCD,hãy chỉ ra các cặp vectơ đối có điểm đầu là O và điểm cuối là đỉnh của hbh đó. , ; ,OA OC OB OD uuur uuur uuur uuur 4 a r b r C B A A C 1 F uur 2 F uur F ur B D Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung b. vectơ đối của vectơ 0 r là vectơ nào? c. vectơ đối của vectơ MN uuuur là vectơ nào? Hỏi ( ) ( ) ?a a a b+ − = + − r r r r =? Với ba điểm A,B,C bất kì ta có : -HĐ4? -Hướng dẫn học sinh giải bài tập - là 0 r - là NM uuuur Nêu đònh nghóa hiệu hai vectơ -Nhận xét được: Với ba điểm A,B,C bất kì ta có AB AC CB − = uuur uuur uuur (quy tắc trừ) * OB OA OB AO AO OB AB − = + = + = uuur uuur uuur uuur uuur uuur uuur Giải bài tập Đn hiệu của hai vectơ: đn a b a ( b) − = + − r r r r Chú ý ¶Phép lấy hiệu hai vectơ gọi là phép trừ hai vectơ ¶Với ba điểm A,B,C bất kì ta có AB AC CB − = uuur uuur uuur (quy tắc trừ) Bài tập :1+2+3+5+6sgk tr 12 Hoạt động 5: Hướng dẫn hocï sinh thực hành một số áp dụng vào giải toán Tính chất của trung điểm và tính chất của trọng tâm tam giác Hãy cmr: ØI là trung điểm AB khi và chỉ khi 0IA IB + = uur uur r ØG là trọng tâm tam giác ABC khi và chỉ khi 0GA GB GC + + = uuur uuur uuur r . Hoạt động 5: p dụng kiến thức về tổng và hiệu của hai vectơ vào giải toán -Vì uur uur ,IA IB là véctơ đối nên t tổng bằng vectơ 0 r -Tham khảo cm/SGK III.p dụng .I là trung điểm AB khi và chỉ khi 0IA IB + = uur uur r .G là trọng tâm tam giác ABC khi và chỉ khi 0GA GB GC + + = uuur uuur uuur r 4.Củng cố :Nêu quy tắc ba điểm ;quy tắc hình bình hành ? 5. Dặn dò,bài tập về nhàbài :Học bài và giải các phần còn lại bt sgk, giải 7+8 sgk tr 12 6.Rút kinh nghiệm: Duyệt của tổ chuyên môn Duyệt của BGH Tiết:7-8 Bài dạy: §3 TÍCH CỦA VECTƠ VỚI MỘT SỐ I.Mục tiêu: *Kiến thức -Hiểu được đn tích của vectơ với một số -Biết các tính chất của phép nhân vectơ với một số -Biết đk để hai vectơ cùng phương;để ba điểm thẳng hàng -Biết đònh lí biểu thò một vectơ theo hai vectơ không cùng phương *Kó năng 5 Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung -Xác đònh được vectơ .b k a= r r khi cho trước số k và vectơ a r -Biết diễn đạt được bằng vectơ:Ba điểm thẳng hàng,trung điểm cuả đoạn thẳng,trọng tâm của tam giác,hai điểm trùng nhau và sử dụng được các đk đó để giải một số bài toán hình học. *Tư duy,thái độ: Phát triển tư duy toán học,tư duy trừu tượng. Rèn luyện thái độ tích cực chủ động trong học tập. II.Chuẩn bò của giáo viên và học sinh *Giáo viên: giáo án ;sgk ; tài liệu tham khảo,bảng phụ,phiếu học tập *Học sinh:Tham khảo bài trước ,dụng cụ học tập III. Tiến trình lên lớp: 1.Ổn đònh lớp : Kiểm tra vệ sinh,só số lớp. 2.Kiểm tra bài cũ: Hãy nhận xét hướng và độ dài của vectơ màu đỏ và vectơ a r ? 3.Bài mới: Hoạt động của giáo viên Hoạt động của học sinh Nội dung Hoạt động1: Hình thành đn Hãy nhận xét hướng và độ dài của hai vectơ : a r và k a r , ,a k∀ ∈ r ¡ Cho học sinh hoạt động nhóm Cho hbh ABCD tâm O,hãy điền vào ô trống để được đẳng thức đúng a. AO uuur = AC uuur b. + = uuur uuur AB AD AO uuur c. 7 AD− = uuur AD uuur d. = − uuur r ?AB -Cho HS tham khảo ví dụ Hoạt động1: Phát hiện đn Nhận xét Phát biểu đn Thảo luận,lên bảng trình bày -Giải lại ví du và ghi nhận vào tập. .Đònh nghóa tích của vectơ với một ĐN: Tích của a r với số thực k ≠ 0 là một vectơ,kí hiệu là k a r được xđ 1)Hướng: *Nếu 0>k thì véctơ k a r cùng hướng với vectơ a r *Nếu 0k < thì véctơ k a r ngược hướng với vectơ a r 2)Độ dài vectơ k a r bằng .k a r Quy ước : 0 0 , 0 0a k= = r r r r VD:SGK Hoạt động 2: Xây dựng các tính chất *Nhận xét về hướng và độ dài của hai vectơ ( ) ( ) ∈ r r ¡,h ka và hk a với k l Tổng quát thành các tính chất. -Gọi HS giải bài 1/17.Dẫn dắt hs sử dụng kiến thức. Hoạt động 2: Nhận xét: Cùng hướng và cùng độ dài Nêu các tính chất. -HS lên bảng giải Tính chất :Với hai vectơ bất kì a r , b r và mọi số thực h,k ta có: ( ) ( ) ( ) ( ) ( ) h ka = hk 1.a , 1 + = + + = + = − = − r r r r r r r r r r r r r k a b k a lb h k a ha ka a a a a Ví dụ ( Bài 1 sgk tr 17) 6 a r H 1a a r H 1b a r H 2a a r H 2b Ta nói:Vectơ màu đỏ bằng tích của vectơ a r với số 2 Ta nói:Vectơ màu đỏ bằng tích của vectơ a r với số 1 3 − Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung 2 AB AC AD AB AD AC AC AC AC + + = + + = + = uuur uuur uuur uuur uuur uuur uuur uuur uuur Hoạt động 3:Hướng dẫn học sinh cm các đẳng thức liên quan đến trung điểm đoạn thẳng ,trọng tâm của tam giác a/ 0 2 2 MA AB MI IA MI IB IA IB MI MI MI MI + = + + + = + + + = + = uuur uuur uuur uur uuur uur uur uur uuur uuur r uuur uuur b/HS tự cm. Hoạt động 3:Chứng minh các đẳng thức liên quan đến trung điểm đoạn thẳng ,trọng tâm của tam giác Trung điểm đoạn thẳng ,trọng tâm của tam giác ØNếu I là trung điểm đoạn thẳng AB thì với mọi điểm M ta có 2MA MB MI+ = uuur uuur uuur ØNếu G là trọng tâm tam giác ABC thì với mọi điểm M ta có 3MA MB MC MG+ + = uuur uuur uuuur uuuur Hoạt động4: Điều kiện để hai vectơ cùng phương Cho 0a ≠ r r nhận xét về phương của hai vectơ a và b ka= r r r -Lưu ý phương,hướng. Giải thích vì sao 0b ≠ r r ? Giáo viên hướng dẫn học sinh xem sgk. Hoạt động4: Phát biểu điều kiện để hai vectơ cùng phương -Nhận xét dựa vào đn đã học Giải thích 0 0Vì b kb= ⇒ = r r r r .Mệnh đề sẽ sai nên 0b ≠ r r  Điều kiện để hai vectơ cùng phương Vectơ a r cùng phương với b r ( ) 0≠ r r b khi và chỉ khi có số một số k sao cho a r =k. b r *Chú ý :Điều kiện để ba điểm thẳng hàng : A,B,C thẳng hàng ⇔ có số k sao cho .AB k AC= uuur uuur Hoạt động5: Biểu thò một vectơ qua hai vectơ không cùng phương Cho học sinh thảo luận nhóm Tìm các số h.k sao cho AB hAN kMN= + uuur uuur uuuur m =2,n= -2 -Tổng quát kết quả ? -Xét bài toán -GVhd hs phân tích Hoạt động5: Biết cách biểu thò một vectơ qua hai vectơ không cùng phương -HS phân tích: 2 2( ) 2( ) 2 2 AB AM AN NM AN MN AN MN = = + = − = − uuur uuuur uuur uuuur uuur uuuur uuur uuuur -Phát biểu - Giải bài toán dựa vào SGK -Ghi nhận vào tập .Biểu thò một vectơ qua hai vectơ không cùng phương Cho hai vectơ a r và b r không cùng phương a r và b r .Khi đó mọi vectơ x r đều có thể phân tích được một cách duy nhất qua hai vectơ a r và b r ,nghóa là có duy nhất cặp số h và k sao cho = + r r r x ha kb . *Bài toán ( sgk tr 16) 4.Củng cố : -Đònh nghóa tích vectơ với một vectơ -Các đẳng thức liên quan đến trung điểm đoạn thẳng ,trọng tâm của tam giác -Điều kiện để hai vectơ cùng phương -Biểu thò một vectơ qua hai vectơ không cùng phương 5.Dặn dò,bài tập về nhà:Học bài và xem lại các bt đã giải BTthêm: 1) Cho 4 điểm A, B, C, D. Gọi I, F lần lượt là trung điểm của BC và CD. 2) Chứng minh 2( DAFAAIAB +++ ) = 3 DB . 7 A B C M N Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung 3) Cho ∆ABC, I là điểm trên cạnh BC sao cho 2CI = 3BI, J là điểm trên cạnh BC kéo dài sao cho 5JB = 2JC. a) Tính AI , AJ theo AB , AC . b) Gọi G là trọng tâm ∆ABC. Tính AG theo AI và AJ . 4) Cho ∆ABC, dựng điểm I, J, K, L, M biết: a) 2 IA - IB = 0 b)3 JA + 2 JB = 0 c)2 ABKCKBKA =−+ b) d) BCLCLBLA =++ e) 022 =+− MCMBMA . 5) Cho hình bình hành ABCD, M là 1 điểm tùy ý. Trong mỗi trường hợp hãy tìm số k và điểm cố đònh I sao cho đẳng thức véctơ sau thỏa với mọi điểm M: a) MIkMDMCMBMA =+++ 3 . b) MIkMCMBMA =−+2 . 6) Cho ∆ABC, lấy các điểm M, N, P sao cho MCMB 2= , 02 =+ NCNA , 0=+ PBPA . a) Tính PM , PN theo AB và AC . b) Chứng minh M, N, P thẳng hàng. 7) Cho ∆ABC, k ∈ R. Tìm tập hợp các điểm M sao cho: a) MCkMBkMA =+ . b) MCMBMAMCMBMA −−=−+ 2 . 6.Rút kinh nghiệm: Duyệt của tổ chuyên môn Duyệt của BGH KIỂM TRA MỘT TIẾT I.Mục tiêu *Kiến thức :Củng cố ,khắc sâu hệ thống kiến thức trọng tâm của chương -Khái niệm về vectơ -Các phép toán về vectơ,phép nhân một số với vectơ *Kó năng: -Nhận biết các vectơ cùng phương;cùng hướng ;bằng nhau -Tìm tổng,hiệu các vectơ -Giải được các dạng toán thường gặp như: Cm đẳng thức ,rút gọn biểu thức ;tìm độ dài vectơ, xác đònh điểm -thỏa mãn hệ thức cho trước…. *Tư duy,thái độ: Phát triển tư duy toán học,tư duy trừu tượng. Rèn luyện thái độ tích cực chủ động trong học tập. II.Chuẩn bò của giáo viên và học sinh 8 Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung *Giáo viên: Đề và đáp án *Học sinh :Học lí thuyết , Ôn lại các dạng toán đã học III.Đề và đáp án  Ma trận đề:  Đề 9 Trường THPT Lương Đònh Của GV:Trần Thò Hồng Nhung Tiết :10-12 Bài dạy: TRỤC TỌA ĐỘ VÀ HỆ TRỤC TỌA ĐỘ I.Mục tiêu: *Kiến thức - Hiểu kn trục tọa độ, tọa độ của vectơ và của điểm trên trục tọa độ -Biết kn độ dài đại số của một vectơ trên một trục tọa độ và hệ thức Salơ -Hiểu được tọa độ của vectơ và của điểm đối với một hệ tọa độ -Hiểu được thức tọa độ của các phép toán vectơ,tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác *Kó năng: -Xác đònh được tọa độ của vectơ và của điểm trên trục tọa độ -Tính được độ dài đại số của một vectơ khi biếy tọa độ hai điểm đầu mút của nó. -Tính được tọa độ của vectơ nếu biết tọa độ của hai đầu mút.Sử dụng được thức tọa độ của các phép toán vectơ. -Xác đònh được :Tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác II.Chuẩn bò của giáo viên và học sinh *Giáo viên: giáo án ;sgk ; tài liệu tham khảo,bảng phụ,phiếu học tập *Học sinh:Tham khảo bài trước ,dụng cụ học tập III. Tiến trình lên lớp: 1.Ổn đònh lớp : Kiểm tra vệ sinh,só số lớp. 2.Kiểm tra bài cũ: 3.Bài mới: Hoạt động của giáo viên Hoạt động của học sinh Nội dung 10 [...]... 2 2 α =1 ; cot α =1ù tan sin α = *Chú ý: - sin α luôn dương - cos α , tan α , cot α dương khi α là góc nhọn ;âm khi α là góc tù 0 TL: góc x0M’bằng 180 0 - α TL: sin( 1800 − α )=sin α cos( 1800 − α )= _cos α tan( 1800 − α )= _tan α cot( 1800 − α )=_cot α TL: sin 120 0 =sin 60 0 tan 135 0 = -tan 45 0 II Tính chất: sin( 1800 − α )=sin α cos ( 1800 − α )= _cos α tan( 1800 − α )= _tan α cot( 1800 − α )=_cot... yG xI = III Tích vô hướng: sin(1800 − α ) = sin α cos(1800 − α ) = − cos α tan(1800 − α ) = − tan α cot(1800 − α ) = − cot α u r  cos(1800 − α ) = − cos α tan(1800 − α ) = − tan α cot(1800 − α ) = − cot α Trả lời: Nhắc lại bảng Giá trò lượng giác Trả lời: r r B A a b O  Bảng giá trò lượng giác một số góc đặc biệt (SGK trang 37) Vẽ OA = a, OB = b Với OA = a, OB = b uu r uu r ur ur r r r r  Góc giữa... hướng: u u ur r uu GV giới thiệu bài toán ở hình 2.8 TL: A = F OO ' Cosϕ Yêu cầu : Học sinh nhắc lại công thức tính công A của bài toán trên Nói : Giá trò A của biểu thức trên trong toán học được gọi là tích vô r r u uu r uu r TL: Tích vô hướng của hai vectơ a và b là hướng của 2 vectơ F và OO' r r r r I Đònh nghóa: r r r Cho hai vectơ a, b khác 0 Tích Hỏi : Trong toán học cho a, b thì Chú ý: r r rr... hai vectơ  Về kỹ năng: Chứng minh một biểu thức vectơ, giải các dạng toán về trục tọa độ Chứng minh các hệ thức về giá trò lượng giác, tính tích vô hướng của hai vectơ  Về tư duy: Học sinh tư duy linh hoạt trong việc vận dụng kiến thức vào giải toán, biết quy lạ về quen  Về thái độ: Cẩn thận, chính xác trong tính toán, liên hệ toán học vào thực tế II/ Chuẩn bò của thầy và trò:  Giáo viên: Giáo án,... sinh trên bảng phụ đã ghi sẵn) -Nhận thấy được mối liên thông của các kiến thức *Kó năng: -Rèn luyện một số dạng toán thường gặp -Rèn luyện kó năng vận dụng kiến thức tổng hợp vào giải toán -Giải quyết một số bài toán tổng hợp cần suy luận logic chặt chẽ *Tư duy,thái độ: Phát triển tư duy toán học,tư duy trừu tượng Rèn luyện thái độ tích cực chủ động trong học tập II.Chuẩn bò của giáo viên và học sinh... nào ? Gv vẽ hình lên bảng Hỏi : trong tam giác OMI với góc nhọn α thì sin α =? cos α =? tan α =? cot α =? Gv tóm tắc cho học sinh ghi Hỏi : tan α , cot α xác đònh khi nào ? Hỏi : nếu cho α = 450 ⇒ M( 2 2 ) Khi đó: ; 2 2 sin α = ? ; cos α = ? tan α = ? ; cot α = ? Hỏi: có nhận xét gì về dấu của sin α , cos α , tan α , cot α HĐ2: giới thiệu tính chất : Hỏi :lấy M’ đối xứng với M qua oy thì góc x0M’ bằng... 1 x OI = 0 = x0 cos α = OM 1 sin α y0 tan α = = cos α x0 cos α x0 cot α = = sin α y0 TL:khi x0 ≠ 0, y0 ≠ 0 TL: sin α = y 0 = 2 ; cos α = x 2 2 0= 2 tan α =1 ; cot α =1ù TL: sin α luôn dương cos α , tan α , cot α dương khi α . phương -HS phân tích: 2 2( ) 2( ) 2 2 AB AM AN NM AN MN AN MN = = + = − = − uuur uuuur uuur uuuur uuur uuuur uuur uuuur -Phát biểu - Giải bài toán dựa vào SGK -Ghi nhận vào tập .Biểu thò. dạng toán thường gặp -Rèn luyện kó năng vận dụng kiến thức tổng hợp vào giải toán -Giải quyết một số bài toán tổng hợp cần suy luận logic chặt chẽ *Tư duy,thái độ: Phát triển tư duy toán. tích vô hướng: GV giới thiệu bài toán ở hình 2.8 Yêu cầu : Học sinh nhắc lại công thức tính công A của bài toán trên. Nói : Giá trò A của biểu thức trên trong toán học được gọi là tích vô hướng

Ngày đăng: 27/10/2014, 10:00

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w